STUDIA MATHEMATICA 195 (3) (2009)

Beurling algebra analogues of theorems of Wiener–Lévy–Żelazko and Żelazko

by

S. J. BHATT, P. A. DABHI and H. V. DEDANIA (Vallabh Vidyanagar)

Abstract. Let $0 , let <math>\omega : \mathbb{Z} \to [1, \infty)$ be a weight on \mathbb{Z} and let f be a nowhere vanishing continuous function on the unit circle Γ whose Fourier series satisfies $\sum_{n \in \mathbb{Z}} |\widehat{f}(n)|^p \omega(n) < \infty$. Then there exists a weight ν on \mathbb{Z} such that $\sum_{n \in \mathbb{Z}} |\widehat{(1/f)}(n)|^p \nu(n) < \infty$. Further, ν is non-constant if and only if ω is non-constant; and $\nu = \omega$ if ω is non-quasianalytic. This includes the classical Wiener theorem $(p = 1, \omega = 1)$, Domar theorem $(p = 1, \omega \text{ is non-quasianalytic})$, Żelazko theorem $(\omega = 1)$ and a recent result of Bhatt and Dedania (p = 1). An analogue of the Lévy theorem at the present level of generality is also developed. Given a locally compact group G with a continuous weight ω and $0 , the locally bounded space <math>L^p(G, \omega)$ is closed under convolution if and only if G is discrete if and only if G admits an atom. This generalizes and refines another result of Żelazko.

Let f be a continuous function on the unit circle Γ . Let f have absolutely convergent Fourier series. The celebrated Wiener theorem [12] implies that if $f(z) \neq 0$ for all $z \in \Gamma$, then 1/f has absolutely convergent Fourier series. Lévy's generalization [8] of Wiener's theorem implies that, for every function φ holomorphic on some neighbourhood of the range of f, the function $\varphi \circ f$ has absolutely convergent Fourier series if so does f. Żelazko proved in [13] that both these theorems hold if absolute convergence is replaced by pth power absolute convergence for 0 .

Let ω be a weight on \mathbb{Z} , that is, $\omega : \mathbb{Z} \to [1, \infty)$ satisfies $\omega(m+n) \leq \omega(m)\omega(n) \ (m, n \in \mathbb{Z})$. A complex sequence $(\lambda_n)_{n \in \mathbb{Z}}$ is ω -absolutely convergent if $\sum_n |\lambda_n|\omega(n) < \infty$.

Domar proved in [4, Theorem 2.11] that if f has ω -absolutely convergent Fourier series and is nowhere vanishing on Γ , then 1/f has ω -absolutely convergent Fourier series provided ω is non-quasianalytic in the sense that $\sum_{n \in \mathbb{Z}} (\log \omega(n))/(1+n^2) < \infty$. On the other hand, given f having ω -absolutely convergent Fourier series, it is established in [2] that there ex-

²⁰¹⁰ Mathematics Subject Classification: 42A16, 42A28, 46J05.

Key words and phrases: Fourier series, Wiener theorem, Beurling algebra, commutative Banach algebra, p-Banach algebra, atom.

ists a weight ν on \mathbb{Z} such that 1/f (and analogously $\varphi \circ f$) has ν -absolutely convergent Fourier series.

We prove the following theorem that includes all these results, which also gives a pth power analogue of Domar's theorem.

THEOREM 1. Let $0 , let <math>\omega$ be a weight on \mathbb{Z} , and let $f \in C(\Gamma)$ have pth power ω -absolutely convergent Fourier series.

- (I) If $f(z) \neq 0$ $(z \in \Gamma)$, then there exists a weight ν on \mathbb{Z} such that
 - (i) 1/f has pth power ν -absolutely convergent Fourier series;
 - (ii) ν is non-constant if and only if ω is non-constant;
 - (iii) $\nu(n) \leq \omega(n) \ (n \in \mathbb{Z}).$
- (II) If φ is a holomorphic function on some neighbourhood of the range of f, then there exists a weight χ on \mathbb{Z} such that
 - (i) $\varphi \circ f$ has pth power χ -absolutely convergent Fourier series;
 - (ii) χ is non-constant if and only if ω is non-constant;
 - (iii) $\chi(n) \leq \omega(n) \ (n \in \mathbb{Z}).$

COROLLARY 1. Let $0 , let <math>\omega$ be a non-quasianalytic weight on \mathbb{Z} , and let $f \in C(\Gamma)$ be nowhere vanishing. If f has pth power ω -absolulely convergent Fourier series, then 1/f has pth power ω -absolutely convergent Fourier series.

Analogous to Gel'fand's proof of the Wiener theorem [7, p. 33], which is based on Banach algebras, we shall use Gel'fand theory of p-Banach algebras developed by Żelazko in the framework of locally bounded Beurling algebras.

Let \mathcal{A} be a (complex) algebra and let $0 . Then a mapping <math>\|\cdot\| : \mathcal{A} \to \mathbb{R}$ is a *p*-norm on \mathcal{A} if, for $x, y \in \mathcal{A}$ and for $\alpha \in \mathbb{C}$,

- (i) $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0;
- (ii) $||x + y|| \le ||x|| + ||y||;$
- (iii) $\|\alpha x\| = |\alpha|^p \|x\|;$
- (iv) $||xy|| \le ||x|| ||y||$.

If \mathcal{A} is complete in the *p*-norm, then $(\mathcal{A}, \|\cdot\|)$ is a *p*-Banach algebra. Among unital algebras, *p*-Banach algebras are precisely the complete locally bounded algebras [13, Theorem 2.3]. Given a continuous weight $\omega : G \to [1, \infty)$ on a locally compact group G satisfying $\omega(st) \leq \omega(s)\omega(t)$ $(s, t \in G)$, let $L^p(G, \omega)$ be the set of all measurable functions $f : G \to \mathbb{C}$ such that

$$||f||_{p,\omega} := \int_{G} |f(t)|^p \omega(t) \, dm(t) = \int_{G} |f(t)|^p \, dm_\omega(t) < \infty,$$

where m is the left invariant Haar measure on G, and $dm_{\omega} = \omega dm$. Though a complete locally bounded space can be dual-less, i.e., have no non-zero continuous linear functionals (which could be a hurdle in construction of vector-valued integrals), Żelazko [13] constructed a functional calculus in p-Banach algebras; and an offshot of his Gel'fand theory is that a semisimple, commutative, complete locally bounded algebra has sufficiently many continuous linear functionals. For a discrete abelian group G and for 0 , $the space <math>\ell^p(G)$ is a p-Banach algebra with convolution. In fact, Żelazko proved that, for a locally compact group G and for 0 , the complete $locally bounded space <math>L^p(G)$ is closed under convolution if and only if G is discrete. The following theorem gives a Beurling algebra analogue of this.

THEOREM 2. Let $0 , let G be a non-compact, locally compact group, and let <math>\omega$ be a continuous weight on G. Then the following are equivalent.

- (i) $L^p(G,\omega)$ is closed under convolution.
- (ii) G is discrete.
- (iii) $L^p(G,\omega)$ admits a non-zero continuous linear functional.
- (iv) The set of continuous linear functionals on $L^p(G,\omega)$ separates the points of $L^p(G,\omega)$.
- (v) G admits an atom.
- (vi) G admits sufficiently many atoms.

In this case, if G is abelian or ω is symmetric, $L^p(G, \omega)$ is semisimple.

Note that, in general, it is not known whether $L^1(G, \omega)$ or $\ell^p(G, \omega)$ (0 is semisimple or not [3, p. 175].

Rolewicz [11] has discussed multi-dimensional generalizations of Wiener– Żelazko and Lévy–Żelazko theorems. In the same spirit, it would be interesting to investigate multi-dimensional analogues of Domar's theorem [4, Theorem 2.11] as well as the theorem in [2].

Recall that a measurable set $E \subset G$ is an *atom* if $0 < m(E) < \infty$, and, for any measurable set $F \subset E$, m(F) = 0 or m(F) = m(E). A Banach *-algebra A is an A*-algebra if it admits a C*-norm (not necessarily complete).

Proof of Theorem 1. Let

$$\ell^p(\mathbb{Z},\omega) := \Big\{ \lambda = (\lambda_n) : |\lambda|_{p,\omega} := \sum_{n \in \mathbb{Z}} |\lambda_n|^p \omega(n) < \infty \Big\}.$$

Then $\ell^p(\mathbb{Z}, \omega)$ is a convolution algebra. It is a *p*-Banach algebra with the *p*-norm $|\cdot|_{p,\omega}$. Let $A_p(\omega) = \{g \in C(\Gamma) : \widehat{g} \in \ell^p(\mathbb{Z}, \omega)\}$. It is a *p*-Banach algebra with the pointwise operations and the *p*-norm being $||g||_{p,\omega} = |\widehat{g}|_{p,\omega}$. Thus $g \in C(\Gamma)$ has *p*th power ω -absolulely convergent Fourier series if and only if $g \in A_p(\omega)$ if and only if $\widehat{g} \in \ell^p(\mathbb{Z}, \omega)$.

We claim that the Gel'fand space $\triangle(A_p(\omega))$ of $A_p(\omega)$ is homeomorphic to the closed annulus $\Gamma(\omega) = \{z \in \mathbb{C} : \rho(2, \omega) \le |z| \le \rho(1, \omega)\}$, where

$$\rho(1,\omega) = \inf\{\omega(n)^{1/n} : n \ge 1\} \text{ and } \rho(2,\omega) = \sup\{\omega(n)^{1/n} : n \le -1\}.$$

For $z \in \Gamma(\omega)$, define

$$\varphi_z(g) = \sum_{n \in \mathbb{Z}} \widehat{g}(n) z^n \quad (g \in A_p(\omega)).$$

Then, for large n_0 ,

$$\sum_{|n|\geq n_0} |\widehat{g}(n)z^n| \leq \sum_{|n|\geq n_0} |\widehat{g}(n)|^p |z|^n \leq \sum_{|n|\geq n_0} |\widehat{g}(n)|^p \omega(n) < \infty.$$

It is routine to check that φ_z is a complex homomorphism on $A_p(\omega)$. Thus $\varphi_z \in \triangle(A_p(\omega)) \ (z \in \Gamma(\omega))$. Let $\varphi \in \triangle(A_p(\omega))$. Then $\|\varphi\| \leq 1$. Let $e_n(z) = z^n \ (n \in \mathbb{Z}, z \in \Gamma)$. So $|\varphi(e_n)| \leq \|e_n\|_{p,\omega} = \omega(n) \ (n \in \mathbb{Z})$. Set $\varphi(e_1) = z_0$. Then, for each $n \in \mathbb{Z}, \varphi(e_n) = \varphi(e_1)^n = z_0^n$. It is clear that $\rho(2, \omega) \leq |z_0| \leq \rho(1, \omega)$. So, for any $g \in A_p(\omega)$, we have

$$\varphi(g) = \varphi\left(\sum_{n \in \mathbb{Z}} \widehat{g}(n) e_n\right) = \sum_{n \in \mathbb{Z}} \widehat{g}(n) \varphi(e_n) = \sum_{n \in \mathbb{Z}} \widehat{g}(n) z_0^n = \varphi_{z_0}(g).$$

Thus $\varphi = \varphi_{z_0}$. This quickly gives the desired homeomorphism and establishes our claim. Thus each function $g \in A_p(\omega)$ extends uniquely as an element (denoted by g itself) in the set $B(\omega)$ consisting of all continuous functions on $\Gamma(\omega)$ which are holomorphic in the interior of $\Gamma(\omega)$. Now the construction of desired weights ν and χ is exactly as in [2].

Proof of Corollary 1. By the hypothesis, $\sum_{n \in \mathbb{N}} (\log \omega(n))/n^2$ is convergent. Notice that $\sum_{n>2} 1/(n \log n)$ is divergent. For infinitely many $n \in \mathbb{N}$,

$$\frac{\log \omega(n)}{n^2} \le \frac{1}{n \log n};$$

hence $\inf\{(\log \omega(n))/n : n \in \mathbb{N}\} = 0$, and $\rho(1, \omega) = 1$. Similarly, $\rho(2, \omega) = 1$. Then, from Theorem 1(I), $\nu = \omega$; and the result follows.

Proof of Theorem 2. (i) \Rightarrow (ii). We prove that if G is not discrete, then $L^p(G, \omega)$ is not closed under convolution. Let V be a symmetric, open subset of G containing the identity of G such that \overline{V} is compact. Since ω is continuous on G,

(a)
$$m_{\omega}(V^2) = \int_G \chi_{V^2}(t)\omega(t) dm(t) < \infty.$$

Now choose a sequence (V_n) of measurable subsets of G such that

(b) $m_{\omega}(V_n) > 0;$

(c) $V_n \subseteq V$;

(d) $V_i \cap V_j = \emptyset$ whenever $i \neq j$.

From the properties (a), (c) and (d), we have $\sum_{n=1}^{\infty} m_{\omega}(V_n) < \infty$. We may assume that $m_{\omega}(V_n) < 2^{-n}$ $(n \in \mathbb{N})$. Define $f, g : G \to \mathbb{C}$ as

$$f = \chi_{V^2}$$
 and $g = \sum_{n=1}^{\infty} [m_{\omega}(V_n)n^2]^{-1/p} \chi_{V_n}$.

222

Then $||f||_{p,\omega} = m_{\omega}(V^2) < \infty$ and

$$\|g\|_{p,\omega} = \sum_{n=1}^{\infty} [m_{\omega}(V_n)n^2]^{-1} \int_{G} \chi_{V_n}(t)\omega(t) \, dm(t) = \sum_{n=1}^{\infty} n^{-2} < \infty.$$

Thus $f, g \in L^p(G, \omega)$. On the other hand,

$$(f \star g)(t) = \int_{G} f(s^{-1}t)g(s) \, dm(s) = \int_{tV^2} g(s) \, dm(s).$$

If $t \in V$, then $tV^2 \subseteq V$ and so

$$(f \star g)(t) = \sum_{n=1}^{\infty} [m_{\omega}(V_n)n^2]^{-1/p} m(V_n) = \sum_{n=1}^{\infty} [m_{\omega}(V_n)n^2]^{-1/p} m_{\omega}(V_n) \frac{m(V_n)}{m_{\omega}(V_n)}$$

Since ω is bounded on compact subsets of G, there exists K > 0 such that $\omega(t) \leq K \ (t \in V)$. Now

$$m_{\omega}(V_n) = \int_{V_n} \omega(t) \, dm(t) \le \int_{V_n} K \, dm(t) = Km(V_n).$$

Thus

$$\frac{m(V_n)}{m_{\omega}(V_n)} \ge \frac{1}{K} \quad (n \in \mathbb{N}).$$

Therefore

$$(f \star g)(t) \ge \frac{1}{K} \sum_{n=1}^{\infty} 2^{n(1/p-1)} n^{-2/p} = \infty.$$

Hence $f \star g$ cannot be in $L^p(G, \omega)$ as it becomes infinite on a set V of positive measure.

(ii) \Rightarrow (i). If G is discrete, then it is easy to verify that $L^p(G, \omega)$ is closed under convolution.

(ii) \Rightarrow (iv). Let G be discrete. Let $f, g \in L^p(G, \omega)$ and $f \neq g$. Therefore $f(t) \neq g(t)$ for some $t \in G$. Define $\varphi_t : L^p(G, \omega) \to \mathbb{C}$ as $\varphi_t(h) = h(t)$ ($h \in L^p(G, \omega)$). It is easy to verify that φ_t is a continuous linear functional on $L^p(G, \omega)$. Also $\varphi_t(f) = f(t) \neq g(t) = \varphi_t(g)$. Thus (iv) follows.

 $(v) \Leftrightarrow (vi)$. Since ω is continuous, $E \subset G$ is an m_{ω} -atom if and only if E is *m*-atom; and due to left translation invariance of *m*, this happens if and only if tE is an atom for any $t \in G$.

(iii) \Rightarrow (vi). Let $L^p(G, \omega)$ have a non-zero continuous linear functional. Then, by [10, Corollary 4.2.3], G admits an atom, say E. Since the Haar measure on G is left translation invariant, we may assume that E contains the identity e of G.

Next we *claim* that every set of positive measure contains an atom (measure-theoretically). Let $F \subset G$ be of positive measure. If F = G a.e. m, we are done. Let $m(G \setminus F) > 0$. Now, either $F \cap E = \emptyset$ a.e. m or $m(F \cap E) > 0$. Since E is an atom, in the latter case $F \cap E = E \subset F$ a.e. m. Suppose that

 $F \cap E = \emptyset$ a.e. m. Then $G \setminus F = E$ a.e. m. Now, for any $t \in G$, either $tE \cap E = \emptyset$ or tE = E a.e. m. If tE = E for all $t \in G$, then G = E a.e. m, which is not possible as $m(F) = m(G \setminus E) > 0$. Therefore there exists $t \in G$ such that $tE \cap E = \emptyset$ a.e. m. Then $tE \subset G \setminus E = F$ a.e. m. Thus tE is an atom contained in F. This proves our claim. Now G is a union of its atomic part, which is a union of atoms, and a non-atomic part. In this case the measure of the non-atomic part is zero; otherwise it will contain an atom. Thus (vi) follows.

 $(\mathbf{v}) \Rightarrow (ii)$. Suppose that G admits an atom, say E. We may assume that $e \in E$. First we *assert* that E is an atom if and only if E^{-1} is an atom. Since m is left invariant, it follows from [6, 2.32, p. 48] that m(E) = 0 if and only if $m(E^{-1}) = 0$. Let $F \subset E^{-1}$ be measurable. Then $F^{-1} \subset E$ is measurable. If m(F) > 0, then $m(F^{-1}) > 0$. Since $F^{-1} \subset E$, we have $F^{-1} = E$. Therefore $F = E^{-1}$. This proves our assertion.

Now define $g = m(E^{-1})^{-1}\chi_E$. Then $g \in L^1(G)$. We claim that g is the identity of $L^1(G)$. Let $f \in L^1(G)$ and $t \in G$. Then

$$\begin{split} (f \star g)(t) &= \int_{G} f(s^{-1}t)g(s) \, dm(s) = \frac{1}{m(E^{-1})} \int_{E} f(s^{-1}t) \, dm(s) \\ &= \frac{1}{m(E^{-1})} \int_{tE^{-1}} f(s) \, dm(s). \end{split}$$

Note that tE^{-1} is an atom, $t \in tE^{-1}$, and every measurable function is constant on an atom. Therefore

$$(f \star g)(t) = \frac{1}{m(E^{-1})} f(t) \int_{tE^{-1}} dm(s) = f(t).$$

Hence $f \star g = f$; similarly, $g \star f = f$. Thus g is the identity of $L^1(G)$. It follows that G is discrete.

 $(\text{vi}) \Rightarrow (\text{iv})$. Assume that G admits sufficiently many atoms. Now let $f, g \in L^p(G, \omega)$ be such that $f \neq g$. Then there exists an atom, say E, on which $f \neq g$. Also since every measurable function on an atom is constant, $f = c_f \neq c_g = g$ on E. Define $\varphi_E : L^p(G, \omega) \to \mathbb{C}$ as

$$\varphi_E(h) = \int_E h(s) \, dm_\omega(s) \quad (h \in L^p(G, \omega)).$$

Then φ_E is a continuous linear functional on $L^p(G, \omega)$. Moreover, $\varphi_E(f) = m_\omega(E)c_f \neq m_\omega(E)c_g = \varphi_E(g)$. Thus (iv) follows.

(i) \Rightarrow (vi). Since G is discrete, it is clear that G is a union of atoms.

 $(iv) \Rightarrow (iii)$ is clear.

Since G is discrete, $L^p(G, \omega) = \ell^p(G, \omega)$. If ω is symmetric, then $\ell^p(G, \omega)$ is a *-subalgebra of $\ell^1(G)$. Since $\ell^1(G)$ admits a C*-norm, it is an A*-algebra. So, by [9, Theorem 4.1.19], $\ell^p(G, \omega)$ is semisimple. If G is abelian, then $\ell^p(G,\omega)$ is a subalgebra of the commutative Banach algebra $\ell^1(G,\omega)$. Since $\ell^1(G,\omega)$ is semisimple [1], $\ell^p(G,\omega)$ is semisimple [9, Corollary 2.3.7].

Acknowledgements. The authors are grateful to the referee for giving fruitful suggestions. The work has been supported by the UGC-SAP-DRS grant No. F.510/5/DRS/2004(SAP-I) provided to the Department of Mathematics, Sardar Patel University.

References

- S. J. Bhatt and H. V. Dedania, A Beurling algebra is semisimple: An elementary proof, Bull. Austral. Math. Soc. 66 (2002), 91–93.
- [2] —, —, Beurling algebra analogues of the classical theorems of Wiener and Lévy on absolutely convergent Fourier series, Proc. Indian Acad. Sci. (Math. Sci.) 113 (2003), 179–182.
- [3] H. G. Dales and A. T.-M. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177 (2005), no. 836.
- Y. Domar, Harmonic analysis based on certain commutative Banach algebras, Acta Math. 96 (1956), 1–66.
- [5] R. E. Edwards, *Fourier Series*, Vol. II, Holt, Rinehart and Winston, New York, 1967.
- [6] G. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 1995.
- [7] I. M. Gel'fand, D. Raĭkov and G. E. Šilov, *Commutative Normed Rings*, Chelsea Publ., New York, 1964.
- [8] P. Lévy, Sur la convergence absolue des séries de Fourier, Compos. Math. 1 (1935), 1–14.
- [9] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, NJ, 1960.
- [10] S. Rolewicz, *Metric Linear Spaces*, Reidel and PWN–Polish Sci. Publ., 1985.
- [11] —, On multi-dimensional generalizations of the Wiener-Żelazko and Lévy-Żelazko theorems, in: Topological Algebras, their Applications, and Related Topics, K. Jarosz and A. Sołtysiak (eds.), Banach Center Publ. 67, Inst. Math., Polish Acad. Sci., 2005, 283–291.
- [12] N. Wiener, Tauberian theorems, Ann. of Math. 33 (1932), 1–100.
- [13] W. Zelazko, Selected Topics in Topological Algebras, Lecture Notes Ser. 31, Aarhus Univ., 1971.

Department of Mathematics Sardar Patel University Vallabh Vidyanagar-388 120

Gujarat, India

E-mail: subhashbhaib@yahoo.co.in lightatinfinite@gmail.com hvdedania@yahoo.com

> Received November 27, 2008 Revised version June 1, 2009