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Homotonic algebras

by

Michael Cwikel and Moshe Goldberg (Haifa)

Abstract. An algebra A of real- or complex-valued functions defined on a set T shall
be called homotonic if A is closed under taking absolute values, and for all f and g in A,
the product f×g satisfies |f×g| ≤ |f |×|g|. Our main purpose in this paper is two-fold: to
show that the above definition is equivalent to an earlier definition of homotonicity, and
to provide a simple inequality which characterizes submultiplicativity and strong stability
for weighted sup norms on homotonic algebras.

1. Definition and examples. Throughout this paper, let A denote
a (finite- or infinite-dimensional) algebra over a field F, either R or C, of
F-valued functions defined on a given set T. As usual, addition and scalar
multiplication in A will be defined pointwise, i.e., for all f and g in A, and
all α in F,

(f + g)(t) = f(t) + g(t), (αf)(t) = αf(t).

Multiplication, often not pointwise, will be denoted by ×.

Definition 1.1. Let A be as above. We say that A is homotonic if:

(i) A is closed under taking absolute values, i.e., f ∈ A implies |f | ∈ A.
(ii) For any two elements f and g in A, we have |f × g| ≤ |f | × |g|.
Here, for every f ∈ A, the function |f | is defined for each t ∈ T by

|f |(t) = |f(t)| ; and for real-valued functions f and g, the notation f ≤ g
will have the usual meaning, namely, f(t) ≤ g(t) for all t ∈ T.

We point out that Definition 1.1 does not require A to be associative.
We also note that property (ii) implies that the product of non-negative

functions in A is non-negative.
Examples of homotonic algebras are not hard to come by.
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Example 1.1. Clearly, the algebra of all (bounded or not) F-valued
functions defined on a given set T, with pointwise multiplication, is homo-
tonic.

Example 1.2 (cf. [AG2]). A more interesting example of a homotonic
algebra is given by Fn×n, the algebra of all n× n matrices over F with the
usual matrix operations. This algebra consists, of course, of all F-valued
functions on the set

T = {(j, k) : j, k = 1, . . . , n}.

Example 1.3 ([G]). To further illustrate homotonicity, fix positive con-
stants p and κ, and let Cp,κ(F) be the associative (and, in fact, commutative)
algebra over F of all continuous, p-periodic, F-valued functions on R, where
the product of f and g in Cp,κ(F) is defined by the convolution

(f ∗ g)(t) = κ

p�

0

f(t− x)g(x) dx, t ∈ R.

Surely, if f belongs to Cp,κ(F), so does |f |. Moreover, if f and g are members
of Cp,κ(F), then

|f ∗ g|(t) = |(f ∗ g)(t)| = κ
∣∣∣ p�
0

f(t− x)g(x) dx
∣∣∣ ≤ κ p�

0

|f(t− x)g(x)| dx

= κ

p�

0

|f |(t− x)|g|(x) dx = (|f | ∗ |g|)(t),

hence Cp,κ(F) is homotonic.
This example is a convenient prototype of many instances of algebras of

functions defined on a locally compact abelian group where multiplication
is a scalar multiple of convolution defined with respect to Haar measure on
the group.

Example 1.4. Let A be a homotonic algebra, and let A+ be the algebra
obtained by replacing the original product f×g in A by the Jordan product

f ◦ g ≡ 1
2(f × g + g × f).

Then it is not hard to see that A+ is also homotonic. Indeed, if A is closed
under taking absolute values, then so is A+. Further, if f and g are elements
of A then, by the homotonicity of A,

|f ◦g| = 1
2 |f×g+g×f | ≤ 1

2(|f×g|+|g×f |) ≤ 1
2(|f |×|g|+|g|×|f |) = |f |◦|g|.

This example gives rise to straightforward constructions of non-associat-
ive homotonic algebras. For instance, take A to be Fn×n (n ≥ 2), and
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consider Fn×n+, obtained by adopting the Jordan product A ◦B ≡ 1
2(AB+

BA). For

A =
(

0 1
0 0

)
⊕On−2, B =

(
0 0
1 0

)
⊕On−2,

On−2 denoting the (n− 2)× (n− 2) zero matrix, we have

(A ◦B) ◦B = 1
2(AB +BA) ◦B = 1

4 [(AB +BA)B +B(AB +BA)]

= 1
4(AB2 + 2BAB +B2A) = 1

2B

and
A ◦ (B ◦B) = A ◦B2 = 1

2(AB2 +B2A) = 0.

Hence, Fn×n+ fails to be associative, although Fn×n is.

Example 1.5. We note that if B is a subalgebra of a homotonic alge-
bra A, then evidently, B is homotonic if and only if B is closed under taking
absolute values. For instance, consider the matrix algebra

(1.1) A2(R) =
{(

α β

−β α

)
: α, β ∈ R

}
with the usual matrix operations. Since this subalgebra of R2×2 is not closed
under taking absolute values, it is not homotonic.

In the case where F = R, we can replace condition (ii) in Definition 1.1
by a simpler condition:

Theorem 1.1. Let A be an algebra over R of real-valued functions de-
fined on a given set T. Then A is homotonic if and only if :

(i) A is closed under taking absolute values, i.e., f ∈ A implies
|f | ∈ A.

(ii)R For each pair of non-negative functions f and g in A, the product
f × g is also non-negative.

Proof. If condition (ii) holds then, for any non-negative functions f and
g in A, we have

f × g = |f | × |g| ≥ |f × g| ≥ 0,

so (ii)R is established. Hence, in order to complete the proof, it suffices to
show that (i) and (ii)R imply (ii).

Indeed, in view of (i), for each u in A , the non-negative functions u+ ≡
1
2(|u|+u) and u− ≡ 1

2(|u|−u) are both in A. Moreover, we have u = u+−u−
and |u| = u+ + u−. Thus, for every u and v in A,

(1.2) |u|×|v| = (u++u−)×(v++v−) = u+×v++u−×v−+u+×v−+u−×v+.
and

(1.3) u×v = (u+−u−)×(v+−v−) = u+×v++u−×v−−u+×v−−u−×v+.
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By (ii)R, the products u+ × v+, u− × v−, u+ × v− and u− × v+ are all
non-negative. So, comparing (1.2) and (1.3), we get

|u× v| = |u+ × v+ + u− × v− − u+ × v− − u− × v+|
≤ u+ × v+ + u− × v− + u+ × v− + u− × v+ = |u| × |v|,

and the proof follows.

Example 1.6. To illustrate this theorem, consider the familiar real vec-
tor space

R2 = {(α, β) : α, β ∈ R}.
For all (α, β) and (γ, δ) in R2, define multiplication by

(1.4) (α, β)× (γ, δ) = (αγ − βδ, αδ + βγ),

which makes R2 into a 2-dimensional algebra over the reals. Surely, R2 is
closed under taking absolute values, i.e., condition (i) holds. We observe,
however, that if α, β, γ and δ are positive numbers with αγ < βδ, then the
first component of the product (α, β)× (γ, δ) is negative; so condition (ii)R
fails, and by Theorem 1.1, our algebra is not homotonic.

The mapping

(α, β) 7→
(
α β

−β α

)
, α, β ∈ R,

shows that the above algebra is an algebraically isomorphic image of the
algebra A2(R) defined in (1.1). In fact, the reader must have noticed by
now that both these algebras are algebraically isomorphic to the complex
numbers

C = {α+ iβ : α, β ∈ R}
viewed as a 2-dimensional algebra over R.

2. An earlier equivalent definition of homotonic algebras. The
notion of homotonicity was first introduced in [AG2] in connection with
functionals acting on a linear space V over C of bounded complex-valued
functions defined on a given set T. In the same paper, the idea of homotonic-
ity was extended to mappings from V into V, and then to multiplication
with which V was given the structure of an associative algebra.

Adapting the definitions in [AG2], the term homotonic algebra was coined
in [G]. There, an associative algebra of bounded F-valued functions defined
on T is called homotonic if:

(i) A is closed under taking absolute values.
(ii)′ For any four elements f1, f2, g1 and g2 in A such that |f1| ≤ g1 and

|f2| ≤ g2, we have |f1 × f2| ≤ g1 × g2.
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The name “homotonic” was chosen in this earlier definition because homo
indicates that multiplication preserves the relation |f | ≤ g and tonic reflects
the fact that this relation is about order.

We shall now show that even in the general case where A is not neces-
sarily associative and the functions in A are not necessarily bounded, the
old and new definitions of homotonicity coincide. More precisely, we post:

Theorem 2.1. Let A be an algebra over F of F-valued functions defined
on a set T. Then A is homotonic if and only if conditions (i) and (ii)′ hold.

Proof. Putting f1 = f , f2 = g, g1 = |f | and g2 = |g|, we immediately
observe that (ii)′ implies (ii). So assume that (i) and (ii) hold, and let us
prove (ii)′, thus forcing the desired result.

If f and g are non-negative functions in A, then by (ii),

f × g = |f | × |g| ≥ |f × g| ≥ 0;

hence, as in the proof of Theorem 1.1, (ii) implies (ii)R. Let u, v and w be
real-valued functions in A with u ≤ v and w ≥ 0. Then, by (ii)R,

v × w − u× w = (v − u)× w ≥ 0;

so

(2.1) u ≤ v and w ≥ 0 ⇒ u× w ≤ v × w.
Analogously, we get

(2.2) u ≤ v and w ≥ 0 ⇒ w × u ≤ w × v.
Suppose now that f1, f2, g1 and g2 are arbitrary functions in A which

satisfy |f1| ≤ g1 and |f2| ≤ g2. Then appealing to (ii), (2.1) and (2.2) (in
that order), we obtain

|f1 × f2| ≤ |f1| × |f2| ≤ g1 × |f2| ≤ g1 × g2,
and we are done.

3. Submultiplicative weighted sup norms on homotonic alge-
bras. Our study of homotonic algebras is motivated mainly by the follow-
ing theorem which provides a simple characterization of submultiplicativity
for weighted sup norms.

Here, as usual, we call a norm on an algebra A submultiplicative if

‖f × g‖ ≤ ‖f‖ ‖g‖ for all f, g ∈ A.
Theorem 3.1 (cf. [AG2, Theorem 4.2]). Let A be a homotonic algebra

over F of F-valued functions defined on a set T. Let w be a fixed positive
function on T (not necessarily in A) such that w−1, defined by w−1(t) =
1/w(t) for all t ∈ T, is an element of A. Assume that

sup
t∈T

w(t)|f(t)| <∞ for all f ∈ A.
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Then the weighted sup norm

(3.1) ‖f‖w,∞ ≡ sup
t∈T

w(t)|f(t)|, f ∈ A,

is submultiplicative on A if and only if

(3.2) w−1 × w−1 ≤ w−1.

Proof. Suppose that ‖·‖w,∞ is submultiplicative. Since w−1 is a member
of A , it follows that

(3.3) ‖w−1 × w−1‖w,∞ ≤ ‖w−1‖2w,∞ = 1;

hence,
|w−1 × w−1| ≤ w−1.

Since w−1 is a positive function, the homotonicity of A implies w−1 × w−1

≥ 0; thus

(3.4) w−1 × w−1 = |w−1 × w−1| ≤ w−1

and (3.2) is in the bag.
Conversely, let (3.2) hold. Set

λ ≡ sup{‖f × g‖w,∞ : f, g ∈ A, ‖f‖w,∞ = ‖g‖w,∞ = 1},
and observe that ‖ · ‖w,∞ is submultiplicative if and only if λ ≤ 1. Select
f, g ∈ A with ‖f‖w,∞ = ‖g‖w,∞ = 1; hence

(3.5) |f | ≤ w−1 and |g| ≤ w−1.

Since A is homotonic, Theorem 2.1 guarantees that condition (ii)′ holds. By
(3.5), therefore,

|f × g| ≤ w−1 × w−1,

so aided by (3.4), we get
|f × g| ≤ w−1.

Consequently,
‖f × g‖w,∞ ≤ ‖w−1‖w,∞ = 1;

whence λ ≤ 1, and the proof is complete.

Example 3.1 (cf. [AG1, Theorem 1]). To illustrate Theorem 3.1, let us
revisit Fn×n, the algebra of n × n matrices over F with the usual matrix
operations. Let W = (ωjk) be a fixed n × n matrix of positive entries ωjk,
and consider the weighted sup norm

(3.6) ‖A‖W,∞ = max
j,k

ωjk|αjk|, A = (αjk) ∈ Fn×n.

Let W−1 be the Hadamard inverse of W , that is, the matrix whose (j, k)
entry is 1/ωjk. Then, by the theorem, ‖ · ‖W,∞ is submultiplicative if and
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only if

(3.7) (W−1)2 ≤W−1,

where (W−1)2 is the usual square of W−1, and where the inequality in (3.7)
is construed entrywise. For instance (cf. [GS, Corollary 1.1]), selecting W =
µE, where µ is a positive constant and E is the matrix all of whose entries
are 1, we easily find that the norm in (3.6) is multiplicative if and only if

µ ≥ n.
In other words, the norm

‖A‖µ,∞ ≡ µmax
j,k
|αjk|, A = (αjk) ∈ Fn×n,

is submultiplicative if and only if µ ≥ n.
Surely, the results in this example remain valid when the sup norm in

(3.6) is applied to the non-associative algebra Fn×n+ defined in Example 1.4.

Example 3.2 ([G]). Falling back on the algebra Cp,κ(F) of Example 1.3,
we let w be a continuous, p-periodic, positive function on R. Then, evidently,
w−1 belongs to Cp,κ(F); so by Theorem 3.1, the w-weighted sup norm

‖f‖w,∞ = max
0≤t≤p

w(t)|f(t)|, f ∈ Cp,κ(F),

is submultiplicative if and only if w−1 ∗ w−1 ≤ w−1; that is, precisely when

κ

p�

0

dx

w(t− x)w(x)
≤ 1
w(t)

, 0 ≤ t ≤ p.

In particular, we see that the usual sup norm

‖f‖∞ = max
0≤t≤p

|f(t)|, f ∈ Cp,κ(F),

is submultiplicative if and only if κp ≤ 1.

Our next example involves an algebra of unbounded functions where the
weight function w is not a member of A.

Example 3.3. Set T = (0,∞), and let A be the real vector space of all
functions on T of the form f(t) = αt where α is a real constant. For each f
and g in A, define the product f × g by

(f × g)(t) =
f(t)g(t)

t
, t ∈ T,

thus making A into a homotonic algebra which is a faithful image of R. Let
w : T → R be the positive unbounded function w(t) = νt−1 where ν is a
positive constant. Note that w is not an element of A but w−1 is. With this
choice of w, and for each f(t) = αt in A, we have

sup
t∈T

w(t)|f(t)| = ν|α| <∞.
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Hence, by Theorem 3.1, the weighted sup norm

‖f‖w,∞ = sup
t∈T

w(t)|f(t)|

is submultiplicative on A if and only if w−1 × w−1 ≤ w−1; that is, if and
only if ν ≥ 1.

4. Strongly stable weighted sup norms on homotonic algebras.
As usual, whether the algebra A is associative or not, we define powers of
each element f ∈ A inductively by

f1 = f ; fk = fk−1 × f, k = 2, 3, 4, . . .

Having powers at our disposal, we say that a norm ‖ · ‖ on A is strongly
stable if

‖fk‖ ≤ ‖f‖k for all f ∈ A and k = 1, 2, 3, . . .

With these definitions, we can easily characterize strong stability for
weighted sup norms on homotonic algebras.

Theorem 4.1 (cf. [AG2, Theorem 4.2]). Let A be a homotonic algebra
over F of F-valued functions defined on a set T. Let w be a fixed positive
function on T (not necessarily in A) such that w−1 belongs to A. Assume
that

sup
t∈T

w(t)|f(t)| <∞ for all f ∈ A.

Then the weighted sup norm ‖ · ‖w,∞ in (3.1) is strongly stable if and only if

w−1 × w−1 ≤ w−1.

Proof. If w−1 × w−1 ≤ w−1, then by Theorem 3.1, ‖ · ‖w,∞ is submulti-
plicative, hence strongly stable since for all f in A,

‖fk‖ = ‖fk−1 × f‖ ≤ ‖fk−1‖ ‖f‖, k = 2, 3, 4, . . .

Conversely, if ‖ · ‖w,∞ is strongly stable, then

‖f × f‖w,∞ ≤ ‖f‖2w,∞ for all f ∈ A.
So setting f = w−1, we get (3.3) and w−1 × w−1 ≤ w−1 follows.

Theorems 3.1 and 4.1 show, of course, that in the homotonic case, sub-
multiplicativity and strong stability are equivalent for weighted sup norms.
It thus follows that the examples presented in Section 3 are also relevant
here, in the sense that in each of those examples, the condition given for
submultiplicativity is also necessary and sufficient for strong stability.

We conclude by remarking that in general, a strongly stable norm on a
(homotonic) algebra may fail to be submultiplicative. A familiar example is
the numerical radius,

r(A) = max{|(Ax, x)| : x ∈ Cn, (x, x) = 1},
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defined on Cn×n (n ≥ 2), with respect to a given inner product (·, ·) on Cn.
It is well known (e.g., [H, Chapter 17]) that r is a norm on Cn×n which is
not submultiplicative; on the other hand, the celebrated Berger Inequality
[B, P] tells us that r is strongly stable.

References

[AG1] R. Arens and M. Goldberg, Weighted l∞ norms for matrices, Linear Algebra
Appl. 201 (1994), 155–163.

[AG2] —, —, Homotonic mappings, J. Math. Anal. Appl. 194 (1995), 414–427.
[B] C. Berger, On the numerical range of powers of an operator, Abstract No. 625-152,

Notices Amer. Math. Soc. 12 (1965), 590.
[G] M. Goldberg, Stable norms—from theory to applications and back, Linear Algebra

Appl. 404 (2005), 223–250.
[GS] M. Goldberg and E. G. Straus, Multiplicativity of lp norms for matrices, Linear

Algebra Appl. 52/53 (1983), 351–360.
[H] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, New York, 1967.
[P] C. Pearcy, An elementary proof of the power inequality for the numerical radius,

Michigan Math. J. 13 (1966), 289–291.

Department of Mathematics
Technion – Israel Institute of Technology
Haifa 32000, Israel
E-mail: mcwikel@math.technion.ac.il

goldberg@math.technion.ac.il

Received May 6, 2009 (6620)


