STUDIA MATHEMATICA 195 (3) (2009)

Johnson's projection, Kalton's property (M^*) , and *M*-ideals of compact operators

by

OLAV NYGAARD (Kristiansand) and MÄRT PÕLDVERE (Tartu)

Abstract. Let X and Y be Banach spaces. We give a "non-separable" proof of the Kalton–Werner–Lima–Oja theorem that the subspace $\mathcal{K}(X, X)$ of compact operators forms an *M*-ideal in the space $\mathcal{L}(X, X)$ of all continuous linear operators from X to X if and only if X has Kalton's property (M^*) and the metric compact approximation property. Our proof is a quick consequence of two main results. First, we describe how Johnson's projection P on $\mathcal{L}(X, Y)^*$ applies to $f \in \mathcal{L}(X, Y)^*$ when f is represented via a Borel (with respect to the relative weak* topology) measure on $\overline{B_{X^{**}} \otimes B_{Y^*}}^w \subset \mathcal{L}(X, Y)^*$: If Y* has the Radon–Nikodým property, then P "passes under the integral sign". Our basic theorem en route to this description—a structure theorem for Borel probability measures on $\overline{B_{X^{**}} \otimes B_{Y^*}}^w$ —also yields a description of $\mathcal{K}(X, Y)^*$ due to Feder and Saphar. Second, we show that property (M^*) for X is equivalent to every functional in $\overline{B_{X^{**}} \otimes B_{X^*}}^w$ behaving as if $\mathcal{K}(X, X)$ were an *M*-ideal in $\mathcal{L}(X, X)$.

1. Introduction. Throughout this paper, X and Y will be Banach spaces over the same scalar field \mathbb{K} where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. The closed unit ball and the unit sphere of X will be denoted, respectively, by B_X and S_X , and $\overline{B}(x,r)$ is the closed ball in X with center x and radius r. For a set $A \subset X$, we denote its convex hull by co A, and its linear span by span A. The symbol $\mathcal{L}(X,Y)$ will stand for the space of continuous linear operators from X to Y, and $\mathcal{K}(X,Y)$ for its subspace of compact operators. We shall write $\mathcal{L}(X)$ and $\mathcal{K}(X)$ instead of $\mathcal{L}(X,X)$ and $\mathcal{K}(X,X)$, respectively. The identity operator on X will be denoted by I_X or simply by I.

According to the terminology in [GKS], a closed subspace Z of X is said to be an *ideal* in X if there exists a continuous linear projection P on X^* with ker $P = Z^{\perp} = \{x^* \in X^* : x^*|_Z = 0\}$ and ||P|| = 1. It is straightforward to verify that if Z is an ideal in X, then, for every $x^* \in X^*$, the functional $Px^* \in X^*$ is a norm-preserving extension of the restriction $x^*|_Z \in Z^*$. If the

²⁰⁰⁰ Mathematics Subject Classification: Primary 46B20; Secondary 46B28.

Key words and phrases: Johnson's projection, Kalton's property (M^*) , the Feder–Saphar description of the dual of compact operators, M-ideals of compact operators.

ideal projection P satisfies $||x^*|| = ||Px^*|| + ||x^* - Px^*||$ for all $x^* \in X^*$, then Z is said to be an M-ideal in X (for M-ideals, see the monograph [HWW]).

The space X is said to have the metric compact approximation property (briefly, MCAP) if there is a net (K_{α}) in $B_{\mathcal{K}(X)}$ such that $\lim_{\alpha} K_{\alpha}x = x$ for all $x \in X$. The net (K_{α}) is called a metric compact approximation of the identity (briefly, MCAI). If also $\lim_{\alpha} K_{\alpha}^* x^* = x^*$ for all $x^* \in X^*$, then (K_{α}) is called a shrinking MCAI, and X is said to have the shrinking MCAP.

Note that (see [J, proof of Lemma 1]) if (K_{α}) is any weak^{*} convergent (in $\mathcal{K}(Y)^{**}$) MCAI of Y, then $\mathcal{K}(X,Y)$ is an ideal in L(X,Y) with respect to the Johnson projection P on $\mathcal{L}(X,Y)^*$ defined by

(1.1)
$$Pf(T) = \lim_{\alpha} f(K_{\alpha}T), \quad T \in \mathcal{L}(X,Y), \ f \in \mathcal{L}(X,Y)^*.$$

The space X is said to have property (M^*) (see [HWW, p. 296]) if whenever $x^*, u^* \in X^*$, $||u^*|| \leq ||x^*||$, and $(x^*_{\alpha}) \subset X^*$ is a bounded net such that $x^*_{\alpha} \stackrel{w^*}{\longrightarrow} 0$, one has

$$\limsup_{\alpha} \|u^* + x^*_{\alpha}\| \le \limsup_{\alpha} \|x^* + x^*_{\alpha}\|.$$

The following Kalton–Werner–Lima–Oja theorem characterizes M-ideals of compact operators on X.

THEOREM 1.1. The following assertions are equivalent.

- (i) $\mathcal{K}(X)$ is an *M*-ideal in $\mathcal{L}(X)$.
- (ii) X has property (M^*) and the MCAP.

Property (M^*) (in its sequential form) was introduced in [K] where it was proven that, for separable X, $\mathcal{K}(X)$ is an M-ideal in $\mathcal{L}(X)$ if and only if X has property (M^*) and a very strong form of the MCAP; this result was extended to the non-separable case in [O1]. In [KW], Theorem 1.1 was proven for separable X, a simpler proof was given in [L]. Finally, in [O2], it was shown that $\mathcal{K}(X)$ is an M-ideal in $\mathcal{L}(X)$ if and only if $\mathcal{K}(Z)$ is an M-ideal in $\mathcal{L}(Z)$ for all separable closed subspaces Z of X having the MCAP (a somewhat simpler proof can be modeled after [P]), thus proving Theorem 1.1 also in the general case (note that if X has property (M^*) , then also every closed subspace of X has property (M^*) ; moreover, X has property (M^*) if and only if every separable closed subspace of X has property (M^*) (see [O3])). The shortest known proof of Theorem 1.1 is given in [O3].

The aim of this paper is to give a direct "non-separable" proof of Theorem 1.1. We develop ideas from [L] and [O3].

Let us fix some more notation, point out some observations, and agree on some conventions.

Recall that, for $x^{**} \in X^{**}$ and $y^* \in Y^*$, the functional $x^{**} \otimes y^* \in \mathcal{L}(X,Y)^*$ is defined by $(x^{**} \otimes y^*)(T) = x^{**}(T^*y^*), T \in \mathcal{L}(X,Y)$. Define

further

$$B_{X^{**}} \otimes B_{Y^*} = \{x^{**} \otimes y^* \colon x^{**} \in B_{X^{**}}, y^* \in B_{Y^*}\} \subset \mathcal{L}(X, Y)^*$$

Let $\phi \in \overline{B_{X^{**}} \otimes B_{Y^*}}^{w^*}$. Observe that $\phi|_{\mathcal{K}(X,Y)} = x^{**} \otimes y^*|_{\mathcal{K}(X,Y)}$ for some $x^{**} \otimes y^* \in B_{X^{**}} \otimes B_{Y^*}$. Moreover, if $\phi|_{\mathcal{K}(X,Y)} \neq 0$, and $\tilde{x}^{**} \in X^{**}$ and $\tilde{y}^* \in Y^*$ are such that $\phi|_{\mathcal{K}(X,Y)} = \tilde{x}^{**} \otimes \tilde{y}^*|_{\mathcal{K}(X,Y)}$, then $\tilde{x}^{**} = \alpha x^{**}$ and $\tilde{y}^* = \alpha^{-1}y^*$ for some $\alpha \in \mathbb{K}$. Thus the functional $g_{\phi} := x^{**} \otimes y^* \in \mathcal{L}(X,Y)^*$ is well-defined.

Let us make the convention that, unless explicitly stated otherwise, whenever considering topological properties (such as compactness, openness, Borelness) of subsets of the sets $\overline{B_{X^{**}} \otimes B_{Y^*}}^{w^*} \subset B_{\mathcal{L}(X,Y)^*}, B_{X^{**}}, and$ B_{Y^*} , the topology we have in mind is the relative weak topology of the respective set.

Since, for every $T \in \mathcal{L}(X, Y)$, there is some $\phi \in C := \overline{B_{X^{**}} \otimes B_{Y^*}}^{w^*} \subset$ $B_{\mathcal{L}(X,Y)^*}$ such that $\operatorname{Re} \phi(T) = ||T||$, by the Hahn–Banach separation theorem, it quickly follows that $\overline{\operatorname{co}}^{w^*} C = B_{\mathcal{L}(X,Y)^*}$. Thus, for every $f \in S_{\mathcal{L}(X,Y)^*}$, as a consequence of the Riesz representation theorem, there is a regular Borel probability measure μ on C such that $f(T) = \int_C \phi(T) d\mu(\phi), T \in \mathcal{L}(X, Y).$ In Section 2, we prove the following characterization of Johnson's projection.

THEOREM 1.2. Let Y^* have the Radon-Nikodým property, let Y have the shrinking MCAP with $(K_{\alpha}) \subset B_{\mathcal{K}(Y)}$ being a weak^{*} convergent (in $\mathcal{K}(Y)^{**}$) shrinking MCAI, and let μ be a regular Borel (with respect to the relative weak* topology) probability measure on $C := \overline{B_{X^{**}} \otimes B_{Y^*}}^{w^*} \subset B_{\mathcal{L}(X,Y)^*}$. Then there is a Borel set $C' \subset C$ such that

- (a) $\int_{C \setminus C'} |\phi(S)| d\mu(\phi) = 0$ for all $S \in \mathcal{K}(X, Y)$; (b) for every $T \in \mathcal{L}(X, Y)$, the function $C \ni \phi \mapsto g_{\phi}(T)\chi_{C'}(\phi) \in \mathbb{K}$ is measurable;
- (c) letting P be the Johnson projection defined by (1.1), and defining $f \in \mathcal{L}(X,Y)^*$ by $f(T) = \int_C \phi(T) d\mu(\phi), T \in \mathcal{L}(X,Y)$, one has

$$Pf(T) = \int_{C'} g_{\phi}(T) \, d\mu(\phi) = \int_{C'} P\phi(T) \, d\mu(\phi), \quad T \in \mathcal{L}(X, Y).$$

If $\mathcal{K}(X, Y)$ were an *M*-ideal in $\mathcal{L}(X, Y)$, then, for any $\phi \in \overline{B_{X^{**}} \otimes B_{Y^*}}^{w^*}$, one would have $\|g_{\phi}\| + \|\phi - g_{\phi}\| \leq 1$. In Section 3, we prove the following theorem revealing the essence of property (M^*) : Every $\phi \in$ $\overline{B_{X^{**}} \otimes B_X}^{w^*}$ behaves, in a sense, like it would if $\mathcal{K}(X)$ were an *M*-ideal in $\mathcal{L}(X)$. We write $\mathcal{L} := \operatorname{span}(\mathcal{K}(X) \cup \{I\}) \subset \mathcal{L}(X)$ and, for $f \in \mathcal{L}(X)^*$, $||f||_{\mathcal{L}} := ||f|_{\mathcal{L}}||.$

THEOREM 1.3. The following assertions are equivalent:

- (i) X has property (M^*) .
- (i) For every $\phi \in \overline{B_{X^{**}} \otimes B_{X^*}}^{w^*}$, one has $\|g_{\phi}\| + \|\phi g_{\phi}\| \le 1$. (iii) For every $\phi \in \overline{B_{X^{**}} \otimes B_{X^*}}^{w^*}$, one has $\|g_{\phi}\| + \|\phi g_{\phi}\|_{\mathcal{L}} \le 1$.

Theorems 1.2 and 1.3 put together easily yield (the implication (ii) \Rightarrow (i) of) Theorem 1.1. We also use Theorem 1.2 to indicate a large class of pairs of Banach spaces X and Y for which $\mathcal{K}(X,Y)$ has Phelps' property U in $\mathcal{L}(X,Y)$ (i.e., every functional $f \in \mathcal{K}(X,Y)^*$ has a unique norm-preserving extension to $\mathcal{L}(X, Y)$).

2. Proof of Theorem 1.2. Theorem 1.2 follows from

THEOREM 2.1. Let Y^* (respectively, X^{**}) have the Radon-Nikodým property, and let μ be a regular Borel (with respect to the relative weak^{*} topology) probability measure on $C := \overline{B_{X^{**}} \otimes B_{Y^*}}^{w^*} \subset B_{\mathcal{L}(X,Y)^*}$. Denote by \mathcal{C} the collection of compact subsets A of C with the following property:

• there is a norm compact set $Y_A^* \subset S_{Y^*}$ (respectively, $X_A^{**} \subset S_{X^{**}}$) such that, for every $\phi \in A$, there are $y^* \in Y_A^*$ and $x^{**} \in B_{X^{**}}$ (respectively, $y^* \in B_{Y^*}$ and $x^{**} \in X_A^{**}$ with $g_{\phi} = x^{**} \otimes y^*$.

Then there are pairwise disjoint Borel sets $C_j \subset C, j \in \{0\} \cup \mathbb{N}$, such that $C = \bigcup_{j=0}^{\infty} C_j$, where $\int_{C_0} |\phi(S)| d\mu(\phi) = 0$ for all $S \in \mathcal{K}(X, Y)$, and $C_j \in \mathcal{C}$, $j \in \mathbb{N}$.

Proof. Let $D \subset C$ be a Borel subset such that $\int_D |\phi(S)| d\mu(\phi) > 0$ for some $S \in S_{\mathcal{K}(X,Y)}$. By a standard exhaustion argument, it suffices to show that there is a subset $A \subset D$ with $A \in \mathcal{C}$ and $\mu(A) > 0$. Without loss of generality, we may assume that $|\phi(S)| = |g_{\phi}(S)| \ge 2\delta$ for some $\delta > 0$ and all $\phi \in D$, and that D is (weak^{*}) compact. We consider only the case when Y^* has the Radon–Nikodým property. (The proof is symmetric if X^{**} has the Radon–Nikodým property.) Let $\mathcal{Y} \subset B_Y$ be a finite δ -net for $S^{**}[B_{X^{**}}]$. For each $y \in \mathcal{Y}$, define $L_y := B_{X^{**}} \cap (S^{**})^{-1}[\overline{B}(y,\delta)]$; then L_y is (weak^{*}) compact, and thus the set

$$D_y := \{ \phi \in D \colon g_\phi = x^{**} \otimes z^* \text{ for some } x^{**} \in L_y \text{ and } z^* \in B_{Y^*} \}$$

is also (weak^{*}) compact. Moreover, for some $y \in \mathcal{Y}$, one must have $\mu(D_y) > 0$. For simplicity, we relabel L_y and D_y , respectively, as L and D.

Denote by \mathcal{K} the collection of compact (in the relative weak^{*} topology) subsets of B_{Y^*} , and let $K_{\delta} := \{y^* \in B_{Y^*} : y^*(y) = \delta\} \in \mathcal{K}$. For each $K \in \mathcal{K}$ and each compact subset $H \subset D$, define

$$C_K := \{ \phi \in D \colon g_\phi = x^{**} \otimes ty^*$$
for some $x^{**} \in L, y^* \in K \cap K_\delta$, and $t \in \mathbb{K}$ with $ty^* \in B_{Y^*} \}$

and

$$K_H := \{ y^* \in K_\delta \colon g_\phi = x^{**} \otimes ty^*$$

for some $\phi \in H, x^{**} \in L$, and $t \in \mathbb{K}$ with $ty^* \in B_{Y^*} \}.$

Observe that C_K is a compact (and thus Borel) (with respect to the relative weak* topology) subset of C, and $K_H \in \mathcal{K}$. Indeed, let $\phi \in D$, $x^{**} \in L$, $y^* \in K_{\delta}$, and $t \in \mathbb{K}$ with $ty^* \in B_{Y^*}$ be such that $g_{\phi} = x^{**} \otimes ty^*$. One has $\delta \leq ||y^*|| \leq 1$, and since

$$1 \ge |t| |y^*(y)| \ge |\phi(S)| - |\phi(S) - ty^*(y)| \ge 2\delta - ||ty^*|| ||S^{**}x^{**} - y|| \ge \delta,$$

we obtain $1 \leq |t| \leq 1/\delta$. The (weak^{*}) compactness of both C_K and K_H now quickly follows. Notice also that $H \subset C_{K_H}$.

Observe that $\varrho \colon \mathcal{K} \ni K \mapsto \int_{C_K} |\phi(S)| d\mu(\phi) \in [0, 1]$ is a regular content. To see that ϱ is regular, let $K \in \mathcal{K}$ and $\varepsilon > 0$. We have to find a $K' \in \mathcal{K}$ with $K'^{\circ} \supset K$ such that $\varrho(K') < \varrho(K) + \varepsilon$. To this end, choose a compact set $H \subset D \setminus C_K$ such that $\int_H |\phi(S)| d\mu(\phi) > \int_{D \setminus C_K} |\phi(S)| d\mu(\phi) - \varepsilon$. Since $K_H \cap K = \emptyset$, there are disjoint open (in the relative weak* topology) sets $U, V \subset B_{Y^*}$ such that $K \subset U$ and $K_H \subset V$. Letting $K' := B_{Y^*} \setminus V \in \mathcal{K}$ one has $K'^{\circ} \supset U \supset K$, and

$$\begin{split} \varrho(K') &= \int\limits_{C_{K'}} |\phi(S)| \, d\mu(\phi) \leq \int\limits_{D \setminus C_{K_H}} |\phi(S)| \, d\mu(\phi) \leq \int\limits_{D \setminus H} |\phi(S)| \, d\mu(\phi) \\ &= \int\limits_{C_K} |\phi(S)| \, d\mu(\phi) + \int\limits_{D \setminus C_K} |\phi(S)| \, d\mu(\phi) - \int\limits_{H} |\phi(S)| \, d\mu(\phi) < \varrho(K) + \varepsilon, \end{split}$$

as desired.

Let ν be the regular Borel (with respect to the relative weak* topology) measure on B_{Y^*} induced by the regular content ϱ , i.e., for a Borel set $E \subset B_{Y^*}, \nu(E) = \inf\{\lambda(U) : E \subset U \in \mathcal{U}\}\$ where \mathcal{U} is the collection of open subsets of B_{Y^*} and $\lambda(U) = \sup\{\varrho(K) : U \supset K \in \mathcal{K}\}, U \in \mathcal{U},$ is the inner content induced by ϱ . Since $C_{K_D} = D$, one has $\nu(K_D) \ge \varrho(K_D) = \int_D |\phi(S)| d\mu(\phi) > 0$. Since Y^* has the Radon–Nikodým property, by [B, Theorem 4.3.11,(a) \Rightarrow (b), and Lemmas 4.3.6 and 4.3.10], there is a norm compact set $K_0 \subset K_D$ such that $\nu(K_0) > 0$. Now we can take C_{K_0} to be the desired A, because $C_{K_0} \subset D$, $C_{K_0} \in \mathcal{C}$ (one can take $Y^*_{C_{K_0}} = \{y^*/||y^*|| : y^* \in K_0\}$), and since by the regularity of ϱ , $\int_{C_{K_0}} |\phi(S)| d\mu(\phi) = \varrho(K_0) = \nu(K_0) > 0$, also $\mu(C_{K_0}) > 0$.

Proof of Theorem 1.2. Let the sets C_j , $j \in \{0\} \cup \mathbb{N}$, be as in Theorem 2.1. Put $C' = \bigcup_{j=1}^{\infty} C_j$. Let $T \in S_{\mathcal{L}(X,Y)}$. Choose an increasing sequence of indices $(j_n)_{n=1}^{\infty} \subset \mathbb{N}$ so that $\mu(\bigcup_{j=j_n+1}^{\infty} C_j) < 1/n$, $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, let $A_n \subset S_{Y^*}$ be a finite 1/n-net for $\bigcup_{j=1}^{j_n} Y_{C_j}^*$ where the sets $Y_{C_j}^*$ are as in Theorem 2.1. Choose an increasing sequence of indices $(\alpha_n)_{n=1}^{\infty}$ so that, whenever $n \in \mathbb{N}$, for each $\alpha \succeq \alpha_n$, one has $||K_{\alpha}^*y^* - y^*|| < 1/n$ for all $y^* \in A_n$. Now let $n \in \mathbb{N}$ be fixed and let $\alpha \succeq \alpha_n$. Suppose that $\phi \in \bigcup_{j=1}^{j_n} C_j$, and let $x^{**} \in B_{X^{**}}$ and $y^* \in Y^*_{C_j}$ $(j \in \{1, \ldots, j_n\})$ be such that $g_{\phi} = x^{**} \otimes y^*$. For some $y^*_{\phi} \in A_n$, one has $||y^* - y^*_{\phi}|| < 1/n$. Thus

$$\begin{aligned} |g_{\phi}(T) - \phi(K_{\alpha}T)| &= |g_{\phi}(T) - g_{\phi}(K_{\alpha}T)| \leq ||T^{**}x^{**}|| \, \|y^{*} - K_{\alpha}^{*}y^{*}\| \\ &\leq ||y^{*} - y_{\phi}^{*}|| + ||y_{\phi}^{*} - K_{\alpha}^{*}y_{\phi}^{*}|| + ||K_{\alpha}^{*}|| \, \|y_{\phi}^{*} - y^{*}\| < \frac{3}{n}. \end{aligned}$$

It follows that $\phi(K_{\alpha_n}T) \to g_{\phi}(T)$ for each $\phi \in C'$; thus the function $C \ni \phi \mapsto g_{\phi}(T)\chi_{C'}(\phi) \in \mathbb{K}$ is measurable.

Letting again $n \in \mathbb{N}$ be fixed and $\alpha \succeq \alpha_n$, one has

$$\begin{split} \left| \int_{C'} g_{\phi}(T) \, d\mu(\phi) - f(K_{\alpha}T) \right| &\leq \int_{C'} |g_{\phi}(T) - \phi(K_{\alpha}T)| \, d\mu(\phi) \\ &= \int_{\bigcup_{j=1}^{j_n} C_j} |g_{\phi}(T) - \phi(K_{\alpha}T)| \, d\mu(\phi) + \int_{\bigcup_{j=j_n+1}^{\infty} C_j} |g_{\phi}(T) - \phi(K_{\alpha}T)| \, d\mu(\phi) \\ &< \frac{3}{n} + \frac{2}{n} = \frac{5}{n}, \end{split}$$

and it follows that $Pf(T) = \lim_{\alpha} f(K_{\alpha}T) = \int_{C'} g_{\phi}(T) d\mu(\phi)$.

REMARK 2.1. The assumption in Theorem 1.2 that (K_{α}) is weak^{*} convergent (in $\mathcal{K}(Y)^{**}$) is, in fact, superfluous: A description of $\mathcal{K}(X,Y)^*$ due to Feder and Saphar (see [FS, Theorem 1] or Corollary 2.2 below) implies that if Y^* has the Radon–Nikodým property, then every shrinking MCAI of Y is weak^{*} convergent (in $\mathcal{K}(Y)^{**}$).

REMARK 2.2. Suppose that, in Theorem 1.2, Y is separable. Then Y has a shrinking MCAI which is a sequence, label it $(K_n)_{n=1}^{\infty}$. By [FS, Theorem 1] (or Corollary 2.2 below), one has $Pg(T) = \lim_{n\to\infty} Pg(K_nT) = \lim_{n\to\infty} g(K_nT)$ for every $g \in \mathcal{L}(X,Y)^*$ and every $T \in \mathcal{L}(X,Y)$ (for details, see [P, Lemma 1.2]). Thus, for any $T \in \mathcal{L}(X,Y)$, by Lebesgue's bounded convergence theorem,

$$Pf(T) = \lim_{n \to \infty} f(K_n T) = \lim_{n \to \infty} \int_C \phi(K_n T) \, d\mu(\phi) = \lim_{n \to \infty} \int_C g_\phi(K_n T) \, d\mu(\phi)$$
$$= \int_C \lim_{n \to \infty} g_\phi(K_n T) \, d\mu(\phi) = \int_C g_\phi(T) \, d\mu(\phi) = \int_C P\phi(T) \, d\mu(\phi).$$

Notice that the Feder–Saphar description of $\mathcal{K}(X, Y)^*$ which was used in Remarks 2.1 and 2.2 is, in fact, a consequence of Theorem 2.1.

COROLLARY 2.2 (see [FS, Theorem 1]). Suppose that X^{**} or Y^* has the Radon–Nikodým property, and let $g \in \mathcal{K}(X,Y)^*$ and $\varepsilon > 0$. Then there are $x_j^{**} \in X^{**}$ and $y_j^* \in Y^*$, $j \in \mathbb{N}$, such that $g = \sum_{j=1}^{\infty} x_j^{**} \otimes y_j^*$ and $\sum_{j=1}^{\infty} ||x_j^{**}|| ||y_j^*|| < ||g|| + \varepsilon$. *Proof.* It suffices to show that there are $n \in \mathbb{N}$, $x_1^{**}, \ldots, x_n^{**} \in X^{**}$, and $y_1^*, \ldots, y_n^* \in Y^*$ such that $\|g - \sum_{j=1}^n x_j^{**} \otimes y_j^*\| < \varepsilon$ and $\sum_{j=1}^n \|x_j^{**}\| \|y_j^*\| \le \|g\|$. One may clearly assume that $\|g\| = 1$.

Let $f \in S_{\mathcal{L}(X,Y)^*}$ be some extension of g. As explained in the Introduction, there is a regular Borel (with respect to the relative weak* topology) probability measure μ on $C := \overline{B_{X^{**}} \otimes B_{Y^*}}^{w^*} \subset B_{\mathcal{L}(X,Y)^*}$ such that $f(T) = \int_C \phi(T) d\mu(\phi), T \in \mathcal{L}(X,Y)$. Now, in Theorem 2.1, one has $\mu(C_0) = 0$, and one may also assume that $\hat{C} := C \setminus C_0 \in \mathcal{C}$.

We only consider the case when Y^* has the Radon–Nikodým property. (The proof is symmetric if X^{**} has the Radon–Nikodým property.) Let $\{y_1^*, \ldots, y_n^*\} \subset S_{Y^*}$ $(n \in \mathbb{N})$ be an $\varepsilon/3$ -net for the set $Y_{\hat{C}}^*$ from Theorem 2.1. Choose $y_j \in S_Y$ such that $|y_j^*(y_j) - 1| < \varepsilon/3, \ j \in \{1, \ldots, n\}$. For each $j \in \{1, \ldots, n\}$, the set

$$B_j \coloneqq \{ \phi \in \hat{C} \colon g_\phi = x_\phi^{**} \otimes y_\phi^*$$

for some $x_\phi^{**} \in B_{X^{**}}$ and $y_\phi^* \in Y_{\hat{C}}^*$ with $\|y_\phi^* - y_j^*\| \le \varepsilon/3 \}$

is (weak^{*}) compact; thus the set $E_j := B_j \setminus \bigcup_{i=1}^{j-1} B_i$ is Borel, and we may define $x_j^{**} \in X^{**}$ by $x_j^{**}(x^*) = \int_{E_j} \phi(x^* \otimes y_j) d\mu(\phi) = \int_{E_j} g_\phi(x^* \otimes y_j) d\mu(\phi)$, $x^* \in X^*$. Now, whenever $j \in \{1, \ldots, n\}$, one has $\|x_j^{**}\| \|y_j^*\| \le \mu(E_j)$, and since, for all $\phi \in E_j$,

$$\begin{aligned} \|y_{\phi}^{*} - y_{\phi}^{*}(y_{j}) \, y_{j}^{*}\| \\ &\leq |1 - y_{j}^{*}(y_{j})| \, \|y_{\phi}^{*}\| + |y_{j}^{*}(y_{j}) - y_{\phi}^{*}(y_{j})| \, \|y_{\phi}^{*}\| + |y_{\phi}^{*}(y_{j})| \, \|y_{\phi}^{*} - y_{j}^{*}\| < \varepsilon, \end{aligned}$$

one has, for every $S \in B_{\mathcal{K}(X,Y)}$,

$$\begin{split} \left| \int_{E_j} \phi(S) \, d\mu(\phi) - (x_j^{**} \otimes y_j^*)(S) \right| &= \left| \int_{E_j} g_\phi(S) \, d\mu(\phi) - x_j^{**}(S^* y_j^*) \right| \\ &= \left| \int_{E_j} g_\phi(S) \, d\mu(\phi) - \int_{E_j} g_\phi(S^* y_j^* \otimes y_j) \, d\mu(\phi) \right| \\ &= \left| \int_{E_j} x_\phi^{**}(S^* y_\phi^*) \, d\mu(\phi) - \int_{E_j} x_\phi^{**}(S^* y_j^*) y_\phi^*(y_j) \, d\mu(\phi) \right| \\ &\leq \int_{E_j} \|S^{**} x_\phi^{**}\| \, \|y_\phi^* - y_\phi^*(y_j) y_j^*\| \, d\mu(\phi) < \mu(E_j) \varepsilon. \end{split}$$

It follows that $\sum_{j=1}^{n} \|x_j^{**}\| \|y_j^*\| \le \|g\|$, and, for every $S \in B_{\mathcal{K}(X,Y)}$,

$$\left|g(S) - \sum_{j=1}^{n} (x_j^{**} \otimes y_j^*)(S)\right| = \left|\sum_{j=1}^{n} \int_{E_j} \phi(S) \, d\mu(\phi) - \sum_{j=1}^{n} (x_j^{**} \otimes y_j^*)(S)\right|$$
$$\leq \sum_{j=1}^{n} \left|\int_{E_j} \phi(S) \, d\mu(\phi) - (x_j^{**} \otimes y_j^*)(S)\right| < \varepsilon,$$
as desired. \bullet

249

3. Proofs of Theorems 1.3 and 1.1. The implication (i) \Rightarrow (ii) of Theorem 1.3 is contained in

PROPOSITION 3.1. Let both X and Y have property (M^*) . Then, for any $\phi \in \overline{B_{X^{**}} \otimes B_{Y^*}}^{w^*}$, one has $||g_{\phi}|| + ||\phi - g_{\phi}|| \le 1$.

Proof. Let $\phi \in \overline{B_{X^{**}} \otimes B_{Y^*}}^{w^*}$ and let $\phi_{\alpha} = x_{\alpha}^{**} \otimes y_{\alpha}^* \in B_{X^{**}} \otimes B_{Y^*}$ be such that $w^*-\lim_{\alpha} \phi_{\alpha} = \phi$ in $\mathcal{L}(X, Y)^*$. We may assume that $w^*-\lim_{\alpha} x_{\alpha}^{**} = x^{**}$ in X^{**} and $w^*-\lim_{\alpha} y_{\alpha}^* = y^*$ in Y^* for some $x^{**} \in B_{X^{**}}$ and $y^* \in B_{Y^*}$. Write $g = g_{\phi} = x^{**} \otimes y^*$ and $h = \phi - g$. We must show that $||g|| + ||h|| \leq 1$. The case $y^* = 0$ is trivial, so assume that $y^* \neq 0$. Fix arbitrary $S \in S_{\mathcal{K}(X,Y)}$ with $S^*y^* \neq 0$ and $T \in S_{\mathcal{L}(X,Y)}$. It suffices to show that $|g(S) + h(T)| \leq 1$. To this end, pick $y_n \in S_Y$, $n \in \mathbb{N}$, such that $y^*(y_n) \to ||y^*||$ and denote $K_n = (y^*/||y^*||) \otimes y_n \in B_{\mathcal{K}(Y)}$, $n \in \mathbb{N}$. Then $K_n^*y^* = y^*(y_n)y^*/||y^*|| \to y^*$, thus

$$g(K_nT) = x^{**}(T^*K_n^*y^*) = T^{**}x^{**}(K_n^*y^*) \to T^{**}x^{**}(y^*) = g(T).$$

Fix an arbitrary $\varepsilon > 0$ and choose $n \in \mathbb{N}$ such that $||K_n^*y^* - y^*|| < \varepsilon$ and $|g(K_nT) - g(T)| < \varepsilon$. Find $v^* \in B_{Y^*}$ with $||v^*|| \le ||y^*||$ such that $||T^*v^*|| > ||S^*y^*||/(1+\varepsilon)$ and $x \in B_X$ such that $(T^*v^*)(x) = ||S^*y^*||/(1+\varepsilon)$, and put $U = (S^*y^*/||S^*y^*||) \otimes x \in B_{\mathcal{K}(X)}$. Then

$$U^*T^*v^* = T^*v^*(x) \frac{S^*y^*}{\|S^*y^*\|} = \frac{1}{1+\varepsilon} S^*y^*,$$

thus $S^*y^* = (1 + \varepsilon)U^*T^*v^*$. Now, since X^* and Y^* have property (M^*) , one sees that

$$\begin{split} |g(S) + h(T)| &= |\phi(S) + h(T) + g(T) - g(T) + g(K_nT) - g(K_nT)| \\ &\leq |\phi(S + T - K_nT)| + |g(K_nT) - g(T)| \\ &< \lim_{\alpha} |x_{\alpha}^{**}(S^*y_{\alpha}^* + T^*y_{\alpha}^* - T^*K_n^*y_{\alpha}^*)| + \varepsilon \\ &\leq \limsup_{\alpha} ||S^*y^* + T^*y_{\alpha}^* - T^*K_n^*y^*|| + \varepsilon \\ &\leq \limsup_{\alpha} ||U^*T^*v^* + T^*y_{\alpha}^* - T^*y^*|| + \varepsilon ||U^*T^*v^*|| + ||T^*y^* - T^*K_n^*y^*|| + \varepsilon \\ &\leq \limsup_{\alpha} ||T^*v^* + T^*(y_{\alpha}^* - y^*)|| + ||T^*|| ||y^* - K_n^*y^*|| + 2\varepsilon \\ &\leq \limsup_{\alpha} ||v^* + y_{\alpha}^* - y^*|| + 3\varepsilon \leq \limsup_{\alpha} ||y^* + y_{\alpha}^* - y^*|| + 3\varepsilon \leq 1 + 3\varepsilon. \\ &\text{Letting } \varepsilon \to 0 \text{ yields } |g(S) + h(T)| \leq 1, \text{ as desired.} \quad \blacksquare \end{split}$$

Observe that, if X is infinite-dimensional, then whenever $S \in \mathcal{K}(X)$ and $\lambda \in \mathbb{K}$ are such that $||S + \lambda I|| < 1$, one has $|\lambda| < 1$ (because otherwise $||(1/\lambda)S + I|| < 1$ and thus $(1/\lambda)S$ would be invertible). Hence, for all h in

$$\begin{aligned} \mathcal{K}(X)^{\perp} \subset \mathcal{L}(X)^*, \text{ one has } \|h\|_{\mathcal{L}} &= |h(I)| \text{ because} \\ \|h\|_{\mathcal{L}} &= \sup\{|h(S+\lambda I)| \colon S \in \mathcal{K}(X), \, \lambda \in \mathbb{K}, \, \|S+\lambda I\| < 1\} \\ &= \sup\{|\lambda||h(I)| \colon S \in \mathcal{K}(X), \, \lambda \in \mathbb{K}, \, \|S+\lambda I\| < 1\} \le |h(I)| \le \|h\|_{\mathcal{L}}. \end{aligned}$$

Proof of Theorem 1.3. (i) \Rightarrow (ii) is obvious from Proposition 3.1.

 $(ii) \Rightarrow (iii)$ is more than obvious.

(iii) \Rightarrow (i). Let (iii) hold, let $x^*, u^* \in X^*$ be such that $||u^*|| \leq ||x^*||$, and let $(x^*_{\alpha}) \subset X^*$ be a bounded weak^{*} null net. We must show that

$$\limsup_{\alpha} \|u^* + x^*_{\alpha}\| \le \limsup_{\alpha} \|x^* + x^*_{\alpha}\|.$$

We may assume that $||u^*|| < ||x^*||$ and $\limsup_{\alpha} ||u^* + x^*_{\alpha}|| = \lim_{\alpha} ||u^* + x^*_{\alpha}||$. In this case $M := \limsup_{\alpha} ||x^* + x^*_{\alpha}|| > 0$ (because otherwise we would have $x^*_{\alpha} \to -x^*$ in norm, hence also $x^*_{\alpha} \to -x^*$ weak^{*} and thus $x^* = 0$ implying that $||u^*|| < 0$); thus we may assume that $M_{\alpha} := ||x^* + x^*_{\alpha}|| > 0$ for all α and also that $M_{\alpha} \to M$. Pick $S \in B_{\mathcal{K}(X)}$ such that $S^*x^* = u^*$ (note that such a rank one S exists). By passing to product index, we may assume that there is a net $(x_{\alpha}) \subset S_X$ such that

$$\lim_{\alpha} \|S^*x^* + x^*_{\alpha}\| = \lim_{\alpha} |S^*x^*(x_{\alpha}) + x^*_{\alpha}(x_{\alpha})|.$$

Considering $\phi_{\alpha} := x_{\alpha} \otimes M_{\alpha}^{-1}(x^* + x_{\alpha}^*) \in B_{X^{**}} \otimes B_{X^*}$, we may assume that w^* -lim_{α} $\phi_{\alpha} = \phi$ in $\mathcal{L}(X)^*$ for some $\phi \in \overline{B_{X^{**}} \otimes B_{X^*}}^{w^*}$ and that w^* -lim_{α} $x_{\alpha} = x^{**}$ in X^{**} for some $x^{**} \in B_{X^{**}}$. Then $g_{\phi} = M^{-1}x^{**} \otimes x^*$ and $\phi - g_{\phi} = M^{-1}w^*$ -lim_{α} $x_{\alpha} \otimes x_{\alpha}^*$. By (iii), one has

$$\limsup_{\alpha} \|u^* + x^*_{\alpha}\| = \lim_{\alpha} |S^* x^*(x_{\alpha}) + x^*_{\alpha}(x_{\alpha})| = |Mg_{\phi}(S) + M(\phi - g_{\phi})(I)|$$
$$\leq M(\|g_{\phi}\| + \|\phi - g_{\phi}\|_{\mathcal{L}}) \leq M = \limsup_{\alpha} \|x^* + x^*_{\alpha}\|. \bullet$$

REMARK 3.1. In [L, Theorem 2.2] Å. Lima proved, combining knowledge on weak^{*} strongly exposed points of B_{X^*} with a clever slice-cutting technique, that if $\mathcal{K}(X)$ is a semi-*M*-ideal in span $(\mathcal{K}(X) \cup \{I\})$, then *X* has property (M^*) . This result is an immediate consequence of our Theorem 1.3(iii) \Rightarrow (i), whose proof was more or less elementary.

The following corollary is well known. Our Theorem 1.3 yields a very simple proof for it.

COROLLARY 3.2 (see [HWW, p. 297]). Let X have property (M^*) . Then X is an M-ideal in X^{**} .

Proof. Let $x^{***} = x^* + x^{\perp} \in S_{X^{***}}$ (with $x^* \in X^*$, $x^{\perp} \in X^{\perp}$), and let $\varepsilon > 0$. It suffices to show that $||x^*|| + ||x^{\perp}|| \leq 1 + \varepsilon$. To this end, pick

 $x^{**} \in S_{X^{**}}$ satisfying $|x^{\perp}(x^{**})| \ge ||x^{\perp}|| - \varepsilon$, and observe that the functional $\phi = x^{**} \otimes x^{***} \colon \mathcal{L}(X) \ni T \mapsto x^{***}(T^{**}x^{**})$

is in $\overline{B_{X^{**}} \otimes B_{X^*}}^{w^*}$ (because whenever a net $(x^*_{\alpha}) \subset B_{X^*}$ is such that $x^*_{\alpha} \to x^{***}$ weak^{*} in X^{***} , then $x^{**} \otimes x^*_{\alpha} \to \phi$ weak^{*} in $\mathcal{L}(X)^*$). Clearly, $g_{\phi} = x^{**} \otimes x^*$ and thus, since

$$\|\phi - g_{\phi}\| \ge |(\phi - g_{\phi})(I)| = |x^{\perp}(x^{**})| \ge \|x^{\perp}\| - \varepsilon,$$

by Theorem 1.3,

 $||x^*|| + ||x^{\perp}|| = ||g_{\phi}|| + ||x^{\perp}|| \le ||g_{\phi}|| + ||\phi - g_{\phi}|| + \varepsilon \le 1 + \varepsilon.$

Now we are in a position to prove Theorem 1.1. The implication (ii) \Rightarrow (i) is the particular case with Y = X of the known

PROPOSITION 3.3 (cf. Theorem 1.1 combined with [O1, Theorem 8]). Let both X and Y have property (M^*) , and let Y have the MCAP. Then $\mathcal{K}(X,Y)$ is an M-ideal in $\mathcal{L}(X,Y)$.

Proof. Let $(K_{\alpha}) \subset B_{\mathcal{K}(Y)}$ be an MCAI. By Corollary 3.2, Y is an M-ideal in its bidual; hence B_{Y^*} is the norm closed convex hull of its weak* strongly exposed points (see [HWW, p. 127, Corollary 3.2]). It easily follows that (K_{α}) is shrinking; thus (1.1) defines an ideal projection P on $\mathcal{L}(X,Y)^*$ by Remark 2.1.

Let $f \in S_{\mathcal{L}(X,Y)^*}$, and let $T_1, T_2 \in B_{\mathcal{L}(X,Y)}$ be arbitrary. It suffices to show that $|Pf(T_1)| + |(I - P)f(T_2)| \leq 1$. As explained in the Introduction, there is a regular Borel probability measure μ on $C := \overline{B_{X^{**}} \otimes B_{Y^*}}^{w^*} \subset B_{\mathcal{L}(X,Y)^*}$ such that $f(T) = \int_C \phi(T) d\mu(\phi), T \in \mathcal{L}(X,Y)$. By Theorem 1.3, one has $|g_\phi(T_1)| + |(\phi - g_\phi)(T_2)| \leq ||g_\phi|| + ||\phi - g_\phi|| \leq 1$ for all $\phi \in C$. Thus, letting the set C' be as in Theorem 1.2 (notice that, since Y is an M-ideal in its bidual, the dual Y^* enjoys the Radon–Nikodým property—see [HWW, p. 126, Theorem 3.1]), one has

$$|Pf(T_1)| + |(I - P)f(T_2)| = \Big| \int_{C'} g_{\phi}(T_1) \, d\mu(\phi) \Big| + \Big| \int_{C'} (\phi - g_{\phi})(T_2) \, d\mu(\phi) + \int_{C \setminus C'} \phi(T_2) \, d\mu(\phi) \Big| \\ \leq \int_{C'} (|g_{\phi}(T_1)| + |(\phi - g_{\phi})(T_2)|) \, d\mu(\phi) + \mu(C \setminus C') \\ \leq \mu(C') + \mu(C \setminus C') = 1. \quad \bullet$$

Proof of Theorem 1.1. (ii) \Rightarrow (i) is immediate from Proposition 3.3.

(i) \Rightarrow (ii). Let $\mathcal{K}(X)$ be an *M*-ideal in $\mathcal{L}(X)$ with $P \in \mathcal{L}(X)^*$ being the ideal projection. Property (M^*) for X follows immediately from the impli-

cation (ii) \Rightarrow (i) of Theorem 1.3. The argument to obtain the MCAP for X is well known: By Goldstine's theorem (or by the bipolar theorem), $B_{\mathcal{K}(X)}$ is dense in $B_{\mathcal{L}(X)}$ in the weak topology $\sigma(\mathcal{L}(X), \operatorname{ran} P)$. Thus there is a net $(K_{\alpha}) \subset B_{\mathcal{K}(X)}$ such that $Pf(K_{\alpha}) \rightarrow Pf(I_X)$ for all $f \in \mathcal{L}(X)^*$. In particular, $x^*(K_{\alpha}x) \rightarrow x^*(I_Xx)$ for all $x \in X$ and all $x^* \in X^*$ (because $P(x \otimes x^*) = x \otimes x^*$), i.e., $K_{\alpha} \rightarrow I_X$ in the weak operator topology of $\mathcal{L}(X)$. Since the weak and strong operator topologies yield the same dual space (see, e.g., [DSch, Theorem VI.1.4]), after passing to convex combinations, we may assume that $K_{\alpha}x \rightarrow x$ for all $x \in X$, and thus X has the MCAP.

We conclude by showing how Theorem 1.2 yields a result which produces multiple examples of pairs of Banach spaces X and Y for which $\mathcal{K}(X,Y)$ has Phelps' property U in $\mathcal{L}(X,Y)$. Recall that a closed subspace Z of X is said to have (*Phelps'*) property U in X if every $z^* \in Z^*$ admits a unique norm-preserving extension $x^* \in X^*$.

THEOREM 3.4. Let Y^* have the Radon-Nikodým property, let Y have the shrinking MCAP, and suppose that, for every $x^{**} \in S_{X^{**}}$ and every $y^* \in S_{Y^*}$, the functional $x^{**} \otimes y^* \in \mathcal{L}(X,Y)^*$ itself is the only norm-preserving extension of its restriction to $\mathcal{K}(X,Y)$. Then $\mathcal{K}(X,Y)$ has property U in $\mathcal{L}(X,Y)$.

REMARK 3.2. By a result of Å. Lima (see [L, Lemma 3.4]; see also [OP] for a recent easier proof), $x^{**} \otimes y^* \in \mathcal{L}(X,Y)^*$ itself is the only normpreserving extension of its restriction to $\mathcal{K}(X,Y)$ whenever $x^{**} \in B_X \subset B_{X^{**}}$ is a denting point of B_X or $y^* \in B_{Y^*}$ is a weak^{*} denting point of B_{Y^*} . It is known (see [LLT1] and [LLT2]) that a point $x \in B_X$ is a denting point of B_X if and only if it is both an extreme point and a point of weak-to-norm continuity of B_X ; moreover, a point $y^* \in B_{Y^*}$ is a weak^{*} denting point of B_{Y^*} if and only if it is both an extreme point and a point of weak^{*}-tonorm continuity of B_{Y^*} .

Proof of Theorem 3.4. Let $(K_{\alpha}) \subset B_Y$ be a shrinking MCAI of Y, and let P be the Johnson projection on $\mathcal{L}(X,Y)^*$ defined by (1.1) (notice that (K_{α}) is weak^{*} convergent (in $\mathcal{K}(Y)^{**}$) by Remark 2.1). Then $P\phi = g_{\phi}$ for all $\phi \in \overline{B_{X^{**}} \otimes B_{Y^*}}^{w^*} =: C$.

Let $f \in S_{\mathcal{L}(X,Y)^*}$ be such that ||Pf|| = ||f|| = 1. It suffices to show that Pf = f. As explained in the Introduction, there is a regular Borel (with respect to the relative weak* topology) probability measure μ on C representing f, i.e., $f(T) = \int_C \phi(T) d\mu(\phi)$ for all $T \in \mathcal{L}(X,Y)$. Since $||Pf|| = ||f|_{\mathcal{K}(X,Y)}||$, one has, in Theorem 1.2, $\mu(C \setminus C') = 0$. Set $C_1 := \{\phi \in C': \|g_{\phi}\| = 1\}$. Then $\mu(C' \setminus C_1) = 0$ (the function $C \ni \phi \mapsto \|g_{\phi}\|$ is measurable since it is lower semicontinuous) because otherwise $\int_{C' \setminus C_1} \|g_{\phi}\| d\mu(\phi) < C' = 0$.

 $\mu(C' \setminus C_1)$ and thus

$$\begin{aligned} \|Pf\| &= \sup_{T \in B_{\mathcal{L}(X,Y)}} |Pf(T)| = \sup_{T \in B_{\mathcal{L}(X,Y)}} \left| \int_{C'} g_{\phi}(T) \, d\mu(\phi) \right| \\ &\leq \sup_{T \in B_{\mathcal{L}(X,Y)}} \int_{C'} |g_{\phi}(T)| \, d\mu(\phi) \leq \int_{C'} \|g_{\phi}\| \, d\mu(\phi) \\ &= \int_{C_1} \|g_{\phi}\| \, d\mu(\phi) + \int_{C' \setminus C_1} \|g_{\phi}\| \, d\mu(\phi) < \mu(C_1) + \mu(C' \setminus C_1) = 1. \end{aligned}$$

By our assumption, for any $\phi \in C_1$, one has $g_{\phi} = \phi$. From Theorem 1.2 it now follows that, for any $T \in \mathcal{L}(X, Y)$,

$$Pf(T) = \int_{C_1} g_{\phi}(T) \, d\mu(\phi) = \int_{C_1} \phi(T) \, d\mu(\phi) = f(T). \quad \bullet$$

Acknowledgements. The second named author was supported by Estonian Science Foundation Grant 7308 and The Research Council of Norway, ref. EJ/hsm IS OE00-62.

References

- [B] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, Berlin, 1983.
- [DSch] N. Dunford and J. T. Schwartz, *Linear Operators. Part 1: General Theory*, Wiley, New York, 1958.
- [FS] M. Feder and P. D. Saphar, Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), 38–49.
- [GKS] G. Godefroy, N. J. Kalton, and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13–59.
- [HWW] P. Harmand, D. Werner, and W. Werner, *M*-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993.
- J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304–311.
- [K] N. J. Kalton, *M*-ideals of compact operators, Illinois J. Math. 37 (1993), 147–169.
- [KW] N. J. Kalton and D. Werner, Property (M), M-ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137–178.
- [L] Å. Lima, Property (wM*) and the unconditional metric compact approximation property, Studia Math. 113 (1995), 249–263.
- [LLT1] B. L. Lin, P. K. Lin, and S. L. Troyanski, A characterization of denting points of a closed bounded convex set, in: Texas Functional Analysis Seminar 1985–1986 (Austin, TX, 1985–1986), Longhorn Notes, Univ. of Texas, Austin, TX, 1986, 99–101.
- [LLT2] —, —, —, Characterizations of denting points, Proc. Amer. Math. Soc. 102 (1988), 526–528.
- [O1] E. Oja, A note on M-ideals of compact operators, Acta Comment. Univ. Tartu. 960 (1993), 75–92.
- [O2] —, M-ideals of compact operators are separably determined, Proc. Amer. Math. Soc. 126 (1998), 2747–2753.

- [O3] E. Oja, Geometry of Banach spaces having shrinking approximations of the identity, Trans. Amer. Math. Soc. 352 (2000), 2801–2823.
- [OP] E. Oja and M. Põldvere, Norm-preserving extensions of functionals and denting points of convex sets, Math. Z. 258 (2008), 333–345.
- [P] M. Põldvere, *Phelps' uniqueness property for* K(X, Y) *in* L(X, Y), Rocky Mountain J. Math. 36 (2006), 1651–1663.

Department of Mathematics Agder University, Servicebox 422 4604 Kristiansand, Norway E-mail: Olav.Nygaard@uia.no http://home.uia.no/olavn/ Institute of Mathematics University of Tartu J. Liivi 2 50409 Tartu, Estonia E-mail: mart.poldvere@ut.ee

Received December 16, 2008 Revised version April 16, 2009

(6492)