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Composition in ultradifferentiable classes

by

Armin Rainer and Gerhard Schindl (Wien)

Abstract. We characterize stability under composition of ultradifferentiable classes
defined by weight sequences M , by weight functions ω, and, more generally, by weight
matrices M, and investigate continuity of composition (g, f) 7→ f ◦ g. In addition, we
represent the Beurling space E(ω) and the Roumieu space E{ω} as intersection and union
of spaces E(M) and E{M} for associated weight sequences, respectively.

1. Introduction. This paper arose from our wish to characterize sta-
bility under composition of Denjoy–Carleman classes E{M} and E(M). For
these classes we have developed a calculus in infinite dimensions beyond Ba-
nach spaces in [24, 26, 25] which is heavily based on composition: A smooth
mapping f is of class E{M} if and only if f ◦ p ∈ E{M} for all E{M} Banach
plots (i.e., mappings defined in open subsets of Banach spaces); similarly for
E(M). Sometimes curves suffice.

Denjoy–Carleman differentiable functions form classes of smooth func-
tions that are described by growth conditions on the Taylor expansion. The
growth is prescribed in terms of a sequenceM = (Mk) of positive real numbers
which serves as a weight for the iterated derivatives: for compact K the sets{

f (k)(x)

ρkk!Mk
: x ∈ K, k ∈ N

}
are required to be bounded. The positive real number ρ is subject to either a
universal or an existential quantifier, thereby dividing the Denjoy–Carleman
classes into those of Beurling type E(M) and those of Roumieu type E{M},
respectively. We write E [M ] for either E(M) or E{M}.

It is well-known that E [M ] is stable under composition if M is log-convex
(see [34], [20], [13]), and usually in the literature log-convexity is assumed in
order to have stability under composition; but is log-convexity also nec-
essary? Actually, when proving stability under composition with Faà di
Bruno’s formula one needs a weaker condition that we call the (FdB)-
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property. We prove that the (FdB)-property (for the weakly log-convex
minorant M [(c)) is also a necessary condition for stability under compo-
sition if E [M ] is stable under derivation (see Theorem 3.2). More precisely,
if E [M ] is stable under derivation, then stability under composition is in turn

equivalent to being holomorphically closed, being inverse closed, (M
[(c)
k )1/k

being almost increasing, and M [(c) having the (FdB)-property. For further
equivalent stability properties we refer to [33]. Inverse closedness has been
studied intensively, e.g. in [35], [10], [39]. In this context we prove that,

as in the Roumieu case [11], one has E(M) = E(M[(c)) if Cω ⊆ E(M) (see
Theorem 2.15). Finally, we demonstrate that log-convexity is not necessary
for stability under composition. We construct classes E [M ] which are stable
under composition and such that there is no log-convex N = (Nk) with
E [M ] = E [N ] (see Example 3.6).

Another common way to define ultradifferentiable classes is by means of
a weight function ω which controls the decay of the Fourier transform (see
[5] and [6]). We shall use the following equivalent description due to [9]: for
compact K the sets{

f (k)(x) exp

(
−1

ρ
ϕ∗(ρk)

)
: x ∈ K, k ∈ N

}
,

where ϕ∗ is the Young conjugate of ϕ(t) = ω(et), are required to be bounded
either for all ρ > 0 in the Beurling case E(ω) or for some ρ > 0 in the Roumieu
case E{ω}. Again E [ω] stands for either E(ω) or E{ω}. For these classes stability
under composition was characterized in [16] under the additional assumption
of non-quasianalyticity. Note that the sets {E [M ] : M a weight sequence}
and {E [ω] : ω a weight function} have a large intersection but neither of
them contains the other (see [8]). We stress that the usual requirements on
the weight function ω ensure that the spaces E [ω] come with incorporated sta-
bility properties, for instance stability under derivation (see Corollary 5.15).

We prove that E(ω) and E{ω} can be represented (as locally convex
spaces with their natural topologies) as intersections and unions of ultra-
differentiable classes defined by means of associated weight sequences (see
Theorem 5.14). For each open subset U ⊆ Rn, compact K ⊆ U , and for
Ωρ = (Ωρ

k) defined by

Ωρ
k :=

1

k!
exp

(
1

ρ
ϕ∗(ρk)

)
we have

(1.1) E(ω)(U) =
⋂
ρ>0

E(Ωρ)(U) and E{ω}(U) =
⋂
K⊆U

⋃
ρ>0

E{Ωρ}(K).

We use this representation to characterize stability under composition, and
believe that it is also of independent interest.
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In fact, inspired by (1.1), we characterize stability under composition
for more general ultradifferentiable classes defined by weight matrices M =
{Mλ ∈ RN

>0 : λ ∈ Λ}, where Λ is an ordered subset of R:

E(M)(U) :=
⋂
λ∈Λ
E(Mλ)(U) and E{M}(U) :=

⋂
K⊆U

⋃
λ∈Λ
E{Mλ}(K),

endowed with their natural topologies. Among the spaces E(M) and E{M},
together denoted by E [M], are all the spaces defined by means of weight se-
quences and weight functions, but not exclusively (see Theorem 5.22). For
instance, the intersection, resp. the union, of all non-quasianalytic Gevrey
classes is an autonomous E(M)-space, resp. E{M}-space, with suitable M.
Intersections of non-quasianalytic ultradifferentiable classes have been stud-
ied by Rudin [35], Boman [7], Chaumat and Chollet [12], Beaugendre [3, 4],
and Schmets and Valdivia [37, 38] (among others). It seems, however, that
unions of ultradifferentiable classes have not been investigated before.

Given that E [M] is stable under composition, the nonlinear composition
operators

comp(M) : E(M)(Rp,Rq)× E(M)(Rq,Rr)→ E(M)(Rp,Rr) : (g, f) 7→ f ◦ g,
E{M}(Rp, f) : E{M}(Rp,Rq)→ E{M}(Rp,Rr) : g 7→ f ◦ g, f ∈ E{M}(Rq,Rr),
turn out to be continuous. This is proved in Theorem 4.13. The special
case of E [ω] was treated in [16] (see also [1]). Under suitable assumptions we
expect comp[M] to be of class E [M] (see Remark 4.23).

The paper is structured as follows. We first treat the weight sequence
case in Sections 2 and 3. In Section 4 we introduce ultradifferentiable classes
defined by weight matrices M, characterize their stability under composi-
tion, and show that composition is continuous. We discuss classes defined
by weight functions ω and identify them as classes defined by weight ma-
trices M in Section 5, and characterize their stability under composition in
Section 6.

Notation and conventions. The notation E [∗] for ∗ ∈ {M,ω,M} stands
for either E(∗) or E{∗} with the following restriction: Statements that involve
more than one E [∗] symbol must not be interpreted by mixing E(∗) and
E{∗}. This convention will be used broadly, but self-evidently: For example,
M[�]N ⇔ E [M] ⊆ E [N] in Proposition 4.6 means M(�)N ⇔ E(M) ⊆ E(N)

and M{�}N⇔ E{M} ⊆ E{N}.
Let N = N>0 ∪{0}. For α = (α1, . . . , αq) ∈ Nq and x = (x1, . . . , xq) ∈ Rq

we writeα! = α1! · · ·αq!, |α| = α1+· · ·+αq, and xα = xα1
1 · · ·x

αq
q . We use ∂i =

∂/∂xi, ∂
α = ∂α1

1 · · · ∂
αq
q and write dkf or f (k) for the kth order Fréchet deriva-

tive of f , and dvf for the directional derivative in direction v. For sequences
of reals M = (Mk) and N = (Nk) we write M ≤ N if Mk ≤ Nk for all k.
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L(E1, . . . , Ek;F ) is the space of k-linear bounded mappings E1×· · ·×Ek
→ F (between topological vector spaces); if Ei = E for all i, we also write
Lk(E,F ).

Let F and G denote classes of mappings. We write F ⊆ G if F(U,Rm) ⊆
G(U,Rm) for all open subsets U ⊆ Rn and all n,m ∈ N>0. We say that
F is stable under composition if g ∈ F(U, V ) and f ∈ F(V,W ) implies
f ◦ g ∈ F(U,W ), for all open subsets U ⊆ Rp, V ⊆ Rq, W ⊆ Rr, and all
p, q, r ∈ N>0. A class F is called holomorphically closed if f ◦ g ∈ F(U,C)
for each g ∈ F(U) = F(U,R) and each f which is holomorphic in a complex
neighborhood of the range of g, and F is inverse closed if 1/f ∈ F(U)
for each non-vanishing f ∈ F(U). That F is derivation closed means that
f ∈ F(U) implies ∂if ∈ F(U) for all open U ⊆ Rn, n ∈ N>0, and 1 ≤ i ≤ n.
A class F of smooth mappings is quasianalytic if for each open connected
U ⊆ Rn and each x ∈ U the Borel mapping F(U) 3 f 7→ (∂αf(x))α is
injective.

2. Weight sequences and [M ]-ultradifferentiable functions

2.1. Weight sequences. A sequence M = (Mk) ∈ RN
>0 of positive real

numbers is said to be log-convex if k 7→ logMk is convex, i.e.,

(Mlc) ∀k : M2
k ≤Mk−1Mk+1;

weakly log-convex if

(Mwlc) (k!Mk)k is log-convex;

of moderate growth if

(Mmg) ∃C > 0 ∀j, k ≥ 1 : Mj+k ≤ Cj+kMjMk;

derivation closed if

(Mdc) ∃C > 0 ∀k ≥ 1 : Mk+1 ≤ CkMk;

almost increasing if

(Mai) ∃C > 0 ∀j ≤ k : Mj ≤ CMk;

have the (FdB)-property if

(MFdB) ∃C > 0 ∀αi ∈ N>0, α1+ · · ·+αj = k : MjMα1 · · ·Mαj ≤ CkMk;

and be quasianalytic if

(Mqa)
∞∑
k=1

(k!Mk)
−1/k =∞.

Obviously (Mlc) implies (Mwlc), and (Mmg) implies (Mdc). IfM is log-convex,
we further have MjMk ≤M0Mj+k for all j, k and (Mk/M0)

1/k is increasing.
Moreover:
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2.2. Lemma. For M ∈ RN
>0 having the (FdB)-property, each of the fol-

lowing conditions is sufficient:

(1) M is log-convex.

(2) M is derivation closed and (M
1/k
k )k is almost increasing.

(3) MjMk ≤M1Mj+k−1 for all j, k ≥ 1.

Proof. (1) We show (MFdB) with C := max{M1, 1} by induction on k.
The assertion is trivial for k = j. Assume that j < k. Then α′i := αi− 1 ≥ 1
for some i, and we have

MjMα1 · · ·Mαj = MjMα1 · · ·Mα′i
· · ·Mαj

Mαi

Mα′i

≤ Ck−1Mk−1
Mk

Mk−1
≤ CkMk,

by induction hypothesis and by (Mlc).
(2) This is proved in more general terms in 4.9[(3)⇒(4)] and

4.11[(3)⇒(4)].
(3) This is readily seen by iteration.

For M,N ∈ RN
>0 we define:

M � N :⇔ ∃C, ρ > 0 ∀k : Mk ≤ CρkNk ⇔ sup
k

(
Mk

Nk

)1/k

<∞,

M ≈ N :⇔ M � N and N �M,

M �N :⇔ ∀ρ > 0 ∃C > 0 ∀k : Mk ≤ CρkNk ⇔ lim
k→∞

(
Mk

Nk

)1/k

= 0.

The following lemma is a variant of [21, Lemma 6].

2.3. Lemma. Let L,M ∈ RN
>0 satisfy L � M and M

1/k
k → ∞. Then

there exist sequences N i ∈ RN
>0, i = 1, 2, satisfying (N i

k)
1/k → ∞ such that

L ≤ N1 �N2 �M .

Proof. It suffices to show that there exists N1 ∈ RN
>0 with L ≤ N1 �M

and (N1
k )1/k →∞; for N2 = (N2

k ) we may then choose N2
k :=

√
N1
kMk.

The sequence N1 = (N1
k ) defined by N1

k := max{
√
Mk, Lk} is as re-

quired. We have L ≤ N1 �M , since(
N1
k

Mk

)1/k

= max

{
M
−1/2k
k ,

(
Lk
Mk

)1/k}
→ 0

as M
1/k
k →∞ and L�M . Moreover, N1

k ≥
√
Mk implies (N1

k )1/k →∞.

2.4. Remark. The lemma remains true if we replace M
1/k
k → ∞ by

(k!Mk)
1/k → ∞ and (N i

k)
1/k → ∞ by (k!N i

k)
1/k → ∞; set N1

k :=

max{
√
Mk/k!, Lk} in the above proof. But in this case it is unclear if

limM
1/k
k > 0 implies lim (N i

k)
1/k > 0 which we need in Theorem 2.15.



102 A. Rainer and G. Schindl

2.5. Regularizations (cf. [2], [27], or [22]). For M ∈RN
>0 with (k!Mk)

1/k

→∞ set

TM (t) := sup
k∈N

tk

k!Mk
, t > 0, and M

[(c)
k :=

1

k!
sup
t>0

tk

TM (t)
.

Then TM = TM[(c) . The sequence (k!M
[(c)
k )k is the largest log-convex mi-

norant of (k!Mk)k; in particular, M is weakly log-convex if and only if

M = M [(c). The condition (k!Mk)
1/k → ∞ guarantees that Mk = M

[(c)
k

for infinitely many k.

We shall also use

SM (t) := max
k≤t

tk

k!Mk
and M

[(o)
k :=

1

k!
sup
t≥k

tk

SM (t)
,

and again have SM = SM[(o) .

2.6. Lemma. Let M,N ∈ RN
>0 satisfy (k!Mk)

1/k → ∞ and (k!Nk)
1/k

→∞. Then M � N implies M [(c) � N [(c), and M�N implies M [(c)�N [(c).

Proof. For ρ > 0 set Nρ = (Nρ
k ) := (ρkNk). Easy computations show

TNρ(t) = TN (t/ρ) and thus (Nρ)[(c) = (N [(c))ρ. Both assertions follow im-
mediately.

2.7. [M ]-ultradifferentiable functions. LetM ∈ RN
>0 and let U ⊆ Rn

be open. Define

E(M)(U) := {f ∈ C∞(U,R) : ∀K ⊆ U compact ∀ρ > 0 : ‖f‖MK,ρ <∞},

E{M}(U) := {f ∈ C∞(U,R) : ∀K ⊆ U compact ∃ρ > 0 : ‖f‖MK,ρ <∞},

‖f‖MK,ρ := sup

{‖f (k)(x)‖Lk(Rn,R)
k!ρkMk

: x ∈ K, k ∈ N
}
,

and endow E(M)(U) with its natural Fréchet space topology and E{M}(U)
with the projective limit topology over K of the inductive limit topology
over ρ; note that it suffices to take countable limits. We write E [M ] for either
E(M) or E{M}. The elements of E [M ](U) are called [M ]-ultradifferentiable
functions; an (M)/{M}-ultradifferentiable function is said to be of Beurl-
ing/Roumieu type, respectively. For compact K ⊆ U with smooth boundary,

EMρ (K) := {f ∈ C∞(K) : ‖f‖MK,ρ <∞}

is a Banach space, and we have

E(M)(U) = lim←−
K⊆U

lim←−
m∈N
EM1/m(K) and E{M}(U) = lim←−

K⊆U
lim−→
m∈N
EMm (K);
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we also set

E(M)(K) := {f ∈ C∞(K) : ∀ρ > 0 : ‖f‖MK,ρ <∞} = lim←−
m∈N
EM1/m(K),

E{M}(K) := {f ∈ C∞(K) : ∃ρ > 0 : ‖f‖MK,ρ <∞} = lim−→
m∈N
EMm (K).

The definitions work as well for mappings f : U → Rm, and so we shall use
also E [M ](U, V ), E [M ](K,V ), and EMρ (K,V ) for open subsets V ⊆ Rm.

By the Denjoy–Carleman theorem, E [M ] is quasianalytic if and only if
M [(c) satisfies (Mqa); this is in turn equivalent to

∞∑
k=0

M
[(c)
k

(k + 1)M
[(c)
k+1

=∞ and

∞�

1

log TM (t)

t2
dt =∞.

For modern proofs see for instance [18, 1.3.8], [36, 19.11], and [20, 4.2].

2.8. Examples. For s ∈ R≥0 the sequence Gs = (Gsk) = ((k!)s) is log-
convex and has moderate growth; it is quasianalytic if and only if s = 0. The
elements of E{G0}(U) are exactly the real analytic functions Cω(U) and the

elements of E(G0)(U) are exactly the restrictions of entire functions H(Cn).
The class E{Gs} coincides with the Gevrey class G1+s.

2.9. Lemma. Let M ∈ RN
>0 be weakly log-convex. Then there exists a

function f ∈ E{M}global(R) := {f ∈ C∞(R) : ∃ρ > 0 : ‖f‖MR,ρ < ∞} such that

|f (k)(0)| ≥ k!Mk for all k.

Such a function is called a characteristic E{M}-function.

Proof. The complex valued function

(2.10) g(t) :=

∞∑
k=0

k!Mk

(2µk)k
e2iµkt, where µk :=

(k + 1)Mk+1

Mk
,

belongs to E{M}global(R,C) and satisfies

(2.11) g(j)(0) = ijhj , where hj ≥ j!Mj ,

thus

|g(j)(0)| ≥ j!Mj ,

for all j (see [40, Thm. 1]). Setting f := Re g+ Im g we obtain a real valued
function with the required properties.

2.12. Proposition. Let L,M,N ∈ RN
>0, let U ⊆ Rn be open, and let

K ⊆ U be compact. We have:

(1) M � N ⇒ E [M ] ⊆ E [N ] and M � N ⇒ E{M} ⊆ E(N) with contin-
uous inclusions. If M is weakly log-convex, then also the converse
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implications hold; more precisely, E [M ](R) ⊆ E [N ](R)⇒M � N and
E{M}(R) ⊆ E(N)(R)⇒M �N .

(2) We have

E{M}(U,Rm) =
⋂
M�N

E(N)(U,Rm) =
⋂
M�N

E{N}(U,Rm).

If M is (weakly) log-convex, then the intersections may be taken over
all (weakly) log-convex M �N .

(3) If M
1/k
k →∞ then

E(M)(K,Rm) =
⋃
L�M

L
1/k
k →∞

E{L}(K,Rm) =
⋃
L�M

L
1/k
k →∞

E(L)(K,Rm).

If (k!Mk)
1/k →∞ then the unions may be taken over all L�M with

(k!Lk)
1/k → ∞. If M is log-convex and Mk+1/Mk → ∞ then the

unions may be taken over all log-convex L�M with Lk+1/Lk →∞.

Proof. (1) The directions “⇒” are clear by definition (see also [24, 2.3]).
If M is weakly log-convex, then the implications E{M} ⊆ E{N} ⇒ M � N
and E{M} ⊆ E(N) ⇒ M � N follow from the existence of a characteristic
E{M}-function (see Lemma 2.9). That E(M) ⊆ E(N) implies M � N is shown
in [10, Thm. 2.2] and in more general terms in Proposition 4.6.

(2) See [24, 2.4 and 8.2].
(3) follows from (1), Lemma 2.3, Remark 2.4, and [21, Lemma 6].

As the elements of E{1}(U) are exactly the real analytic functions Cω(U)
and the elements of E(1)(U) are exactly the restrictions of entire functions
H(Cn), we may conclude:

(4) Cω ⊆ E{M} ⇔ H(Cn) ⊆ E(M)(U) ∀U ⊆ Rn ⇔ limM
1/k
k > 0.

(5) Cω ⊆ E(M) if and only if limM
1/k
k =∞.

(6) E [M ] is derivation closed if M satisfies (Mdc). If M is weakly log-
convex, then (Mdc) is also necessary for E [M ] being derivation closed;

indeed, for M+1 = (M+1
k ) := (Mk+1) we find that E [M+1](R) = {f ′ :

f ∈ E [M ](R)}.

In particular, if L �M with limL
1/k
k > 0 then necessarily limM

1/k
k = ∞,

by (1), (4), and (5).

Note that limMk+1/Mk =∞ implies limM
1/k
k =∞ and thusCω ⊆ E(M).

Indeed, there exists k0 withMk0 ≥ 1, and for everyC > 0 there exists k1 ≥ k0
such that Mk ≥ CMk−1 for all k > k1, whence M

1/k
k ≥M1/k

k0
C1−k0/k ≥ C1/2

as k > 2k1. If M
1/k
k is increasing, we also have the converse: limM

1/k
k =∞

implies limMk+1/Mk =∞.
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2.13. Lemma ([11, Lemme 3]). Let M ∈ RN
>0 and λ > 0. If M0 ≤ λkMk

for all k and

|f (k)(t)| ≤ k!Mk for all t ∈ [−λ, λ], k ∈ N,
then

|f (k)(0)| ≤ 2ekk!M
[(c)
k for all k ∈ N.

2.14. Proposition. Let M ∈ RN
>0 satisfy limM

1/k
k > 0 and M0 = 1, let

K ⊆ Rn be compact, and let Kλ :=
⋃
x∈K Bλ(x), λ > 0, be a λ-neighborhood

of K. Then E{M}(Kλ) ⊆ E{M[(c)}(K) via restriction.

Proof. By the assumption limM
1/k
k > 0 there exists τ > 0 such that

Mk ≥ τk for all k. If f ∈ E{M}(Kλ), then C := ‖f‖MKλ,ρ <∞, where we may
assume that ρ is such that ρλτ ≥ 1. The function fx,v(t) := f(x+tv) satisfies
‖fx,v‖M[−λ,λ],ρ ≤ ‖f‖

M
Kλ,ρ

= C for all x ∈ K and v ∈ Sn−1. By Lemma 2.13,

we have

|dkvf(x)| = |f (k)x,v (0)| ≤ 2C(eρ)kk!M
[(c)
k for all x ∈ K, v ∈ Sn−1, k ∈ N,

since (CρkMk)
[(c) = CρkM

[(c)
k (see 2.6). Thus f |K ∈ E{M

[(c)}(K) (see e.g.
[23, 7.13.1]).

2.15. Theorem. Let M ∈ RN
>0 and let U ⊆ Rn be open. We have:

(1) If limM
1/k
k > 0 then E{M}(U) = E{M[(c)}(U).

(2) If limM
1/k
k =∞ then E(M)(U) = E(M[(c))(U).

Under these assumptions E [M ](U) is an algebra.

(1) is due to [11, Thm. I & Appendix].

Proof. (1) Apply Propositions 2.12(1) and 2.14.

(2) Proposition 2.12(1) implies E(M[(c))(U) ⊆ E(M)(U). Conversely, let
K ⊆ U be compact and let Kλ :=

⋃
x∈K Bλ(x) ⊆ U be a λ-neighborhood of

K in U . By Proposition 2.12(3), Proposition 2.14, and Lemma 2.6,

E(M)(Kλ) =
⋃
E{L}(Kλ) ⊆

⋃
E{L[(c)}(K) ⊆ E(M[(c))(K),

where the unions are taken over all L � M with L
1/k
k → ∞. As K was

arbitrary, we have E(M)(U) ⊆ E(M[(c))(U).
The last statement is a well-known consequence of weak log-convexity.

As a consequence, Cω ⊆ E{M} = E(N) is impossible. Assume the con-
trary. Then, by 2.12(4)&(5) and Theorem 2.15, we may assume that M and
N are weakly log-convex, and by Proposition 2.12(1), we have M �N . Set-
ting L = (Lk) with Lk :=

√
MkNk we obtain M�L�N , and, by Lemma 2.6,

we may assume that L is weakly log-convex. But then E{M} ⊆ E(L) ⊆ E{L} ⊆
E(N) = E{M} and thus M ≈ L ≈ N , a contradiction.
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3. Stability under composition of E [M ]. For M ∈ RN
>0 we define

M◦ = (M◦k ) by setting

M◦k := max{MjMα1 . . .Mαj : αi ∈ N>0, α1 + · · ·+ αj = k}, M◦0 := 1.

Clearly, M � M◦. We have M◦ � M if and only if M has the (FdB)-
property.

3.1. Proposition. Let M ∈ RN
>0 and let U ⊆ Rp, V ⊆ Rq, and W ⊆ Rr

be open.

(1) If g ∈ E [M ](U, V ) and f ∈ E [M ](V,W ), then f ◦ g ∈ E [M◦](U,W ).
(2) If M has the (FdB)-property, then E [M ] is stable under composition.

Proof. (1) Let K ⊆ U be compact. There exist Cg, ρg > 0 (resp. for each
ρg > 0 there exists Cg > 0) such that

‖g(k)(x)‖Lk(Rp,Rq)
k!

≤ CgρkgMk for all x ∈ K, k ∈ N,

and there exist Cf , ρf > 0 (resp. for each ρf > 0 there exists Cf > 0) such
that

‖f (k)(y)‖Lk(Rq ,Rr)
k!

≤ CfρkfMk for all y ∈ g(K), k ∈ N.

By Faà di Bruno’s formula (see [15] for the 1-dimensional version; the second

sum below is over all α ∈ Nj>0 with α1 + · · ·+ αj = k)

‖(f ◦ g)(k)(x)‖Lk(Rp,Rq)
k!

≤
∑
j≥1

∑
α

‖f (j)(g(x))‖Lj(Rq ,Rr)
j!

j∏
i=1

‖g(αi)(x)‖Lαi (Rp,Rq)
αi!

≤
∑
j≥1

∑
α

Cfρ
j
fC

j
gρ
k
gMj

j∏
i=1

Mαi ≤ Cfρkg
(∑
j≥1

(
k − 1

j − 1

)
(ρfCg)

j

)
M◦k

≤ CfCgρf (ρg(1 + ρfCg))
kM◦k .

This implies the assertion in the Roumieu case. For the Beurling case, let
τ > 0 be arbitrary, and choose σ > 0 such that τ =

√
σ + σ. If we set

ρg =
√
σ and ρf =

√
σ/Cg, then ‖f ◦ g‖M◦K,τ <∞.

(2) follows immediately from (1) and Proposition 2.12(1).

We get a nice characterization of stability under composition if we as-
sume that E [M ] is stable under derivation.

3.2. Theorem. Let M ∈ RN
>0 and assume that E [M ] is stable under

derivation. Consider the following conditions:
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(1) E [M ] is stable under composition.
(2) E [M ] is holomorphically closed.
(3) E [M ] is inverse closed.

(4) (M
[(c)
k )1/k is almost increasing.

(5) (M
[(o)
k )1/k is almost increasing.

(6) M [(c) has the (FdB)-property.
(7) M [(o) has the (FdB)-property.

If limM
1/k
k > 0 then all conditions are equivalent in the Roumieu case

E [M ] = E{M}. If limM
1/k
k = ∞ then all conditions are equivalent in any

case.

Proof. Under the assumption limM
1/k
k > 0 we have E{M} = E{M[(c)}, by

Theorem 2.15. The equivalences (4)⇔(5) and and (6)⇔(7) follow from the

fact that E{M}(I) = E{M[(o)}(I) for open intervals I (see [27, 6.5.1]), which
implies M [(c) ≈ M [(o), by [39, Lemma II]. Lemma 2.2 and 2.12(6) imply
(4)⇒(6).

Let us prove the remaining implications in the Roumieu case E [M ] = E{M}.
Since Cω ⊆ E{M} by 2.12(4), we clearly have (1)⇒(2)⇒(3). The implication
(3)⇒(5) follows from [39], and (6)⇒(1) follows from Proposition 3.1. Note
that (3)⇒(4) is shown in greater generality in the proof of Theorem 4.9 below.

Now let us assume the stronger condition limM
1/k
k = ∞ and show the

remaining implications in the Beurling case E [M ] = E(M). Since Cω ⊆ E(M),
by 2.12(5), we have (1)⇒(2)⇒(3). The implication (3)⇒(4) follows from

[10] since E(M)(R) = E(M[(c))(R) is a Fréchet algebra, by Theorem 2.15, and
(6)⇒(1) follows from Proposition 3.1.

3.3. Log-convexity is not necessary for stability under compo-
sition. There exist classes E [M ] (containing Cω) which are closed under
composition and there is no log-convex N ∈ RN

>0 such that E [M ] = E [N ]. We
need the following lemma.

3.4. Lemma. Let M ∈ RN
>0 be such that Cω ⊆ E [M ] (i.e., limM

1/k
k > 0

in the Roumieu case and limM
1/k
k =∞ in the Beurling case). If there exists

a log-convex N ∈ RN
>0 such that E [M ] = E [N ], then the sequence ki+1/ki is

bounded, where the ki are precisely those k with Mk = M
[(c)
k .

Proof. This is a special case of [11, Appendix Prop. 3]. For the reader’s

convenience we give a short proof. By Theorem 2.15, we have E [M[(c)] = E [N ]

and thus M [(c) ≈ N , by Proposition 2.12(1). Since N is weakly log-convex,
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we have N ≤M [(c) ≤M . Set

L :=

{
Nk, k = ki,

+∞, otherwise

}[(c)
.

For M ∈ RN
>0 consider the graph ΓM := {(k, log(k!Mk)) : k ∈ N}. Then

ΓM[(c) and ΓL lie on piecewise linear curves with vertices {(ki, log(ki!Mki)) :
i ∈ N} and {(ki, log(ki!Nki)) : i ∈ N}, respectively. Since N is weakly log-
convex and since ΓL lies below ΓM[(c) , we have N ≤ L ≤ M [(c) ≈ N and
hence L ≈ N . As N is log-convex, we have, for ki ≤ k ≤ ki+1,

log(k!Lk) =
ki+1 − k
ki+1 − ki

log(ki!Nki) +
k − ki
ki+1 − ki

log(ki+1!Nki+1
)

≥ ki+1 − k
ki+1 − ki

log ki! +
k − ki
ki+1 − ki

log ki+1! + logNk,

and therefore

(3.5) log

(
k!Lk
k!Nk

)1/k

≥ 1

k

ki+1 − k
ki+1 − ki

log ki! +
1

k

k − ki
ki+1 − ki

log ki+1!−
1

k
log k!.

By Stirling’s formula, for ki+1/ki =: ai and k := 2ki the right-hand side of
(3.5) is greater than

1

2

ai − 2

ai − 1
(log ki − 1) +

1

2

ai
ai − 1

(log ai + log ki − 1)− log(2ki)

=
1

2

ai
ai − 1

log ai − log 2− 1,

and so L ≈ N implies that ai is bounded.

3.6. Example. Choose r ∈ R≥4. Set ki := ki−1dlog(i + 1)e, i ≥ 2,
k1 := 3, where dxe denotes the smallest integer n ≥ x, and define

µk = µ(r)k :=


1, k = 1, 2,

rk, k = ki,

rki−1, ki < k < ki+1,

Mk = M(r)k :=
1

k!

k∏
j=1

µj .

Then M = (Mk) is derivation closed, since µk/k ≤ rk for all k, and M is
not weakly log-convex, since µ = (µk) is not increasing. By construction we
have MjMk ≤M1Mj+k−1 for all j, k ≥ 1, i.e.,

µ1
1
· · · µk

k
≤ µ1

1

µj+1

j + 1
· · ·

µj+k−1
j + k − 1

, j, k ≥ 1.



Composition in ultradifferentiable classes 109

Indeed, since µk/k is decreasing for ki ≤ k < ki+1 and since
µki+1

ki + 1
≤

µki+2−1

ki+2 − 1
for all i,

it suffices to check that, for all i,
µki+1−1

ki+1 − 1

µki+1

ki+1
≤

µki+2−2

ki+2 − 2

µki+2−1

ki+2 − 1

which is a straightforward computation. By Lemma 2.2(3) and Proposi-
tion 3.1, E [M ] is stable under composition.

Consider the graph ΓM := {Pk := (k, log(k!Mk)) : k ∈ N}. The subset
{Pk : ki ≤ k < ki+1} lies on an affine line with slope (ki − 1) log r. The line
that connects Pki−1 and Pki has slope ki log r, and the line that connects
Pki−1 and Pki+1−1 has slope (ki − 1 + (ki+1 − ki)−1) log r. All these slopes
are strictly increasing to infinity as i → ∞. We conclude that the graph

ΓM[(c) := {(k, log(k!M
[(c)
k )) : k ∈ N} lies on the piecewise linear curve with

vertices {Pki−1 : i ∈ N} and that {ki − 1} is precisely the set of k with

Mk = M
[(c)
k .

As Mk/Mk−1 = µk/k → ∞ we have M
1/k
k → ∞ (see the remarks after

2.12), and, by Lemma 3.4, there is no log-convex N ∈ RN
>0 such that E [M ] =

E [N ]. It is easy to see that the mapping r 7→ E [M(r)] is injective.

4. More general spaces of ultradifferentiable functions

4.1. Weight matrices. A weight matrix M = {Mλ ∈ RN
>0 : λ ∈ Λ}

is a family of weakly log-convex sequences Mλ = (Mλ
k ) satisfying Mλ

0 = 1,

limk(k!Mλ
k )1/k = ∞, and Mλ ≤ Mµ if λ ≤ µ, where Λ is a directed par-

tially ordered set. Let M = M (Λ) be the set of all weight matrices M
parameterized by the same set Λ. Consider the following conditions:

∀λ ∈ Λ : lim (Mλ
k )1/k > 0.(MH)

∀λ ∈ Λ : lim (Mλ
k )1/k =∞.(M(Cω))

∃λ ∈ Λ : lim (Mλ
k )1/k > 0.(M{Cω})

∀λ ∈ Λ ∃µ ∈ Λ ∃C > 0 ∀k ∈ N : Mµ
k+1 ≤ C

kMλ
k .(M(dc))

∀λ ∈ Λ ∃µ ∈ Λ ∃C > 0 ∀k ∈ N : Mλ
k+1 ≤ CkM

µ
k .(M{dc})

∀λ ∈ Λ ∃µ ∈ Λ ∃C > 0 ∀j, k ∈ N : Mµ
j+k ≤ C

j+kMλ
j M

λ
k .(M(mg))

∀λ ∈ Λ ∃µ ∈ Λ ∃C > 0 ∀j, k ∈ N : Mλ
j+k ≤ Cj+kM

µ
j M

µ
k .(M{mg})

∀λ ∈ Λ ∃µ ∈ Λ ∃C > 0 ∀j, k ∈ N : Mµ
j M

µ
k ≤ C

j+kMλ
j+k.(M(alg))

∀λ ∈ Λ ∃µ ∈ Λ ∃C > 0 ∀j, k ∈ N : Mλ
j M

λ
k ≤ Cj+kM

µ
j+k.(M{alg})

∀λ ∈ Λ ∃µ ∈ Λ : (Mµ)◦ �Mλ.(M(FdB))
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∀λ ∈ Λ ∃µ ∈ Λ : (Mλ)◦ �Mµ.(M{FdB})

∀λ ∈ Λ ∀ρ > 0 ∃µ ∈ Λ ∃C > 0 ∀k ∈ N : ρkMµ
k ≤ CM

λ
k .(M(L))

∀λ ∈ Λ ∀ρ > 0 ∃µ ∈ Λ ∃C > 0 ∀k ∈ N : ρkMλ
k ≤ CM

µ
k .(M{L})

∀λ ∈ Λ ∃µ ∈ Λ : Mµ �Mλ.(M(BR))

∀λ ∈ Λ ∃µ ∈ Λ : Mλ �Mµ.(M{BR})

Obviously, (M(Cω))⇒(MH)⇒(M{Cω}) and (M[mg])⇒(M[dc]). Both (M(alg))

and (M{alg}) are trivially satisfied since all Mλ are weakly log-convex; but
see Remarks 4.5.

Henceforth we assume that Λ is R or any ordered subset of R. This
will enable us to assume that the limits over λ ∈ Λ in the definition of
[M]-ultradifferentiable functions in 4.2 are countable. Then M is in fact an
infinite matrix, and the name weight matrix is justified. On the other hand
it is convenient to admit uncountable index sets Λ.

4.2. [M]-ultradifferentiable functions. Let M be a weight matrix,
let U ⊆ Rn be open, and let K ⊆ U be compact. We define

E(M)(K) :=
⋂
λ∈Λ
E(Mλ)(K), E{M}(K) :=

⋃
λ∈Λ
E{Mλ}(K),

E(M)(U) :=
⋂
λ∈Λ
E(Mλ)(U), E{M}(U) :=

⋂
K⊆U

⋃
λ∈Λ
E{Mλ}(K),

and endow these spaces with their natural topologies:

E(M)(U) := lim←−
λ∈Λ
E(Mλ)(U), E{M}(U) := lim←−

K⊆U
lim−→
λ∈Λ
E{Mλ}(K).

It is no loss of generality to assume that the limits are countable. We
write E [M] for either E(M) or E{M}. The elements of E [M](U) are called
[M]-ultradifferentiable functions. Note that E [M](U) forms an algebra, since
all Mλ are weakly log-convex.

We shall use also E [M](U, V ) and E [M](K,V ) for open subsets V ⊆ Rm.

The inductive limit

E{M}(K,Rm) = lim−→
λ∈Λ

lim−→
ρ>0

EMλ

ρ (K,Rm) = lim−→
(λ,ρ)

EMλ

ρ (K,Rm),

where (λ, ρ) ≤ (µ, σ) if and only if λ ≤ µ and ρ ≤ σ, is a Silva space. Indeed,
if λ ≤ µ and ρ < σ then the inclusion

EMλ

ρ (K,Rm)→ EMµ

ρ (K,Rm)→ EMµ

σ (K,Rm)

is compact, since the first inclusion is bounded and the second inclusion is
compact, by [20, Prop. 2.2].
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If M satisfies (M(L)), respectively (M{L}), we have

E(M)(K,Rm) = lim←−
(λ,ρ)

EMλ

ρ (K,Rm) = lim←−
λ

EMλ

1 (K,Rm), respectively

E{M}(K,Rm) = lim−→
(λ,ρ)

EMλ

ρ (K,Rm) = lim−→
λ

EMλ

1 (K,Rm)
(4.3)

as locally convex spaces, where the latter is a Silva space. Indeed, for ρ > 1
and by (M{L}) the inclusion

EMλ

1 (K,Rm)→ EMλ

ρ (K,Rm)→ EMµ

1 (K,Rm)

is compact. If (M(L)) then for each λ ∈ Λ and each ρ > 0 we find µ ∈ Λ
such that EMµ

1 (K,Rm) ⊆ EMλ

ρ (K,Rm) with continuous inclusion.
If M satisfies (M(BR)), respectively (M{BR}), we have

E(M)(U,Rm) = lim←−
λ∈Λ
E(Mλ)(U,Rm) = lim←−

λ∈Λ
E{Mλ}(U,Rm), respectively

E{M}(K,Rm) = lim−→
λ∈Λ
E{Mλ}(K,Rm) = lim−→

λ∈Λ
E(Mλ)(K,Rm)

(4.4)

as locally convex spaces.
Among the spaces E [M] we recover the spaces E [M ] defined by weight

sequences, if M = {M} consists just of a single M ∈ RN
>0, and the spaces

E [ω] defined by weight functions (see Corollary 5.15 below). We shall see in
Theorem 5.22 that in general E [M] is different from E [M ] and from E [ω].

4.5. Remarks. (1) One can replace the condition that the Mλ ∈M are
weakly log-convex by the condition (MH) (resp. (M(Cω))), and work with the

log-convex minorants (Mλ)[(c) without changing the space E{M}(U) (resp.
E(M)(U)) (see Proposition 2.14 and Theorem 2.15). Alternatively, assuming
(M[alg]) makes E [M](U) into an algebra as well. The condition Mλ ≤Mµ if

λ ≤ µ may be relaxed to Mλ �Mµ.
(2) Assuming that (Mλ

k /M
µ
k )1/k is (ultimately) monotonic in k for all

λ, µ, we have either Mλ ≈Mµ for all λ, µ or Mλ �Mµ for all λ < µ. That
is, either E [M] = E [Mλ] for all λ or we have the representations in (4.4).

For M,N ∈M we define

M(�)N :⇔ ∀λ ∈ Λ ∃µ ∈ Λ : Mµ � Nλ,

M{�}N :⇔ ∀λ ∈ Λ ∃µ ∈ Λ : Mλ � Nµ,

M[≈]N :⇔ M[�]N and N[�]M,

M(�}N :⇔ ∃λ ∈ Λ ∃µ ∈ Λ : Mλ � Nµ,

M{�)N :⇔ ∀λ ∈ Λ ∀µ ∈ Λ : Mλ �Nµ.
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4.6. Proposition. For M,N ∈M we have:

(1) M[�]N⇒ E [M] ⊆ E [N] and E [M](R) ⊆ E [N](R)⇒M[�]N.
(2) M{�)N⇒ E{M} ⊆ E(N) and E{M}(R) ⊆ E(N)(R)⇒M{�)N.
(3) M(�}N⇒ E(M) ⊆ E{N} and E(M)(R) ⊆ E{N}(R)⇒M(�}N.

All inclusions are continuous.

Proof. (1) That M[�]N implies E [M] ⊆ E [N] is clear by definition. If
E{M}(R) ⊆ E{N}(R) then M{�}N follows from the existence of characteris-

tic E{Mλ}-functions, by Lemma 2.9. If E(M)(R) ⊆ E(N)(R) then this inclusion
is continuous, by the closed graph theorem, since convergence in E(M)(R)
implies pointwise convergence; here we follow [10, Thm. 2.2]. Thus for each
λ ∈ Λ, each compact I ⊆ R, and each τ > 0 there exist µ ∈ Λ, J ⊆ R
compact, and constants C, ρ > 0 such that

‖f‖Nλ

I,τ ≤ C‖f‖M
µ

J,ρ for f ∈ E(M)(R).

In particular, for ft(x) = eitx and τ = 1, we obtain

TNλ(t) = sup
k∈N

tk

k!Nλ
k

≤ C sup
k∈N

tk

k!ρkMµ
k

= CTMµ(t/ρ),

and thus

k!Nλ
k = sup

t>0

tk

TNλ(t)
≥ sup

t>0

tk

CTMµ(t/ρ)
= k!

ρk

C
Mµ
k ,

that is, M(�)N.
(2) That M{�)N implies E{M} ⊆ E(N) is clear by definition. The converse

follows from the existence of characteristic E{Mλ}-functions.
(3) That M(�}N implies E(M) ⊆ E{N} is clear by definition. Conversely,

if E(M)(R) ⊆ E{N}(R) then the closed graph theorem (cf. [19, 5.4.1]) implies
that this inclusion is continuous. Indeed, E(M)(R) is a Fréchet space, E{N}(R)
is projective limit of Silva spaces, hence webbed, and convergence implies
pointwise convergence. This and Grothendieck’s factorization theorem (e.g.
[28, 24.33]) imply that for each compact I ⊆ R there exist λ ∈ Λ, τ > 0,
µ ∈ Λ, J ⊆ R compact, and constants C, ρ > 0 such that

‖f‖Nλ

I,τ ≤ C‖f‖M
µ

J,ρ for f ∈ E(M)(R).

Applying this to ft(x) = eitx we obtain, as in (1),

Mµ
k ≤ C(τ/ρ)kNλ

k ,

that is, M(�}N.

We may conclude:

(4) H(Cn) ⊆ E(M)(U) for all open U ⊆ Rn if and only if (MH) holds.
(5) Cω ⊆ E [M] if and only if (M[Cω ]) holds.

(6) E [M] is derivation closed if and only if (M[dc]) holds.
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Note that for L ∈ RN
>0 we have L(�}M if and only if L{�}M; in particular,

H(Cn) ⊆ E{M}(U) if and only if Cω(U) ⊆ E{M}(U), for all open U ⊆ Rn.
Moreover:

4.7. Corollary. Let M ∈ RN
>0 with limM

1/k
k = ∞. Then there is no

N ∈ RN
>0 such that

E(M)(R) ( E [N ](R) ( E{M}(R).

Proof. This follows from Proposition 4.6 and Theorem 2.15.

4.8. Remark. It is easy to see that E{M} is non-quasianalytic if and only
if there is some λ ∈ Λ such that Mλ is non-quasianalytic. Likewise, if E(M) is
non-quasianalytic then Mλ is non-quasianalytic for all λ ∈ Λ. Intersections⋂
M E [M ], where M runs through a large family of non-quasianalytic weakly

log-convex weight sequences, can be quasianalytic (see [26] and references
therein). But we do not know whether E(M) can be quasianalytic if allMλ are
non-quasianalytic and Λ is restricted to a 1-parameter family (as assumed
in this paper).

4.9. Theorem. For a weight matrix M satisfying (M{dc}) and (M{Cω})
the following are equivalent:

(1) E{M} is stable under composition.
(2) E{M} is holomorphically closed.
(3) For all λ ∈ Λ there are µ ∈ Λ and C > 0 such that

(Mλ
j )1/j ≤ C(Mµ

k )1/k if j ≤ k.

(4) M satisfies (M{FdB}).

Note that (M{Cω}) is only needed for (1)⇒(2), and (M{dc}) is only
needed for (3)⇒(4).

Proof. (1)⇒(2). This is obvious, by 4.6(5).

(2)⇒(3). We prove that (3) holds if E{M} is inverse closed; we follow the

idea of [39]. Let λ ∈ Λ be fixed and let g ∈ E{Mλ}(R,C) be as defined by
(2.10) (with M = (Mk) replaced by Mλ = (Mλ

k )). Choose H > 0 such that

H > 1 + supt∈R |g(t)|. We have H − g ∈ E{Mλ}(R,C), and thus

f := (H − g)−1 ∈ E{M}(R,C),

as E{M}(R,C) is inverse closed, by assumption. Thus, there exist µ ∈ Λ and
constants C, ρ > 0 such that

(4.10) ‖f‖Mµ

[−1,1],ρ < C.
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By Faà di Bruno’s formula and using (2.11), for k ≥ 1,

f (k)(0)

k!
=
∑
j≥1

∑
α1+···+αj=k

a`>0

1

(H − g(0))j+1

j∏
`=1

g(α`)(0)

α`!

= ik
∑
j≥1

∑
α1+···+αj=k

a`>0

1

(H − g(0))j+1

j∏
`=1

hα`
α`!

.

By (4.10),

CρkMµ
k ≥

|f (k)(0)|
k!

=
∑
j≥1

∑
α1+···+αj=k

a`>0

1

(H − g(0))j+1

j∏
`=1

hα`
α`!

≥
∑
j≥1

∑
α1+···+αj=k

a`>0

1

(H − g(0))j+1

j∏
`=1

Mλ
α`

≥ 1

(H − g(0))k+1

j∏
`=1

Mλ
α`
.

In particular, for α1 = · · · = αj = p, p ∈ N>0, we have

C1ρ
pj
1 M

µ
pj ≥ (Mλ

p )j

and hence, for all j and p,

C2(M
µ
pj)

1/pj ≥ (Mλ
p )1/p.

For arbitrary p ≤ k choose j so that jp ≤ k < (j + 1)p. Then

(Mµ
k )1/k ≥ (Mµ

jp)
1/(jp) (jp)!1/(jp)

k!1/k
≥ C−12 (Mλ

p )1/p
(jp)!1/(jp)

k!1/k
≥ C−12 (Mλ

p )1/p,

since (k!Mµ
k )1/k is non-decreasing.

(3)⇒(4). By (M{dc}), for λ ∈ Λ there exist µ ∈ Λ and D > 0 such that

Mλ
k+1 ≤ DkMµ

k for all k ≥ 1. The assumption implies that there is ν ∈ Λ
such that Mµ

β1
· · ·Mµ

βj
≤ CkMν

k for all βi ∈ N>0 with β1 + · · ·+ βj = k. Let

I := {i : αi ≥ 2} and set α′i := αi − 1. Then, as µ ≥ λ,

Mλ
j M

λ
α1
· · ·Mλ

αj = Mλ
j (Mλ

1 )j−|I|
∏
i∈I

Mλ
αi ≤ D

k−jMλ
j (Mλ

1 )j−|I|
∏
i∈I

Mµ
α′i

≤ Dk−j(Mλ
1 )j−|I|CkMν

k ≤ C̃kMν
k ,

which shows (4).
(4)⇒(1). Let g ∈ E{M}(U, V ) and f ∈ E{M}(V,W ), for open subsets

U ⊆ Rp, V ⊆ Rq, W ⊆ Rr, and let K ⊆ U be compact. By defini-
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tion, there exist λi ∈ Λ, i = 1, 2, such that g ∈ E{Mλ1}(K,V ) and f ∈
E{Mλ2}(g(K),W ), and there exists λ ≥ λi, i = 1, 2. By (M{FdB}), there

exists µ ∈ Λ such that (Mλ)◦ �Mµ, and thus, by Proposition 3.1, we have
f ◦ g ∈ E{Mµ}(K,W ), which implies the assertion.

4.11. Theorem. For a weight matrix M satisfying (M(dc)) and (MH)
the following are equivalent:

(1) E(M) is stable under composition.
(2) E(M) is holomorphically closed.
(3) For all λ ∈ Λ there are µ ∈ Λ and C > 0 such that

(Mµ
j )1/j ≤ C(Mλ

k )1/k if j ≤ k.

(4) M satisfies (M(FdB)).

Note that (MH) is only needed for (1)⇒(2), and (M(dc)) is only needed
for (3)⇒(4).

Proof. (1)⇒(2). This is obvious, by 4.6(4).

(2)⇒(3). We follow [10]. Since all Mλ are weakly log-convex, E(M)(R)
is a Fréchet algebra which is locally m-convex, by [29], i.e., E(M)(R) has an
equivalent seminorm system {p} such that p(fg) ≤ p(f)p(g) for all f, g ∈
E(M)(R). So for each λ ∈ Λ, compact K ⊆ R, and ρ > 0 there exist p, µ ∈ Λ,
compact L ⊆ R, σ > 0 and constants C,D > 0 such that

‖fm‖Mλ

K,ρ ≤ Cp(fm) ≤ C(p(f))m ≤ CDm(‖f‖Mµ

L,σ )m, f ∈ E(M)(R), m ∈ N,

in particular, for ft(x) = eitx and ρ = 1, we find

TMλ(mt) ≤ CDm(TMµ(t/σ))m.

Let j ≤ k and suppose that k = jl with l ∈ N. We have, for some constant C̃,

(TMλ(t))1/k =

(
TMλ

(
l
t

l

))1/k

≤ C1/kD1/j

(
TMµ

(
t

σl

))1/j

≤ C̃
(
TMµ

(
t

σl

))1/j

,

thus

(k!Mλ
k )1/k = sup

t>0

t

(TMλ(t))1/k
≥ sup

t>0

t

C̃
(
TMµ

(
t
σl

))1/j =
σl

C̃
(j!Mµ

j )1/j .

In general choose l ∈ N such that lj ≤ k < (l + 1)j. Then, as (k!Mλ
k )1/k is

increasing,

(k!Mλ
k )1/k ≥ ((lj)!Mλ

lj)
1/(lj) ≥ σl

C̃
(j!Mµ

j )1/j ≥ σ(l + 1)

2C̃
(j!Mµ

j )1/j ,
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and, by Stirling’s formula, there is a constant C̄ > 0 such that (Mµ
j )1/j ≤

C̄(Mλ
k )1/k for all j ≤ k.

(3)⇒(4). The assumption implies that Mµ
β1
· · ·Mµ

βj
≤ CkMλ

k for all βi
in N>0 with β1 + · · ·+βj = k. By (M(dc)), there exist ν ∈ Λ and D > 0 such

that Mν
k+1 ≤ DkMµ

k for all k ≥ 1. Let I := {i : αi ≥ 2} and set α′i := αi−1.
Then, as ν ≤ µ,

Mν
jM

ν
α1
· · ·Mν

αj = Mν
j (Mν

1 )j−|I|
∏
i∈I

Mν
αi ≤ D

k−jMν
j (Mν

1 )j−|I|
∏
i∈I

Mµ
α′i

≤ Dk−j(Mν
1 )j−|I|CkMλ

k ≤ C̃kMλ
k ,

which shows (4).
(4)⇒(1). Let g ∈ E(M)(U, V ) and f ∈ E(M)(V,W ), for open subsets

U ⊆ Rp, V ⊆ Rq, W ⊆ Rr, and let K ⊆ U be compact. By definition, for
each µ ∈ Λ we have g ∈ E(Mµ)(K,V ) and f ∈ E(Mµ)(g(K),W ). By (M(FdB))

and by Proposition 3.1, we obtain f ◦g ∈ E(Mλ)(K,W ) for each λ ∈ Λ, which
implies the assertion.

4.12. Composition operators. Let M be a weight matrix. If M sat-
isfies (M[FdB]), we may consider the nonlinear composition operators

comp[M] : E [M](Rp,Rq)× E [M](Rq,Rr)→ E [M](Rp,Rr) : (g, f) 7→ f ◦ g,
E [M](Rp, f) : E [M](Rp,Rq)→ E [M](Rp,Rr) : g 7→ f ◦ g, f ∈ E [M](Rq,Rr),

by Theorems 4.9 and 4.11.

4.13. Theorem. We have:

(1) If M satisfies (M(FdB)), then comp(M) is continuous.

(2) If M satisfies (M{FdB}), then E{M}(Rp, f), for f ∈ E{M}(Rq,Rr), is

continuous and comp{M} is sequentially continuous.

Proof. We follow [1] and subdivide the proof into several claims.

4.14. Claim. If M satisfies (M[FdB]), then comp[M] is bounded.

We treat the cases E(M) and E{M} separately.
(E [M] = E{M}) Let B1 ⊆ E{M}(Rp,Rq) and B2 ⊆ E{M}(Rq,Rr) be

bounded subsets. Let K ⊆ Rp be an arbitrary, but fixed, compact subset.
Then B1 is bounded in E{M}(K,Rq). Since the inductive limit E{M}(K,Rq) =

lim−→(λ,ρ)
EMλ

ρ (K,Rq) is regular (see 4.2), B1 is contained and bounded in

some step EMλ1

ρ1 (K,Rq), i.e., there exist λ1 ∈ Λ and ρ1 > 0 such that

supg∈B1 ‖g‖
Mλ1

K,ρ1
<∞. In particular, the closure

(4.15) L :=
⋃
g∈B1

g(K)
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is a compact subset of Rq, and B2 is bounded in E{M}(L,Rr) =

lim−→(λ,ρ)
EMλ

ρ (L,Rr). So there exist λ2 ∈ Λ and ρ2 > 0 such that

supf∈B2 ‖f‖
Mλ2

L,ρ2
<∞. For λ := maxλi, we have

(4.16) C1 := sup
g∈B1
‖g‖Mλ

K,ρ1 <∞ and C2 := sup
f∈B2

‖f‖Mλ

L,ρ2 <∞.

By the proof of Proposition 3.1, we find that

(4.17) sup
(g,f)∈B1×B2

‖f ◦ g‖(M
λ)◦

K,σ ≤ C1C2ρ2 <∞ with σ := ρ1(1 + ρ2C1),

and, by (M{FdB}), there exist µ ∈ Λ and C > 0 such that

(4.18) sup
(g,f)∈B1×B2

‖f ◦ g‖Mµ

K,Cσ ≤ sup
(g,f)∈B1×B2

‖f ◦ g‖(M
λ)◦

K,σ <∞.

Since K was arbitrary, comp{M}(B1 × B2) is bounded in E{M}(Rp,Rr).
(E [M] = E(M)) Let B1⊆E(M)(Rp,Rq) and B2⊆E(M)(Rq,Rr) be bounded.

Let µ ∈ Λ, let K ⊆ Rp be compact, and let τ > 0. By (M(FdB)), we find

λ ∈ Λ and C > 0 such that (Mλ)◦k ≤ CkM
µ
k for all k. Choose ρ > 0 so that

τ/C =
√
ρ+ρ and set ρ1 =

√
ρ. Let C1 be defined by (4.16); B1 is bounded in

EMλ

ρ1 (K,Rq). Set ρ2 =
√
ρ/C1 and let C2 be defined by (4.16); B2 is bounded

in EMλ

ρ2 (L,Rr), where L is defined by (4.15). As before, we deduce (4.17) and
(4.18), where σ = τ/C, which completes the proof of the claim.

4.19. Claim. If M satisfies (M[FdB]), then comp[M] is sequentially con-
tinuous.

(E [M] = E{M}) Let (gn, fn) → (g, f) in E{M}(Rp,Rq) × E{M}(Rq,Rr).
Then the sets B1 := {gn : n ∈ N}, B2 := {fn : n ∈ N}, and {fn ◦ gn :
n ∈ N} ⊆ comp{M}(B1 × B2) are bounded, by Claim 4.14. Let K ⊆ Rp
be an arbitrary, but fixed, compact subset, and let L be given by (4.15).

By regularity of the inductive limit E{M}(K,Rr) = lim−→(λ,ρ)
EMλ

ρ (K,Rr), the

set {fn ◦ gn : n ∈ N} is contained and bounded in some step EMλ

ρ (K,Rr)
and hence is precompact in EMµ

σ (K,Rr), where λ ≤ µ and ρ < σ (see 4.2),
and so it has an accumulation point h ∈ EMµ

σ (K,Rr). It is well-known that
composition of continuous mappings, i.e., comp0 : C0(K,L)× C0(L,Rr)→
C0(K,Rr), is continuous (see e.g. [14, Thm. 3.4.2]), and thus fn ◦gn → f ◦g
in C0(K,Rr). It follows that f ◦ g = h. As K was arbitrary, the assertion
follows.

(E [M] = E(M)) The proof is analogous; note that here {fn ◦ gn : n ∈ N}
is precompact in every step EMµ

σ (K,Rr).

4.20. Claim. If M satisfies (M(FdB)), then comp(M) is continuous.
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This follows from Claim 4.19, since E(M)(Rp,Rq)×E(M)(Rq,Rr) is metriz-
able.

4.21. Claim. If M satisfies (M{FdB}), then E{M}(Rp, f) is continuous.

Arguments similar to those in the proof of Claim 4.19 show that the
restricted mapping E{M}(K, f) : E{M}(K,Rq) → E{M}(K,Rr) is sequen-
tially continuous, thus continuous, for each compact subset K ⊆ Rp, since
E{M}(K,Rq) is sequential, by 4.2 and e.g. [31, 8.5.28]. The projective
structure of E{M}(Rp,Rq) = lim←−K E

{M}(K,Rq) implies that the mapping

E{M}(Rp, f) : E{M}(Rp,Rq)→ E{M}(Rp,Rr) is continuous.

4.22. Corollary. Let M ∈ RN
>0 satisfy (MFdB). Then comp(M) is con-

tinuous, E{M}(Rp, f), for f ∈ E{M}(Rq,Rr), is continuous, and comp{M} is
sequentially continuous.

Proof. This is a special case of Theorem 4.13; weak log-convexity of M
is not needed here.

4.23. Remark. If M additionally has moderate growth, then the map-
ping comp[M ] is even E [M ] which is a consequence of the E [M ]-exponential
law (see [25, 5.5]). We expect that more generally comp[M] is E [M], if M
satisfies (M[FdB]) and (M[mg]). Work on this is in progress and will appear
in a forthcoming paper.

5. Weight functions and [ω]-ultradifferentiable functions

5.1. Weight functions. Let W be the set of all continuous increasing
functions ω : [0,∞) → [0,∞) with ω|[0,1] = 0, limt→∞ ω(t) = ∞, and such
that the following assumptions (ω1), (ω2), and (ω3) are satisfied:

ω(2t) = O(ω(t)) as t→∞.(ω1)

log(t) = o(ω(t)) as t→∞.(ω2)

ϕ : t 7→ ω(et) is convex on [0,∞).(ω3)

Occasionally, we shall also consider the following conditions:

ω(t) = O(t) as t→∞.(ω4)

ω(t) = o(t) as t→∞.(ω5)

∃H ≥ 1 ∀t ≥ 0 : 2ω(t) ≤ ω(Ht) +H.(ω6)

∃C > 0 ∃t0 > 0 ∀λ ≥ 1 ∀t ≥ t0 : ω(λt) ≤ Cλω(t).(ω7)

∃C > 0 ∃H > 0 ∀t ≥ 0 : ω(t2) ≤ Cω(Ht) + C.(ω8)

Then W forms an abelian semigroup with respect to pointwise addition,
which also preserves all conditions (ω4)–(ω8).
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For ω ∈ W the Young conjugate of ϕ, given by

ϕ∗(t) := sup{st− ϕ(s) : s ≥ 0}, t ≥ 0,

is convex, increasing, and satisfies ϕ∗(0)=0, ϕ∗∗=ϕ, and limt→∞ t/ϕ
∗(t)=0.

Moreover, the functions t 7→ ϕ(t)/t and t 7→ ϕ∗(t)/t are increasing (cf. [9]).
Convexity of ϕ∗ and ϕ∗(0) = 0 implies

(5.2) ϕ∗(t) + ϕ∗(s) ≤ ϕ∗(t+ s) ≤ 1
2ϕ
∗(2t) + 1

2ϕ
∗(2s), t, s ≥ 0.

Note that ω(t) := max{0, (log t)s}, s > 1, belongs to W and satisfies all
the listed conditions except (ω6).

For ω, σ ∈ W we define:

ω � σ :⇔ σ(t) = O(ω(t)) as t→∞,
ω ≈ σ :⇔ ω � σ and σ � ω,
ω � σ :⇔ σ(t) = o(ω(t)) as t→∞.

5.3. [ω]-ultradifferentiable functions. Let ω ∈ W and let U ⊆ Rn
be open. Define

E(ω)(U) := {f ∈ C∞(U,R) : ∀K ⊆ U compact ∀ρ > 0 : ‖f‖ωK,ρ <∞},

E{ω}(U) := {f ∈ C∞(U,R) : ∀K ⊆ U compact ∃ρ > 0 : ‖f‖ωK,ρ <∞},

‖f‖ωK,ρ := sup

{
‖f (k)(x)‖Lk(Rn,R) exp

(
−1

ρ
ϕ∗(ρk)

)
: x ∈ K, k ∈ N

}
,

and endow E(ω)(U) with its natural Fréchet space topology and E{ω}(U) with
the projective limit topology over K of the inductive limit topology over ρ;
note that it suffices to take countable limits. We write E [ω] for either E(ω)
or E{ω}. The elements of E [ω](U) are called [ω]-ultradifferentiable functions;
an (ω)/{ω}-ultradifferentiable function is said to be of Beurling/Roumieu
type, respectively. For compact K ⊆ U with smooth boundary, set

Eωρ (K) := {f ∈ C∞(K) : ‖f‖ωK,ρ <∞},

E(ω)(K) := {f ∈ C∞(K) : ∀ρ > 0 : ‖f‖ωK,ρ <∞} = lim←−
m∈N
Eω1/m(K),

E{ω}(K) := {f ∈ C∞(K) : ∃ρ > 0 : ‖f‖ωK,ρ <∞} = lim−→
m∈N
Eωm(K).

We shall also use E [ω](U, V ), E [ω](K,V ), and Eωρ (K,V ) for open subsets
V ⊆ Rm.

Note that E [ω] is quasianalytic if and only if
∞�

1

ω(t)

t2
dt =∞

(e.g., by Corollary 5.8 and Theorem 5.14 below), and in this case we say
that ω is quasianalytic.
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5.4. Examples. For s ∈ R≥0 the weight function γs(t) = t1/(1+s) has
all properties listed in 5.1 except (ω8) and (ω5) if s = 0; it is quasianalytic

if and only if s = 0. The elements of E{γ0}(U) are exactly the real analytic

functions Cω(U), and the elements of E(γ0)(U) are exactly the restrictions
of entire functions from H(Cn). The class E{γs} coincides with the Gevrey
class G1+s.

5.5. Associated sequences. For ω ∈ W and each ρ > 0 consider the
sequence Ωρ ∈ RN

>0 defined by

Ωρ
k :=

1

k!
exp

(
1

ρ
ϕ∗(ρk)

)
.

By the properties of ϕ∗, each Ωρ is weakly log-convex, (k!Ωρ
k)1/k ↗∞, and

Ωρ ≤ Ωσ if ρ ≤ σ. By (5.2),

(5.6) j!Ωρ
j k!Ωρ

k ≤ (j + k)!Ωρ
j+k ≤ j!Ω

2ρ
j k!Ω2ρ

k , j, k ∈ N.

In particular, Ωρ
k+1 ≤ CΩ

2ρ
k for all k, where C > 0 is a constant depending

on ρ.
With Ωρ we may associate the function ωρ := log ◦ TΩρ (cf. [20, (3.1)]).

Then

ωρ(t) = sup
k∈N

(
k log t− 1

ρ
ϕ∗(ρk)

)
≤ sup

s≥0

(
s log t− 1

ρ
ϕ∗(ρs)

)
=

1

ρ
ω(t).

5.7. Lemma. For ω ∈ W we have ω ≈ ωρ for all ρ > 0.

Proof. It suffices to show that ω ≈ ω1; for arbitrary ρ > 0 replace ω by
1
ρω. By [27, 1.8.III],

ω1(t) = sup
k∈N

(k log t− ϕ∗(k)) = kt log t− ϕ∗(kt),

where kt ∈ N is such that $kt ≤ t < $kt+1 and $k := kΩ1
k/Ω

1
k−1 ↗ ∞.

Consider the function ft : [0,∞) → R given by ft(s) = s log t − ϕ∗(s),
which is concave (for t ≥ 1) since ϕ∗ is convex. Concavity of ft shows that
ω(t) = sups≥0 ft(s) = ft(st) for some point st ∈ (kt − 1, kt + 1).

Assume that st ∈ (kt, kt + 1). By concavity of ft and since ft(0) = 0, we
find

ft(st) ≤
ft(kt)

kt
st ≤

ft(kt)

kt
(kt + 1) ≤ 2ft(kt)

and hence ω(t) ≤ 2ω1(t) for sufficiently large t. The case st ∈ (kt − 1, kt) is
similar.

5.8. Corollary. For ω ∈ W we have:

(1) ω is quasianalytic if and only if each (equivalently, some) Ωρ is quasi-
analytic.
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(2) ω satisfies (ω6) if and only if each (equivalently, some) Ωρ has mod-
erate growth.

Proof. This follows from Lemma 5.7, [20, Lemma 4.1 and Prop. 3.6].

5.9. Lemma. For ω ∈ W we have

∀σ > 0 ∃H ≥ 1 ∀ρ > 0 ∃C ≥ 1 ∀k ∈ N : σkΩρ
k ≤ CΩ

Hρ
k .(5.10)

Moreover, ω ∈ W satisfies (ω6) if and only if

∀ρ > 0 ∀τ > 0 : Ωρ ≈ Ωτ .(5.11)

If ω ∈ W satisfies (ω8) then

∃C > 1 ∀ρ > 0 : Ωρ/C �Ωρ.(5.12)

It follows that (ω8) is an obstruction for (ω6).

Proof. The following inequality is well-known (see e.g. [16, p. 404]):

(5.13) ∃L ≥ 1 ∀t ≥ 0 ∀s ∈ N : Lsϕ∗(t) + sLst ≤ ϕ∗(Lst) +
s∑
i=1

Li.

For the reader’s convenience we give a short proof. By (ω1), there exists
L1 ≥ 1 such that ω(2t) ≤ L1ω(t) + L1 for all t ≥ 0, and hence there exists
L ≥ 1 such that ϕ(t+ 1) ≤ Lϕ(t) + L for all t ≥ 0. Thus, for t ≥ 0,

ϕ∗(Lt) + L = sup
s≥0

(Lts− (ϕ(s)− L))

≥ sup
s≥1

(Lts− Lϕ(s− 1)) = Lϕ∗(t) + Lt,

and (5.13) follows by iteration.
By choosing s such that es ≥ σ and by setting t := ρk, H := Ls and

C := exp
(

1
Hρ

∑s
i=1 L

i
)
, we see that (5.13) implies (5.10).

Let us prove that (ω6) implies (5.11). By (ω6) there exists a constant
H ≥ 1 such that 2ω(t) ≤ ω(Ht) + H for all t ≥ 0, and consequently, as
ω|[0,1] = 0,

ϕ∗(t) = sup
s≥0

(ts− ω(es)) = sup
s∈R

(ts− ω(es)) = sup
u≥0

(t log u− ω(u))

≥ sup
u≥0

(
t log u− 1

2ω(Hu)
)
− 1

2H = 1
2ϕ
∗(2t)− t logH − 1

2H.

By setting t := ρk, we may conclude that

∃H ≥ 1 ∀ρ > 0 ∀k ∈ N : Ω2ρ
k ≤ e

H/(2ρ)HkΩρ
k ,

which implies Ω2ρ � Ωρ for all ρ > 0. Iteration and the fact that Ωρ ≤ Ω2ρ

yield Ω2nρ ≈ Ωρ for all ρ > 0 and all n ∈ N, and (5.11) follows.
Conversely, assume that (5.11) holds, which means that

∀ρ > 0 ∀τ > 0 ∃C > 0 ∀k ∈ N :
1

ρ
ϕ∗(ρk) ≤ Ck +

1

τ
ϕ∗(τk).
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By (5.2), we conclude that

∀ρ > 0 ∀τ > 0 ∃D > 0 ∀t ≥ 0 :
1

ρ
ϕ∗(ρt) ≤ Dt+D +

1

2τ
ϕ∗(2τt).

Thus

1

2τ
ϕ(t) = sup

s≥0

(
ts− 1

2τ
ϕ∗(2τs)

)
≤ sup

s≥0

(
ts+Ds− 1

ρ
ϕ∗(ρs)

)
+D =

1

ρ
ϕ(t+D) +D,

and hence
1

2τ
ω(t) ≤ 1

ρ
ω(eDt) +D.

Setting ρ = 4 and τ = 1 implies (ω6).

Let us prove (5.12). By (ω8) there exist constants C,H > 0 such that

Cϕ∗
(

2t

C

)
= sup

u≥0
(2t log u− Cω(u)) = sup

u≥0
(2t log u− Cω(Hu)) + 2t logH

≤ sup
u≥0

(2t log u− ω(u2)) + 2t logH + C = ϕ∗(t) + 2t logH + C.

By setting t := ρk, we find that for all ρ > 0 and all k ∈ N,

(2k)!Ω
ρ/C
2k ≤ e

C/ρH2kk!Ωρ
k .

Thus, the sequence L = (Lk) defined by k!Lk := (2k)!Ω
ρ/C
2k ≥ (k!Ω

ρ/C
k )2

satisfies Ωρ/C � L � Ωρ, which implies (5.12).

5.14. Theorem. Let ω ∈ W , let U ⊆ Rn be open, and let K ⊆ U be
compact. Then:

(1) For each ρ>0 we have E{Ωρ}(U) ⊆ E{ω}(U) and E(ω)(U) ⊆ E(Ωρ)(U)
with continuous inclusion.

(2) We have, as locally convex spaces,

E(ω)(U) = lim←−
ρ>0

E(Ωρ)(U) and E{ω}(K) = lim−→
ρ>0

E{Ωρ}(K).

(3) ω satisfies (ω6) if and only if E [Ωρ](U) = E [ω](U), for each ρ > 0, as
locally convex spaces.

(4) If ω satisfies (ω8), then also

E(ω)(U) = lim←−
ρ>0

E(Ωρ)(U) = lim←−
ρ>0

E{Ωρ}(U) and

E{ω}(K) = lim−→
ρ>0

E{Ωρ}(K) = lim−→
ρ>0

E(Ωρ)(K)

as locally convex spaces.
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Proof. (1) Let ρ > 0 be fixed. If f ∈ E{Ωρ}(U) then for each compact
K ⊆ U there exists σ > 0 such that ‖f‖ΩρK,σ < ∞. By (5.10), there exist
constants H,C ≥ 1 such that

∞ > C‖f‖ΩρK,σ ≥ ‖f‖Ω
Hρ

K,1 = ‖f‖ωK,Hρ,

whence f ∈ E{ω}(U).

Assume that f ∈ E(ω)(U). Let ρ, σ > 0 be fixed. By (5.10), there exist

constants H,C ≥ 1 such that Ωρ
k ≤ CσkΩHρ

k for all k. Since f ∈ E(ω)(U),
for each compact K ⊆ U we have ‖f‖ωK,ρ/H <∞, and thus

∞ > C‖f‖ωK,ρ/H = C‖f‖Ωρ/HK,1 ≥ ‖f‖ΩρK,σ.

Since σ > 0 was arbitrary, we conclude that f ∈ E(Ωρ)(U).

(2) follows from (1), since the inclusions E(ω)(U) ⊇ lim←−ρ>0
E(Ωρ)(U) and

E{ω}(K) ⊆ lim−→ρ>0
E{Ωρ}(K) are clear and continuous by definition.

(3) follows from (2), (5.11), and Proposition 2.12(1).

(4) is a direct consequence of (2), (5.12), and Proposition 2.12(1).

5.15. Corollary. Let ω ∈ W and let U ⊆ Rn be open. Then E [ω](U) =
E [W](U) as locally convex spaces, where the weight matrix W := {Ωρ : ρ > 0}
satisfies

• (M(mg)) and (M{mg}),
• (M(alg)) and (M{alg}),
• (M(L)) and (M{L}).

If ω satisfies (ω4), respectively (ω5), then W satisfies (MH), respectively
(M(Cω)). If ω satisfies (ω8), then W satisfies (M(BR)) and (M{BR}).

Proof. This is an immediate consequence of Theorem 5.14, (5.6), and
(5.10).

For ω(t) = max{0, t − 1} ≈ t we find ϕ∗(t) = t log t − t + 1, for t ≥ 1,
ϕ∗|[0,1] = 0, and it is easy to see that (ω4) implies (MH) and (ω5) implies
(M(Cω)), by Lemma 5.16. Finally, from (5.12) it follows that (ω8) implies
(M(BR)) and (M{BR}).

5.16. Lemma. For ω, σ ∈ W we have:

(1) If ω � σ then ∃H ≥ 1 ∀ρ > 0 ∃C > 0 : Ωρ ≤ CΣHρ.
(2) If ω � σ then ∀H > 0 ∀ρ > 0 ∃C > 0 : Ωρ ≤ CΣHρ.

Here Σρ are the sequences associated with σ.

Proof. (1) If ω � σ then there exists H ≥ 1 such that σ(t) ≤ Hω(t) +H
for all t ≥ 0, and thus also ϕσ(t) ≤ Hϕω(t) + H and finally Hϕ∗ω(t) ≤
ϕ∗σ(Ht) +H. Setting t = ρk gives the assertion.
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(2) If ω � σ then for all H > 0 there exists D > 0 such that σ(t) ≤
Hω(t) +D for all t ≥ 0, and thus Hϕ∗ω(t) ≤ ϕ∗σ(Ht) +D as in (1). Setting
t = ρk gives the assertion.

5.17. Corollary. For ω, σ ∈ W we have:

(1) ω � σ ⇒ E [ω] ⊆ E [σ] and E [ω](R) ⊆ E [σ](R)⇒ ω � σ.
(2) ω � σ ⇒ E{ω} ⊆ E(σ) and E{ω}(R) ⊆ E(σ)(R)⇒ ω � σ.
(3) There is no σ ∈ W such that E(ω)(R) ( E [σ](R) ( E{ω}(R).

Proof. (1) If W := {Ωρ : ρ > 0} and S := {Σρ : ρ > 0}, where Σρ

are the sequences associated with σ, then in view of Proposition 4.6 and
Corollary 5.15 it suffices to show

(1′) ω � σ if and only if W[�]S.

If ω � σ then Lemma 5.16 implies W(�)S as well as W{�}S.
Conversely, assume W{�}S, i.e., using (5.10),

∀ρ > 0 ∃τ > 0 ∃C > 0 ∀k ∈ N :
1

ρ
ϕ∗ω(ρk) ≤ 1

τ
ϕ∗σ(τk) + C,

and, by (5.2),

∀ρ > 0 ∃τ > 0 ∃D > 0 ∀t ≥ 0 :
1

ρ
ϕ∗ω(ρt) ≤ 1

2τ
ϕ∗σ(2τt) +D.

Thus

1

2τ
ϕσ(t) = sup

s≥0

(
ts− 1

2τ
ϕ∗σ(2τs)

)
≤ sup

s≥0

(
ts− 1

ρ
ϕ∗ω(ρs)

)
+D =

1

ρ
ϕω(t)+D,

and hence

(5.18)
1

2τ
σ(t) ≤ 1

ρ
ω(t) +D,

which implies σ(t) = O(ω(t)) as t→∞, i.e., ω � σ.
If W(�)S, then the same arguments yield (5.18), but with swapped

quantifiers:

∀τ > 0 ∃ρ > 0 ∃D > 0 ∀t ≥ 0 :
1

2τ
σ(t) ≤ 1

ρ
ω(t) +D.

Again this implies ω � σ.
(2) If ω�σ then Lemma 5.16 implies E{ω} ⊆ E(σ). Conversely, if E{ω}(R)

⊆ E(σ)(R), then E{Ωρ} admits a characteristic function and is contained
in E(σ), thus

∀ρ > 0 ∀τ > 0 ∃C > 0 ∀k ∈ N :
1

ρ
ϕ∗ω(ρk) ≤ 1

τ
ϕ∗σ(τk) + C.

As in (1) we may derive that for all ρ, τ > 0 there is D > 0 such that (5.18)
for all t ≥ 0, hence σ(t) = o(ω(t)) as t→∞, i.e., ω � σ.
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(3) If E(ω)(R) ⊆ E{σ}(R), then W(�}S, by Corollary 5.15 and Proposi-
tion 4.6. As in (1) we may derive that there exist ρ, τ > 0 such that (5.18),
and so ω � σ. This and (1) imply the assertion.

As E{t}(U) = Cω(U) and E(t)(U) = H(Cn) (via restriction), condition
(ω4) is equivalent toCω ⊆ E{ω} and condition (ω5) is equivalent toCω ⊆ E(ω).

5.19. Intersection and union of all non-quasianalytic Gevrey
classes. For the weight matrix G = {Gs : s > 0} with Gs = (Gsk) = ((k!)s)

(5.20) E(G)(U) =
⋂
s>0

G1+s(U), U ⊆ Rn open,

is the intersection and

(5.21) E{G}(K) =
⋃
s>0

G1+s(K), K ⊆ Rn compact,

is the union of all non-quasianalytic Gevrey classes G1+s = E{Gs} (as locally
convex spaces). Indeed, Gs � Gs

′
for all s < s′ (so G satisfies (M(BR)) and

(M{BR})), and hence we get (5.20):

E(G)(U) =
⋂
s>0

E(Gs)(U) =
⋂
s>0

E{Gs}(U) =
⋂
s>0

G1+s(U),

while (5.21) is evident by definition. Note that E(G), and hence also E{G},
is non-quasianalytic. In fact, the sequence L = (Lk) defined by k!Lk :=
kk(log(k+ e))2k is non-quasianalytic and satisfies L�Gs for all s > 0, and,
as (k!Lk)

1/k is increasing, E [L] is non-quasianalytic, by the Denjoy–Carleman
theorem.

The following theorem shows that there exist spaces E [M] that are dif-
ferent from E [M ] as well as from E [ω].

5.22. Theorem. Neither E(G)(R) nor E{G}(R) coincides (as vector space)
with E(M)(R), E{M}(R), E(ω)(R), or E{ω}(R) for any weight sequence M or
weight function ω.

Proof. We show first that, given a weight matrix M = {Mλ : λ ∈ Λ}
with Mλ 6≈ Mµ for all λ 6= µ, there cannot exist a weakly log-convex
M ∈ RN

>0 such that E [M](R) = E [M ](R). Indeed, if there is such an M ,
Proposition 4.6 implies M ≈Mλ for some λ. Then, by Proposition 2.12(1),

E(M)(R) = E(M)(R) =
⋂
λ

E(Mλ)(R) ( E(M)(R),
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and, for compact K ⊆ R,

E{M}(R) = E{M}(R) =
⋂
K

E{M}(K) =
⋂
K

⋃
λ

E{Mλ}(K)

⊇
⋃
λ

⋂
K

E{Mλ}(K) =
⋃
λ

E{Mλ}(R) ) E{M}(R),

which contradicts the assumption in both cases.

As E(G)(R) contains Cω(R) it cannot coincide with E(M)(R) for any
weight sequence M , by Theorem 2.15 and the first paragraph; neither can
E{G}(R) coincide with E{M}(R).

If there exists ω ∈ W such that E(G)(R) = E(ω)(R), then Proposition 4.6
implies that for each ρ > 0 there exist s, ρ′ > 0 such that

(5.23) Ωρ′ � Gs � Ωρ,

and thus, by Proposition 2.12(1),

E{Ωρ
′} ⊆ G1+s ⊆ E{Ωρ}.

Since G1+s = E{γ} with γ(t) = t1/(1+s), using the fact that there exist char-
acteristic E{Ωρ}- and E{Γ τ}-functions (where Γ τ are the sequences associated
with γ), and by (5.10), we conclude that, for all k,

1

ρ′
ϕ∗ω(ρ′k) ≤ 1

τ
ϕ∗γ(τk) + C and

1

τ
ϕ∗γ(τk) ≤ 1

Hρ
ϕ∗ω(Hρk) +D,

for suitable constants τ, C,D,H. As in the derivation of (5.18) this implies
ω ≈ γ and hence E(G)(R) = E(ω)(R) = E(γ)(R) = E(Gs)(R), a contradiction.
Thus there is no ω ∈ W with E(G)(R) = E(ω)(R).

If there exists ω ∈ W such that E{G}(R) = E{ω}(R), then Proposition 4.6
implies that for each ρ′ > 0 there exist s, ρ > 0 such that (5.23) holds. Then
the same arguments show ω ≈ γ and hence E{G}(R) = E{ω}(R) = E{γ}(R) =
G1+s(R), a contradiction. Thus there is no ω ∈ W with E{G}(R) = E{ω}(R).

For the remaining cases note that M(�}N{�)M and M{�)N(�}M is
impossible for any two weight matrices M,N ∈M . This fact together with
Proposition 4.6 (and Theorem 2.15) implies that there is no weight sequence
M and no weight function ω so that E(G)(R) = E{M}(R), E(G)(R) = E{ω}(R),
E{G}(R) = E(M)(R), or E{G}(R) = E(ω)(R).

5.24. Corollary. Composition is continuous on the intersection of all
non-quasianalytic Gevrey classes. More precisely, comp(G) is continuous,
E{G}(Rp, f), for f ∈ E{G}(Rq,Rr), is continuous, and comp{G} is sequen-
tially continuous.

Proof. This follows from Theorems 4.13 and 5.22.

We expect that comp[G] is even E [G] (see Remark 4.23).
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5.25. Remark. More autonomous spaces E [M] can be produced by choos-
ing the weight matrix M := {Mλ : λ > 0} such that each Mλ has moderate
growth, satisfies lim (Mλ

k )1/k > 0 and lim µλnk/µ
λ
k > 1 for some n ∈ N with

µλk = kMλ
k /M

λ
k−1, and Mλ 6≈Mµ for λ 6= µ. Here we may use the compari-

son theorems of [8] and argue as above.

6. Stability under composition of E [ω]. Stability under composition
of E [ω] was characterized in [16] for non-quasianalytic weights ω. In this
section we apply the characterization obtained by means of the associated
weight matrix W = {Ωρ : ρ > 0} and relate it to the results of [16].

6.1. Lemma. If ω ∈ W is subadditive, then (Ωρ)◦ � Ω2ρ for each ρ > 0.

Then the weight matrix W satisfies (M(FdB)) and (M{FdB}).

Proof. Subadditivity of ω implies

(6.2) Ωρ
jΩ

ρ
k ≤ Ω

ρ
j+k, j, k ∈ N

(cf. [17, Lemma 3.3]). Indeed, exp
(
1
ρϕ
∗(ρk)

)
= sups≥1 s

k exp
(
−1
ρω(s)

)
and

hence, using subadditivity of ω,

Ωρ
jΩ

ρ
k ≤ sup

s,t≥1

sjtk

j!k!
exp

(
−1

ρ
ω(s+ t)

)
≤ sup

s,t≥1

(s+ t)j+k

(j + k)!
exp

(
−1

ρ
ω(s+ t)

)
≤ Ωρ

j+k.

By (5.6), (6.2) and since Ωρ ≤ Ω2ρ, we get, for αi ∈ N>0 with α1 + · · ·+ αj
= k,

Ωρ
jΩ

ρ
α1
· · ·Ωρ

αj ≤ C
jΩ2ρ

j Ω
2ρ
α1−1 · · ·Ω

2ρ
αj−1 ≤ C

jΩ2ρ
k ,

which implies the assertion.

6.3. Theorem. For ω ∈ W satisfying (ω4) the following are equivalent:

(1) E{ω} is stable under composition.
(2) For each ρ > 0 there is τ > 0 such that (Ωρ)◦ � Ωτ , i.e., W satisfies

(M{FdB}).
(3) There exists a subadditive ω̃ ∈ W such that ω ≈ ω̃.
(4) ω satisfies (ω7).

Proof. (1)⇔(2) follows from Theorem 4.9 and Corollary 5.15.

(3)⇔(4). See [32, Prop. 1.1] and [30, Lemma 1].

(3)⇒(2) follows from Lemma 6.1.

(2)⇒(3). The proof is inspired by [16, Prop. 2.3] which treats the non-
quasianalytic case. We do not assume non-quasianalyticity (or quasianalyt-
icity) and use Claim 4.14 to remedy the lack of E{ω}-functions of compact
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support. If ω does not satisfy (ω7), then there exist increasing sequences
(kn) ∈ NN and (tn) ∈ RN

>0 such that

(6.4) ω(kntn) ≥ n2knω(tn).

Set an := e−nω(tn) and fn(x) := ane
itnx, x ∈ R. Then

‖fn‖ωR,ρ = an sup
j∈N

tjn exp

(
−1

ρ
ϕ∗(ρj)

)
= an exp sup

j∈N

(
j log tn −

1

ρ
ϕ∗(ρj)

)
= e−nω(tn)eωρ(tn) ≤ e−(n−1/ρ)ω(tn)

and so {fn : n ∈ N} is bounded in E{ω}(R,C) (even in E(ω)(R,C)). The set
{C 3 z 7→ zk : k ∈ N} forms a bounded subset of E{ω}(D,C), where D ⊆ C
is the unit disk and where we identify C ∼= R2). Indeed, for |z| ≤ r < 1
choose ρ > 0 so that r + 1/ρ < 1, and thus

sup
j∈N

|∂jzzk|
ρjj!

≤ sup
j≤k

(
k

j

)
rk−j

1

ρj
≤
(
r +

1

ρ

)k
.

So {z 7→ zk : k ∈ N} is bounded in Cω(D,C) and, by (ω4), in E{ω}(D,C).
Since W satisfies (M{FdB}) by assumption (2), we may conclude, from Claim

4.14, that the set {fkn : n, k ∈ N} is bounded in E{ω}(R,C). Thus there exists
ρ > 0 such that

∞ > sup
n,k,j∈N

|(fkn)(j)(0)| exp

(
−1

ρ
ϕ∗(ρj)

)
= sup

n,k,j∈N
akn(tnk)j exp

(
−1

ρ
ϕ∗(ρj)

)
= sup

n,k∈N
akne

ωρ(tnk) ≥ D sup
n,k∈N

akne
C−1ω(tnk) = D sup

n,k∈N
e−nkω(tn)+C

−1ω(tnk),

for constants C,D > 0, by Lemma 5.7, which contradicts (6.4).

6.5. Theorem. For ω ∈ W satisfying (ω4) the following are equivalent:

(1) E(ω) is stable under composition.
(2) E(ω) is holomorphically closed.
(3) For each ρ > 0 there exists τ > 0 such that (Ωτ )◦ � Ωρ, i.e., W

satisfies (M(FdB)).

(4) There exists H ≥ 1 such that for each ρ > 0 we have (Ωρ)◦ � ΩHρ.
(5) There exists a subadditive ω̃ ∈ W such that ω ≈ ω̃.
(6) ω satisfies (ω7).

Note that (ω4) is needed only for (1)⇒(2).

Proof. (1)⇔(2)⇔(3) follows from Theorem 4.11 and Corollary 5.15.
(2)⇒(6) follows from an argument due to [10] (see [16, p. 405].
(5)⇔(6). See [32, Prop. 1.1] and [30, Lemma 1].
(5)⇒(4) follows from Lemmas 6.1 and 5.16.
(4)⇒(3) is evident.
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6.6. Corollary. For ω ∈ W satisfying (ω4) the following are equivalent:

(1) For each ρ > 0 there exists τ > 0 such that (Ωρ)◦ � Ωτ .
(2) For each ρ > 0 there exists τ > 0 such that (Ωτ )◦ � Ωρ.
(3) There exists H ≥ 1 such that (Ωρ)◦ � ΩHρ for each ρ > 0.

Proof. Combine Theorems 6.3 and 6.5.

Special cases of Theorem 4.13 were proven in [16, 4.2 and 4.4]:

6.7. Corollary. Let ω ∈ W satisfy (ω7). Then comp(ω) is continuous,
E{ω}(Rp, f), for f ∈ E{ω}(Rq,Rr), is continuous, and comp{ω} is sequentially
continuous.

Proof. This is a special case of Theorem 4.13, by Corollary 5.15, Theo-
rem 6.3, and Theorem 6.5.

We expect that the mapping comp[ω] is even E [ω] (see Remark 4.23).
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http://dx.doi.org/10.2977/prims/1166642109
http://dx.doi.org/10.1016/j.jmaa.2004.03.028
http://www.ams.org/online_bks/surv53/
http://www.ams.org/online_bks/surv53/
http://dx.doi.org/10.1016/j.jfa.2009.03.003
http://arxiv.org/abs/1111.1819
http://dx.doi.org/10.1016/j.jfa.2011.05.019
http://dx.doi.org/10.1007/BF01894779
http://dx.doi.org/10.1007/BF01458468
http://arxiv.org/abs/1407.6673


Composition in ultradifferentiable classes 131

[39] J. A. Siddiqi, Inverse-closed Carleman algebras of infinitely differentiable functions,
Proc. Amer. Math. Soc. 109 (1990), 357–367.

[40] V. Thilliez, On quasianalytic local rings, Expo. Math. 26 (2008), 1–23.

Armin Rainer, Gerhard Schindl
Fakultät für Mathematik
Universität Wien
Oskar-Morgenstern-Platz 1
A-1090 Wien, Austria
E-mail: armin.rainer@univie.ac.at

a0304518@unet.univie.ac.at

Received October 18, 2012
Revised version November 24, 2013 (7660)

http://dx.doi.org/10.1090/S0002-9939-1990-1007512-4
http://dx.doi.org/10.1016/j.exmath.2007.04.001



	1 Introduction
	2 Weight sequences and [M]-ultradifferentiable functions
	2.1 Weight sequences
	2.5 Regularizations (cf. Bang46, Mandelbrojt52, or Koosis98)
	2.7 [M]-ultradifferentiable functions

	3 Stability under composition of E[M]
	3.3 Log-convexity is not necessary for stability under composition

	4 More general spaces of ultradifferentiable functions
	4.1 Weight matrices
	4.2 [M]-ultradifferentiable functions
	4.12 Composition operators

	5 Weight functions and []-ultradifferentiable functions
	5.1 Weight functions
	5.3 []-ultradifferentiable functions
	5.5 Associated sequences
	5.19 Intersection and union of all non-quasianalytic Gevrey classes

	6 Stability under composition of E[]
	References

