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Beurling algebra analogues of theorems of
Wiener–Lévy–Żelazko and Żelazko

by

S. J. Bhatt, P. A. Dabhi and H. V. Dedania (Vallabh Vidyanagar)

Abstract. Let 0 < p ≤ 1, let ω : Z → [1,∞) be a weight on Z and let f be a
nowhere vanishing continuous function on the unit circle Γ whose Fourier series satisfiesP

n∈Z | bf(n)|pω(n) <∞. Then there exists a weight ν on Z such that
P

n∈Z |(̂1/f)(n)|pν(n)
< ∞. Further, ν is non-constant if and only if ω is non-constant; and ν = ω if ω is non-
quasianalytic. This includes the classical Wiener theorem (p = 1, ω = 1), Domar theorem
(p = 1, ω is non-quasianalytic), Żelazko theorem (ω = 1) and a recent result of Bhatt and
Dedania (p = 1). An analogue of the Lévy theorem at the present level of generality is also
developed. Given a locally compact group G with a continuous weight ω and 0 < p < 1,
the locally bounded space Lp(G,ω) is closed under convolution if and only if G is discrete
if and only if G admits an atom. This generalizes and refines another result of Żelazko.

Let f be a continuous function on the unit circle Γ . Let f have absolutely
convergent Fourier series. The celebrated Wiener theorem [12] implies that
if f(z) 6= 0 for all z ∈ Γ , then 1/f has absolutely convergent Fourier series.
Lévy’s generalization [8] of Wiener’s theorem implies that, for every function
ϕ holomorphic on some neighbourhood of the range of f , the function ϕ ◦ f
has absolutely convergent Fourier series if so does f . Żelazko proved in [13]
that both these theorems hold if absolute convergence is replaced by pth
power absolute convergence for 0 < p < 1.

Let ω be a weight on Z, that is, ω : Z → [1,∞) satisfies ω(m + n) ≤
ω(m)ω(n) (m,n ∈ Z). A complex sequence (λn)n∈Z is ω-absolutely conver-
gent if

∑
n |λn|ω(n) <∞.

Domar proved in [4, Theorem 2.11] that if f has ω-absolutely conver-
gent Fourier series and is nowhere vanishing on Γ , then 1/f has ω-absolutely
convergent Fourier series provided ω is non-quasianalytic in the sense that∑

n∈Z (logω(n))/(1 + n2) < ∞. On the other hand, given f having ω-
absolutely convergent Fourier series, it is established in [2] that there ex-
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ists a weight ν on Z such that 1/f (and analogously ϕ ◦ f) has ν-absolutely
convergent Fourier series.

We prove the following theorem that includes all these results, which also
gives a pth power analogue of Domar’s theorem.

Theorem 1. Let 0 < p ≤ 1, let ω be a weight on Z, and let f ∈ C(Γ )
have pth power ω-absolutely convergent Fourier series.

(I) If f(z) 6= 0 (z ∈ Γ ), then there exists a weight ν on Z such that
(i) 1/f has pth power ν-absolutely convergent Fourier series;
(ii) ν is non-constant if and only if ω is non-constant ;
(iii) ν(n) ≤ ω(n) (n ∈ Z).

(II) If ϕ is a holomorphic function on some neighbourhood of the range
of f , then there exists a weight χ on Z such that
(i) ϕ ◦ f has pth power χ-absolutely convergent Fourier series;
(ii) χ is non-constant if and only if ω is non-constant ;
(iii) χ(n) ≤ ω(n) (n ∈ Z).

Corollary 1. Let 0 < p ≤ 1, let ω be a non-quasianalytic weight on Z,
and let f ∈ C(Γ ) be nowhere vanishing. If f has pth power ω-absolulely
convergent Fourier series, then 1/f has pth power ω-absolutely convergent
Fourier series.

Analogous to Gel’fand’s proof of the Wiener theorem [7, p. 33], which is
based on Banach algebras, we shall use Gel’fand theory of p-Banach algebras
developed by Żelazko in the framework of locally bounded Beurling algebras.

Let A be a (complex) algebra and let 0 < p ≤ 1. Then a mapping
‖ · ‖ : A → R is a p-norm on A if, for x, y ∈ A and for α ∈ C,

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;
(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖;
(iii) ‖αx‖ = |α|p‖x‖;
(iv) ‖xy‖ ≤ ‖x‖ ‖y‖.

If A is complete in the p-norm, then (A, ‖ · ‖) is a p-Banach algebra. Among
unital algebras, p-Banach algebras are precisely the complete locally bound-
ed algebras [13, Theorem 2.3]. Given a continuous weight ω : G → [1,∞)
on a locally compact group G satisfying ω(st) ≤ ω(s)ω(t) (s, t ∈ G), let
Lp(G,ω) be the set of all measurable functions f : G→ C such that

‖f‖p,ω :=
�

G

|f(t)|pω(t) dm(t) =
�

G

|f(t)|p dmω(t) <∞,

where m is the left invariant Haar measure on G, and dmω = ωdm. Though
a complete locally bounded space can be dual-less, i.e., have no non-zero
continuous linear functionals (which could be a hurdle in construction of
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vector-valued integrals), Żelazko [13] constructed a functional calculus in p-
Banach algebras; and an offshot of his Gel’fand theory is that a semisimple,
commutative, complete locally bounded algebra has sufficiently many con-
tinuous linear functionals. For a discrete abelian group G and for 0 < p ≤ 1,
the space `p(G) is a p-Banach algebra with convolution. In fact, Żelazko
proved that, for a locally compact group G and for 0 < p < 1, the complete
locally bounded space Lp(G) is closed under convolution if and only if G is
discrete. The following theorem gives a Beurling algebra analogue of this.

Theorem 2. Let 0 < p < 1, let G be a non-compact , locally compact
group, and let ω be a continuous weight on G. Then the following are equiv-
alent.

(i) Lp(G,ω) is closed under convolution.
(ii) G is discrete.
(iii) Lp(G,ω) admits a non-zero continuous linear functional.
(iv) The set of continuous linear functionals on Lp(G,ω) separates the

points of Lp(G,ω).
(v) G admits an atom.
(vi) G admits sufficiently many atoms.

In this case, if G is abelian or ω is symmetric, Lp(G,ω) is semisimple.

Note that, in general, it is not known whether L1(G,ω) or `p(G,ω)
(0 < p < 1) is semisimple or not [3, p. 175].

Rolewicz [11] has discussed multi-dimensional generalizations of Wiener–
Żelazko and Lévy–Żelazko theorems. In the same spirit, it would be inter-
esting to investigate multi-dimensional analogues of Domar’s theorem [4,
Theorem 2.11] as well as the theorem in [2].

Recall that a measurable set E ⊂ G is an atom if 0 < m(E) <∞, and, for
any measurable set F ⊂ E, m(F ) = 0 or m(F ) = m(E). A Banach ∗-algebra
A is an A∗-algebra if it admits a C∗-norm (not necessarily complete).

Proof of Theorem 1. Let

`p(Z, ω) :=
{
λ = (λn) : |λ|p,ω :=

∑
n∈Z
|λn|pω(n) <∞

}
.

Then `p(Z, ω) is a convolution algebra. It is a p-Banach algebra with the
p-norm | · |p,ω. Let Ap(ω) = {g ∈ C(Γ ) : ĝ ∈ `p(Z, ω)}. It is a p-Banach
algebra with the pointwise operations and the p-norm being ‖g‖p,ω = |ĝ|p,ω.
Thus g ∈ C(Γ ) has pth power ω-absolulely convergent Fourier series if and
only if g ∈ Ap(ω) if and only if ĝ ∈ `p(Z, ω).

We claim that the Gel’fand space 4(Ap(ω)) of Ap(ω) is homeomorphic
to the closed annulus Γ (ω) = {z ∈ C : ρ(2, ω) ≤ |z| ≤ ρ(1, ω)}, where

ρ(1, ω) = inf{ω(n)1/n : n ≥ 1} and ρ(2, ω) = sup{ω(n)1/n : n ≤ −1}.



222 S. J. Bhatt et al.

For z ∈ Γ (ω), define

ϕz(g) =
∑
n∈Z

ĝ(n)zn (g ∈ Ap(ω)).

Then, for large n0,∑
|n|≥n0

|ĝ(n)zn| ≤
∑
|n|≥n0

|ĝ(n)|p|z|n ≤
∑
|n|≥n0

|ĝ(n)|pω(n) <∞.

It is routine to check that ϕz is a complex homomorphism on Ap(ω). Thus
ϕz ∈ 4(Ap(ω)) (z ∈ Γ (ω)). Let ϕ ∈ 4(Ap(ω)). Then ‖ϕ‖ ≤ 1. Let en(z) =
zn (n ∈ Z, z ∈ Γ ). So |ϕ(en)| ≤ ‖en‖p,ω = ω(n) (n ∈ Z). Set ϕ(e1) = z0.
Then, for each n ∈ Z, ϕ(en) = ϕ(e1)n = zn

0 . It is clear that ρ(2, ω) ≤ |z0| ≤
ρ(1, ω). So, for any g ∈ Ap(ω), we have

ϕ(g) = ϕ
(∑

n∈Z
ĝ(n)en

)
=
∑
n∈Z

ĝ(n)ϕ(en) =
∑
n∈Z

ĝ(n)zn
0 = ϕz0(g).

Thus ϕ = ϕz0 . This quickly gives the desired homeomorphism and establishes
our claim. Thus each function g ∈ Ap(ω) extends uniquely as an element
(denoted by g itself) in the set B(ω) consisting of all continuous functions
on Γ (ω) which are holomorphic in the interior of Γ (ω). Now the construction
of desired weights ν and χ is exactly as in [2].

Proof of Corollary 1. By the hypothesis,
∑

n∈N (logω(n))/n2 is conver-
gent. Notice that

∑
n≥2 1/(n log n) is divergent. For infinitely many n ∈ N,

logω(n)
n2

≤ 1
n log n

;

hence inf{(logω(n))/n : n ∈ N} = 0, and ρ(1, ω) = 1. Similarly, ρ(2, ω) = 1.
Then, from Theorem 1(I), ν = ω; and the result follows.

Proof of Theorem 2. (i)⇒(ii). We prove that if G is not discrete, then
Lp(G,ω) is not closed under convolution. Let V be a symmetric, open sub-
set of G containing the identity of G such that V is compact. Since ω is
continuous on G,

(a) mω(V 2) =
	
G χV 2(t)ω(t) dm(t) <∞.

Now choose a sequence (Vn) of measurable subsets of G such that
(b) mω(Vn) > 0;
(c) Vn ⊆ V ;
(d) Vi ∩ Vj = ∅ whenever i 6= j.

From the properties (a), (c) and (d), we have
∑∞

n=1mω(Vn) < ∞. We may
assume that mω(Vn) < 2−n (n ∈ N). Define f, g : G→ C as

f = χV 2 and g =
∞∑

n=1

[mω(Vn)n2]−1/pχVn .
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Then ‖f‖p,ω = mω(V 2) <∞ and

‖g‖p,ω =
∞∑

n=1

[mω(Vn)n2]−1
�

G

χVn(t)ω(t) dm(t) =
∞∑

n=1

n−2 <∞.

Thus f, g ∈ Lp(G,ω). On the other hand,

(f ? g)(t) =
�

G

f(s−1t)g(s) dm(s) =
�

tV 2

g(s) dm(s).

If t ∈ V , then tV 2 ⊆ V and so

(f ?g)(t) =
∞∑

n=1

[mω(Vn)n2]−1/pm(Vn) =
∞∑

n=1

[mω(Vn)n2]−1/pmω(Vn)
m(Vn)
mω(Vn)

.

Since ω is bounded on compact subsets of G, there exists K > 0 such that
ω(t) ≤ K (t ∈ V ). Now

mω(Vn) =
�

Vn

ω(t) dm(t) ≤
�

Vn

K dm(t) = Km(Vn).

Thus
m(Vn)
mω(Vn)

≥ 1
K

(n ∈ N).

Therefore

(f ? g)(t) ≥ 1
K

∞∑
n=1

2n(1/p−1)n−2/p =∞.

Hence f ?g cannot be in Lp(G,ω) as it becomes infinite on a set V of positive
measure.

(ii)⇒(i). If G is discrete, then it is easy to verify that Lp(G,ω) is closed
under convolution.

(ii)⇒(iv). Let G be discrete. Let f, g ∈ Lp(G,ω) and f 6= g. Therefore
f(t) 6= g(t) for some t ∈ G. Define ϕt : Lp(G,ω) → C as ϕt(h) = h(t) (h ∈
Lp(G,ω)). It is easy to verify that ϕt is a continuous linear functional on
Lp(G,ω). Also ϕt(f) = f(t) 6= g(t) = ϕt(g). Thus (iv) follows.

(v)⇔(vi). Since ω is continuous, E ⊂ G is an mω-atom if and only if E
is m-atom; and due to left translation invariance of m, this happens if and
only if tE is an atom for any t ∈ G.

(iii)⇒(vi). Let Lp(G,ω) have a non-zero continuous linear functional.
Then, by [10, Corollary 4.2.3], G admits an atom, say E. Since the Haar
measure on G is left translation invariant, we may assume that E contains
the identity e of G.

Next we claim that every set of positive measure contains an atom
(measure-theoretically). Let F ⊂ G be of positive measure. If F = G a.e. m,
we are done. Letm(G\F ) > 0. Now, either F∩E = ∅ a.e.m orm(F∩E) > 0.
Since E is an atom, in the latter case F ∩E = E ⊂ F a.e. m. Suppose that
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F ∩ E = ∅ a.e. m. Then G\F = E a.e. m. Now, for any t ∈ G, either
tE ∩ E = ∅ or tE = E a.e. m. If tE = E for all t ∈ G, then G = E a.e.
m, which is not possible as m(F ) = m(G\E) > 0. Therefore there exists
t ∈ G such that tE ∩ E = ∅ a.e. m. Then tE ⊂ G\E = F a.e. m. Thus
tE is an atom contained in F . This proves our claim. Now G is a union of
its atomic part, which is a union of atoms, and a non-atomic part. In this
case the measure of the non-atomic part is zero; otherwise it will contain an
atom. Thus (vi) follows.

(v)⇒(ii). Suppose that G admits an atom, say E. We may assume that
e ∈ E. First we assert that E is an atom if and only if E−1 is an atom. Since
m is left invariant, it follows from [6, 2.32, p. 48] that m(E) = 0 if and only if
m(E−1) = 0. Let F ⊂ E−1 be measurable. Then F−1 ⊂ E is measurable. If
m(F ) > 0, then m(F−1) > 0. Since F−1 ⊂ E, we have F−1 = E. Therefore
F = E−1. This proves our assertion.

Now define g = m(E−1)−1χE . Then g ∈ L1(G). We claim that g is the
identity of L1(G). Let f ∈ L1(G) and t ∈ G. Then

(f ? g)(t) =
�

G

f(s−1t)g(s) dm(s) =
1

m(E−1)

�

E

f(s−1t) dm(s)

=
1

m(E−1)

�

tE−1

f(s) dm(s).

Note that tE−1 is an atom, t ∈ tE−1, and every measurable function is
constant on an atom. Therefore

(f ? g)(t) =
1

m(E−1)
f(t)

�

tE−1

dm(s) = f(t).

Hence f ? g = f ; similarly, g ? f = f . Thus g is the identity of L1(G). It
follows that G is discrete.

(vi)⇒(iv). Assume that G admits sufficiently many atoms. Now let f, g ∈
Lp(G,ω) be such that f 6= g. Then there exists an atom, say E, on which
f 6= g. Also since every measurable function on an atom is constant, f =
cf 6= cg = g on E. Define ϕE : Lp(G,ω)→ C as

ϕE(h) =
�

E

h(s) dmω(s) (h ∈ Lp(G,ω)).

Then ϕE is a continuous linear functional on Lp(G,ω). Moreover, ϕE(f) =
mω(E)cf 6= mω(E)cg = ϕE(g). Thus (iv) follows.

(i)⇒(vi). Since G is discrete, it is clear that G is a union of atoms.
(iv)⇒(iii) is clear.
Since G is discrete, Lp(G,ω) = `p(G,ω). If ω is symmetric, then `p(G,ω)

is a ∗-subalgebra of `1(G). Since `1(G) admits a C∗-norm, it is an A∗-algebra.
So, by [9, Theorem 4.1.19], `p(G,ω) is semisimple. If G is abelian, then
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`p(G,ω) is a subalgebra of the commutative Banach algebra `1(G,ω). Since
`1(G,ω) is semisimple [1], `p(G,ω) is semisimple [9, Corollary 2.3.7].
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