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Sharp endpoint results
for imaginary powers and Riesz transforms

on certain noncompact manifolds

by

Giancarlo Mauceri (Genova), Stefano Meda (Milano) and
Maria Vallarino (Torino)

Abstract. We consider a complete connected noncompact Riemannian manifold M
with bounded geometry and spectral gap. We prove that the imaginary powers of the
Laplacian and the Riesz transform are bounded from the Hardy space X1(M), introduced
in previous work of the authors, to L1(M).

1. Introduction. Denote by M a complete connected noncompact Rie-
mannian manifold of dimension n with Ricci curvature bounded from be-
low, positive injectivity radius and spectral gap. Denote by L (minus) the
Laplace–Beltrami operator on M and by Xk(M) the Hardy-type spaces in-
troduced in [23, 24] (see Definitions 2.1 and 2.2 below). These spaces play
for harmonic analysis on M much the same role as the classical Hardy space
H1(Rn) plays for harmonic analysis on Rn [23,24] (see also [25] for the the-
ory of the duals of these spaces). In particular, in [23, 24] we proved that
the operators L iu and ∇L −1/2 are bounded from Xk(M) to L1(M) for an
integer k large enough and depending on n.

The purpose of this paper is to prove the following result.

Theorem 1.1. For every u in R the operators L iu and ∇L −1/2 are
bounded from X1(M) to L1(M).

Clearly Theorem 1.1 is an improvement of the aforementioned results.
We believe that its main interest lies not only in the fact that all these
operators are bounded from the same space X1(M) to L1(M), but also in
the method of proof, which appears to be quite adaptable to the geometry
of manifolds and could pave the way to obtaining similar results for more
general manifolds and different operators. In particular, we wish to empha-
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sise the role of Takeda’s inequality in the proof of the boundedness of the
imaginary powers of L , and of parabolic Caccioppoli and Harnack type
estimates in the proof of the boundedness of the Riesz transform. Further-
more, an important role in the proof of our main result is played by a local
Faber–Krahn type estimate.

The imaginary powers of L and the Riesz transforms on Riemannian
manifolds have been investigated in a number of papers [1–4,6–9,18,20–24,
26–28]. For a discussion of these papers and their relations to our results we
refer the reader to the introductions of [23,24].

We also mention that there is a large literature on Hardy spaces asso-
ciated with particular classes of operators (see for instance [10–14, 19] and
the bibliography in [18]).

We now give a brief outline of the paper. In Section 2 we recall the
definition and the basic properties of the atomic Hardy space X1(M). In
Section 3 we estimate the L2 norm of the resolvent of the Laplacian L on
atoms. In Section 4 we prove the boundedness of the imaginary powers of
L and in Section 5 that of the Riesz transform ∇L −1/2.

We shall use the “variable constant convention”, and denote by C, possi-
bly with sub- or superscripts, a constant that may vary from place to place
and may depend on any factor quantified (implicitly or explicitly) before its
occurrence, but not on factors quantified afterwards.

2. Background on Hardy-type spaces. Let M denote a connected,
complete n-dimensional Riemannian manifold of infinite volume with Rie-
mannian measure µ. Denote by Ric the Ricci tensor, by −L the Laplace–
Beltrami operator on M , by b the bottom of the L2(M) spectrum of L ,
and set β = lim supr→∞[logµ(B(o, r))]/(2r), where o is any reference point
of M . By a result of Brooks [5], b ≤ β2.

We denote by B the family of all geodesic balls on M . For each B in
B we denote by cB and rB the centre and the radius of B respectively.
Furthermore, we denote by cB the ball with centre cB and radius c rB. For
each scale parameter s in R+, we denote by Bs the family of all balls B in
B such that rB ≤ s.

Standing Assumptions. We assume that the injectivity radius of M
is positive, that the Ricci tensor is bounded from below and that M has
spectral gap, to wit b > 0.

It is well known that for manifolds satisfying the assumptions above
there are positive constants α, β and C such that

(2.1) µ(B) ≤ CrαBe2βrB ∀B ∈ B such that rB ≥ 1.

Moreover, the measure µ is locally doubling, i.e. for every s > 0 there exists
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a constant Ds such that

µ(2B) ≤ Dsµ(B) ∀B ∈ Bs.

Furthermore (see [24, Remark 2.3]) there exists a positive constantC such that

(2.2) C−1rnB ≤ µ(B) ≤ CrnB ∀B ∈ B1.

In this section we gather some known facts about the Hardy-type space
X1(M), introduced in [23] and studied in [24,25]. For each open ball B, we
denote by

(i) h2(B) the space of all L -harmonic functions in L2(B);
(ii) q2(B) the space all functions u ∈ L2(B) such that L u is constant

on B.

We say that a function u is in h2(B) (respectively q2(B)) if u is the restriction
to B of a function in h2(B′) (respectively q2(B′)) for some open ball B′

containing B.
We shall refer to h2(B) as the harmonic Bergman space on B, while

functions in q2(B) are referred to as quasi-harmonic functions on B. Often
we think of q2(B) as a subspace of L2(B). When we do, q2(B)⊥ will denote
the orthogonal complement of q2(B) in L2(B). Clearly q2(B)⊥ is a subspace
of q2(B)⊥ and of h2(B)⊥.

Definition 2.1. An X1-atom associated to the geodesic ball B is a
function A in L2(M), supported in B, such that

(i)
	
Av dµ = 0 for all v ∈ q2(B);

(ii) ‖A‖2 ≤ µ(B)−1/2.

Note that condition (i) implies that
	
M Adµ = 0, because 12B is in q2(B).

Given a positive “scale parameter” s, we say that an Xk-atom is at scale s
if it is supported in a ball B of Bs.

Definition 2.2. Choose a “scale parameter” s > 0. The Hardy-type
space X1(M) is the space of all functions F that admit a decomposition of
the form F =

∑
j cjAj , where {cj} is a sequence in `1 and {Aj} is a sequence

of X1-atoms at scale s. We endow X1(M) with the natural “atomic norm”

‖F‖X1 :=
{ ∞∑
j=1

|cj | : F =
∞∑
j=1

cjAj , Aj X
1-atoms at scale s

}
.

Remark 2.3. It is known [23,24] that all these atomic norms are equiv-
alent and it becomes a matter of convenience to choose one or another.
In our situation any value < Inj(M) of the scale parameter s would be a
convenient choice for the following reasons. Balls of radius < Inj(M) have
no holes and their boundaries are smooth, so that various results concern-
ing Sobolev spaces on balls hold. We shall, implicitly or explicitly, make
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use of them in what follows. Another advantage of choosing s < Inj(M)
is that we can make use of the fact that the cancellation condition (i) in
Definition 2.1 may then be equivalently formulated by requiring that A be
in q2(B)⊥ [25, Proposition 3.5 and the comments after Theorem 4.12]. This
will be used below without any further comment. In the following, we shall
choose s0 = 1

2 Inj(M) and we shall call atoms at scale s0 admissible.

Another result that plays a crucial role in the proof of theX1(M)-L1(M)-
boundedness of imaginary powers and Riesz transforms is the following the-
orem proved in [25, Corollary 6.2 and Proposition 6.3].

Theorem 2.4. If T is a bounded linear operator on L2(M) such that

sup {‖T A‖1 : A an admissible X1-atom} <∞,
then T extends to a bounded linear operator from X1(M) to L1(M) that
agrees with T on X1(M) ∩ L2(M).

3. Atoms and the Laplace–Beltrami operator. Henceforth we de-
note by L the unique self-adjoint extension of minus the Laplace–Beltrami
operator on L2(M). We recall that the domain of L is the space of all func-
tions in L2(M) such that the distribution L u is in L2(M). For a geodesic
ball B we denote by LB the restriction of L to the subspace

Dom(LB) = {f ∈ Dom(L ) : supp(f) ⊂ B}.
Even though the operator LB is defined on L2(M), in the following we shall
often consider it as acting on L2(B). In addition to LB, we also consider
the Dirichlet Laplacian LB,Dir on the ball B, i.e. the Friedrichs extension of
the restriction of L to C∞c (B). We recall that the domain of LB,Dir is

Dom(LB,Dir) = {u ∈W 1,2
0 (B) : L u ∈ L2(B)},

where L u is interpreted in the sense of distributions on B and W 1,2
0 (B)

denotes the closure of C∞c (B) in the Sobolev space

W 1,2(B) = {u ∈ L2(B) : |∇u| ∈ L2(B)}.
We shall restrict our attention to balls B which are the interior of their
closure and ∂B is smooth. Observe that any ball B of radius < Inj(M) is the
interior of its closure and has smooth boundary. The following proposition
will be useful later.

Proposition 3.1. Assume that B is a ball in M with smooth boundary.
The following hold:

(i) LB,Dir is an extension of LB;
(ii) Ran(LB) = h2(B)⊥ and LB is an isomorphism between its domain,

endowed with the graph norm, and its range;
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(iii)

‖L −1f‖2 ≤
1

λ1(B)
‖f‖L2(B) ∀f ∈ h2(B)⊥,

where λ1(B) is the first eigenvalue of the Dirichlet Laplacian LB,Dir.

Proof. If u ∈ Dom(LB) then L u ∈ L2(M) and supp(u) ⊂ B. Hence, by
elliptic regularity, u, |∇u| ∈ L2

loc(M). Thus u ∈W 1,2(B). Since u = 0 on the
complement of B and the boundary of B is smooth, the trace of u on the
boundary of B is zero. Hence u ∈W 1,2

0 (B) by a classical result. This proves
that Dom(LB) ⊂ Dom(LB,Dir). Thus LB ⊂ LB,Dir because both operators
are defined in the sense of distributions on their domains.

Next we prove (ii). First we observe that, since functions in Ran(LB) are
supported in B, we may identify isometrically Ran(LB) with the subspace
of L2(B) obtained by restricting functions to B. Thus Ran(LB) is closed in
L2(B), since it is closed in L2(M), because L is strictly positive and closed.
Thus, to prove the inclusion h2(B)⊥ ⊆ Ran(LB), it suffices to show that
Ran(LB)⊥ ⊆ h2(B). Now, if g ∈ L2(B) is orthogonal to Ran(LB), then

0 =
�

B

Lψ g dµ = 〈ψ,L g〉 ∀ψ ∈ C∞c (B),

where L g is in the sense of distributions on B. Therefore L g = 0 in B, i.e.,
g is harmonic in B and belongs to L2(B), i.e., g ∈ h2(B).

To prove the opposite inclusion, we observe that by [25, Prop. 3.5],

h2(B) = h2(B).

Thus, to prove the inclusion Ran(LB) ⊆ h2(B)⊥ it suffices to show that
Ran(LB) is orthogonal to h2(B), i.e.

	
B LBf g dµ = 0 for all f in Dom(LB)

and all g in h2(B). Pick f ∈ Dom(LB), g ∈ h2(B) and denote by ĝ an
extension of g to all of M , which is in Dom(L ). Since LBf = L f and
supp(L f) ⊂ B,

�

B

LBf g dµ =
�

M

L f ĝ dµ =
�

M

f L ĝ dµ = 0,

because supp(f) ⊆ B and L ĝ vanishes in a neighbourhood of B. This
concludes the proof that Ran(LB) = h2(B)⊥.

Next, we observe that the operator LB is injective and continuous from
its domain, endowed with the graph norm, to its range, since it is the re-
striction of L which is injective and closed. Thus the fact that LB is an
isomorphism between its domain and its range follows from the Open Map-
ping Theorem, since the range h2(B)⊥ is closed.

Finally, to prove (iii), we observe that by (ii) if f ∈ h2(B)⊥ then there
exists u ∈ Dom(LB) such that f = LBu = L u. Thus L −1f = u =
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L −1
B f = L −1

B,Dirf , since L −1
B,Dir is an extension of L −1

B , by (i). Hence

‖L −1u‖2 = ‖L −1
B,Dirf‖2 ≤

1

λ1(B)
‖f‖2.

Remark 3.2. Note that if A is an X1-atom supported in B, then the
function L −1A has support contained in B [24, Remark 3.5].

A straightforward consequence of Proposition 3.1 is the following.

Corollary 3.3. If A is an X1-atom with support contained in B and
rB < Inj(M) then the support of L −1A is contained in B and

(3.1) ‖L −1A‖2 ≤
1

λ1(B)µ(B)1/2
.

Proof. The proof of Proposition 3.1 (or Remark 3.2 above) shows that
the support of L −1A is contained in B. The estimate (3.1) is a direct
consequence of the size estimate in the definition of an atom and of the
norm estimate for L −1 in Proposition 3.1(iii).

This result sheds light on the definition of (1, 2,M)-atom in [18]. In fact, a
direct consequence of (3.1) is that if A is an X1-atom and λ1(B) � r−2B , then
A is an (1, 2,M)-atom for every positive integer M . A similar observation
applies to Xk-atoms for k ≥ 2. This suggests that the normalisation of
(1, 2,M)-atoms introduced in [18] may be profitably modified on manifolds
whenever the geometry of M determines a somewhat different behaviour
of λ1(B).

4. Boundedness of imaginary powers. In this section we analyse the
boundedness of L iu from X1(M) to L1(M) in the case where M satisfies
our standing assumptions. In this case the (minimal) heat kernel ht of M
satisfies the following pointwise estimate:

(4.1) ht(x, y) ≤ C

min(1, tn/2)
e−bt−d(x,y)

2/(2Dt) ∀x, y ∈M ∀t > 0

(see, for instance, [16]). In particular under our standing assumptions, M
satisfies the Faber–Krahn inequality

(4.2) λ1(Ω) ≥ aµ(Ω)−2/n,

where a is a positive constant and Ω is any precompact region in M .
We recall the following special case of Takeda’s inequality, which holds

on all connected, complete, noncompact Riemannian manifolds (see, for in-
stance, [17, Theorem 12.9]). Suppose that B is a ball in M and denote by Ht

the heat semigroup. Then

(4.3)
�

B

(Ht1(2B)c)
2 dµ ≤ eµ((2B)\B)‖Ht1(2B)c‖2∞max

(
r2B
2t
,

2t

r2B

)
e−r

2
B/(2t)
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for all t > 0. Observe that Ht is submarkovian, so that

‖Ht1(2B)c‖∞ ≤ 1 ∀t > 0.

Under our standing assumptions on M , for each s > 0 there exist constants
C1 and C2 such that

C1µ(B) ≤ µ((2B) \B) ≤ C2µ(B) ∀B ∈ Bs.

Then, by Takeda’s inequality and the estimate above, there exist positive
constants c and C such that

(4.4)
1

µ(B)

�

B

(Ht1(2B)c)
2 dµ ≤ Ce−cr2B/t ∀t ∈ (0, r2B] ∀B ∈ Bs.

Theorem 4.1. Suppose that M is a Riemannian manifold satisfying our
standing assumptions. Then for every u in R\{0} the imaginary powers L iu

are bounded from X1(M) to L1(M).

Proof. In view of Theorem 2.4 it suffices to prove that

sup{‖L iuA‖1 : A an admissible X1-atom} <∞.
Recall that admissible X1-atoms are supported in balls of radius at most
s0 = 1

2 Inj(M). Suppose that A is such an atom, with support contained
in B. Observe that

‖L iuA‖1 = ‖12B L iuA‖1 + ‖1(2B)c L iuA‖1.
We estimate the two summands on the right hand side separately. To esti-
mate the first, simply observe that, by Schwarz’s inequality, the size condi-
tion for A, and the spectral theorem,

‖12B L iuA‖1 ≤ µ(2B)1/2 |||L iu|||2 ‖A‖2 ≤
(
µ(2B)

µ(B)

)1/2

.

The right hand side is bounded independently of B, because µ is locally
doubling.

To estimate the second summand, we denote by kL iu+1(x, y) the kernel
of the operator L iu+1. Then, by Schwarz’s inequality and (3.1), we obtain

‖1(2B)cL
iuA‖1 ≤ ‖L −1A‖2

[ �
B

dµ(y)
( �

(2B)c

|kL iu+1(x, y)| dµ(x)
)2]1/2

≤ C

λ1(B)

[
1

µ(B)

�

B

dµ(y)
( �

(2B)c

|kL iu+1(x, y)| dµ(x)
)2]1/2

.

It remains to show that

(4.5)

[
1

µ(B)

�

B

dµ(y)
( �

(2B)c

|kL iu+1(x, y)| dµ(x)
)2]1/2

≤ Cλ1(B),



160 G. Mauceri et al.

where C is independent of B in Bs0 . Observe that off the diagonal the
following formula for the kernel of L iu+1 holds:

kL iu+1(x, y) = cu

∞�

0

t−iu−1ht(x, y)
dt

t
.

We write the integral on the right hand side as the sum of integrals over
(0, r2B] and (r2B,∞). Note that

�

(2B)c

∣∣∣∣∞�
r2B

t−iu−1ht(x, y)
dt

t

∣∣∣∣ dµ(x) ≤
∞�

r2B

dt

t2

�

(2B)c

ht(x, y) dµ(x) ≤ r−2B ,

because the heat semigroup is contractive on L∞(M). Hence

(4.6)

[
1

µ(B)

�

B

dµ(y)

( �

(2B)c

∣∣∣∣∞�
r2B

t−iu−1ht(x, y)
dt

t

∣∣∣∣ dµ(x)

)2]1/2
≤ Cλ1(B),

for r−2B ≤ Cλ1(B) (just take Ω = B in formula (4.2) above).
We now prove that there is a constant C, independent of B, such that

(4.7)

[
1

µ(B)

�

B

dµ(y)

( �

(2B)c

∣∣∣∣r
2
B�

0

t−iu−1ht(x, y)
dt

t

∣∣∣∣ dµ(x)

)2]1/2
≤ Cλ1(B).

By the generalised Minkowski inequality, the left hand side in (4.7) is ma-
jorised by

r2B�

0

dt

t2

[
1

µ(B)

�

B

dµ(y)
( �

(2B)c

ht(x, y) dµ(x)
)2]1/2

,

which, by (4.4), is in turn bounded above by

r2B�

0

e−cr
2
B/(2t)

dt

t2
=

1

r2B

1�

0

e−c/(2v)
dv

v2
≤ Cr−2B .

Finally, note that r−2B ≤ Cλ1(B), and (4.7) is proved. Then (4.6) and (4.7)
prove (4.5), as required to conclude the proof of the theorem.

5. Boundedness of the Riesz transform. In this section we prove
that the Riesz transform is bounded from X1(M) to L1(M). As a prelimi-
nary step, we prove the following:

Lemma 5.1. For every η in (0, 1) and every s > 0 there exist positive
constants c and C such that for every B in Bs,

(5.1)
�

(4B)c

e−d(x,y)
2/(Dt) dµ(x) ≤ C(tn/2e−ηr

2
B/Dt + e−c/t)

for every t in (0, r2B] and every y in B.
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Proof. For simplicity we prove the lemma for s = 1. The general case
requires only minor modifications. Since y ∈ B and x /∈ 4B,

d(x, y) ≥ d(x, cB)− d(y, cB)

≥ d(x, cB)− rB ≥
1

2
d(x, cB).

Hence �

(4B)c

e−d(x,y)
2/(Dt) dµ(x) ≤

�

(4B)c

e−d(x,cB)2/(4Dt) dµ(x).

Thus, it suffices to estimate the last integral. We split the set (4B)c into
annuli. If rB is in (1/4, 1], then we simply write

(4B)c =
∞⋃
k=1

A(4krB, 4(k + 1)rB),

where A(u, v) denotes the annulus {x ∈ M : u ≤ d(x, cB) ≤ v}. If, instead,
rB < 1/4, then we write

(4B)c =
[J−1⋃
j=0

A(2j4rB, 2
j+14rB)

]
∪
[ ∞⋃
k=1

A(2J4krB, 2
J4(k + 1)rB)

]
,

where J is chosen so that R := 2J4rB is in (1/2, 1], i.e.,

log2(1/rB)− 3 ≤ J ≤ log2(1/rB)− 2.

We give details in the case where rB < 1/4. The case where rB is in (1/4, 1]
is simpler and we omit the details. By (2.2),

�

A(2j4rB ,2j+14rB)

e−d(x,cB)2/(4Dt) dµ(x) ≤ C(2j+14rB)ne−2
2j+2r2B/(Dt)

= C ′tn/2
(

22j+2r2B
Dt

)n/2
e−2

2j+2r2B/(Dt)

≤ Cηtn/2e−η2
2j+2r2B/(Dt).

We have used the fact that t ≤ r2B in the last inequality. By summing over
j between 0 and J − 1, we obtain

�

(2J4B)\(4B)

e−d(x,cB)2/(4Dt) dµ(x) ≤ Cηtn/2
∞∑
j=0

[e−4ηr
2
B/(Dt)]2

2j
(5.2)

≤ Cηtn/2e−4ηr
2
B/(Dt).

By (2.1) and the estimate (Rk)αe2βR(k+1) ≤ Cεe
(2β+ε)Rk, which holds for

every k,
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�

A(2J4krB ,2J4(k+1)rB)

e−d(x,cB)2/(4Dt) dµ(x) ≤ C(Rk)αe2βR(k+1)−R2k2/(4Dt)

(5.3)

≤ Cεe(2β+ε)Rk−R
2k2/(4Dt).

By completing the square, and using the fact that t ≤ r2B, we see that

(2β + ε)Rk − R2k2

4Dt
=

(
β +

ε

2

)2

4Dt−
[
Rk

2
√
Dt
− 2

(
β +

ε

2

)√
Dt

]2
≤
(
β +

ε

2

)2

4Dr2B −
[
Rk

2
√
Dt
− 2

(
β +

ε

2

)√
Dt

]2
.

Now observe that if Rk ≥ 4D(2β + ε)r2B, then Rk − (2β + ε)2Dt ≥ Rk/2,
so that

(5.4) (2β + ε)Rk − R2k2

4Dt
≤ C − R2k2

16Dt
,

where C = (β + ε/2)24D. Choose K := J4D(2β + ε)r2B/RK + 1. Now,
�

M\(2J4B)

e−d(x,cB)2/(4Dt) dµ(x)

=
∞∑
k=1

�

A(2J4krB ,2J4(k+1)rB)

e−d(x,cB)2/(4Dt) dµ(x).

Note that K ≤ D(β+ ε/2), so K has an upper bound that does not depend
on rB. We estimate each of the terms of the series up to the (K − 1)th as
in (5.3), so that the sum for k from 1 to K − 1 may be estimated by

CεKe
(2β+ε)De−R

2/(4Dt) ≤ Ce−1/(8Dt).

The series for k from K to ∞ may be estimated as

C

∞∑
k=K

e−R
2k2/(16Dt) ≤ Ce−c/t

for some positive c. By combining the estimates above, we obtain

(5.5)
�

M\(RB)

e−d(x,cB)2/(4Dt) dµ(x) ≤ Ce−c/t,

which, together with (5.2), gives the required estimate.

Lemma 5.2. Suppose that M is a Riemannian manifold satisfying our
standing assumptions. Fix a scale parameter s < Inj(M). Then there exists
a constant C such that for every ball B in Bs,

‖∇L 1/2f‖L1((4B)c) ≤ Cr−2B ‖f‖L1(B) ∀f ∈ L1(B).
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Proof. Step I: Reduction of the problem and conclusion. A straightfor-
ward argument shows that

∇L 1/2f(x) =
�

M

k∇L 1/2(x, y)f(y) dµ(y) ∀f ∈ Cc(M) ∀x /∈ supp(f),

where

(5.6) k∇L 1/2(x, y) =
1

Γ (−1/2)

∞�

0

∇xht(x, y)
dt

t3/2

for all (x, y) off the diagonal in M ×M . Here ht denotes the heat kernel
(with respect to the Riemannian measure µ). Define

I B(y) :=

r2B�

0

dt

t3/2

�

(4B)c

|∇xht(x, y)| dµ(x),

IB(y) :=

∞�

r2B

dt

t3/2

�

(4B)c

|∇xht(x, y)| dµ(x).

Note that, by (5.6) and Tonelli’s theorem,

‖∇L 1/2f‖L1((4B)c) ≤
�

(4B)c

∞�

0

�

B

|∇xht(x, y)| |f(y)| dµ(x) dµ(y)
dt

t3/2
(5.7)

=
�

B

[I B(y) + IB(y)]|f(y)| dµ(y).

We claim that there exists a constant C such that

(5.8) I B(y) ≤ Cr−2B and IB(y) ≤ Cr−2B .

These estimates will be proved in Steps II and III, respectively. Assuming
the claim, we may deduce from (5.7) and (5.8) that

‖∇L 1/2f‖L1((4B)c) ≤
�

B

[I B(y) + IB(y)]|f(y)| dµ(y) ≤ Cr−2B ‖f‖L1(B),

as required to conclude the proof of the lemma.

Step II: Estimate of I B(y). We shall use Grigor’yan’s integral esti-
mates for the gradient of the heat kernel [15]. It will be convenient to intro-
duce more notation. We fix D > 4, and set, for every y in M and t > 0,

E0(y, t) :=
�

M

ht(x, y)2ed(x,y)
2/(Dt) dµ(x),(5.9)

E1(y, t) :=
�

M

|∇xht(x, y)|2ed(x,y)2/(Dt) dµ(x).(5.10)

Recall that, under our standing assumptions on M , the Faber–Krahn type
inequality (4.2) holds on M . Furthermore, the constant a in (4.2) is uni-
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formly bounded from below as long as rB ≤ s (because M has bounded
geometry). Therefore [17, Theorem 15.8, p. 400]

E0(y, t) ≤ Ct−n/2 ∀t ∈ (0, r2B] ∀y ∈M.

Hence [15, Theorem 1.1]

E1(y, t) ≤ Ct−n/2−1 ∀t ∈ (0, r2B] ∀y ∈M.

By using Schwarz’s inequality, the estimate above and Lemma 5.1, we obtain

I B(y) ≤ C
r2B�

0

(tn/2e−ηr
2
B/(Dt) + e−c/t)1/2E1(y, t)

1/2 dt

t3/2
(5.11)

≤ C
r2B�

0

t−1e−ηr
2
B/(2Dt)

dt

t
+ C

r2B�

0

e−c/(2t)
dt

tn/4+2

≤ C(r−2B + 1) ∀y ∈M,

as required to prove the first statement in (5.8).

Step III: Estimate of IB(y). The main idea is to combine Caccioppoli’s
inequality with Harnack’s inequality for balls of small radius. We denote by
{ϕj} a smooth partition of unity associated to a locally finite covering {B′j}
of (4B)c by balls of radius rB. We set

(5.12) IB;j,k(y) :=

kr2B�

(k−1)r2B

dt

t3/2

�

B′
j

|∇xht(x, y)|ϕj(x) dµ(x).

Clearly

IB(y) ≤
∑
j

∞�

r2B

dt

t3/2

�

B′
j

|∇xht(x, y)|ϕj(x) dµ(x)(5.13)

=
∑
j

∞∑
k=2

IB;j,k(y).

We now introduce the parabolic cylinder Cj,k, defined as follows:

Cj,k := B′j × ((k − 1)r2B, kr
2
B].

Clearly (µ × λ)(Cj,k) = µ(B′j)r
2
B, where λ is the Lebesgue measure on the

real line. Recall the following version of the parabolic Caccioppoli inequality:

(5.14)
�

Cj,k

|∇xht(x, y)|2 dµ(x) dt ≤ C

r2B

�

2Cj,k

|ht(x, y)|2 dµ(x) dt,

where

2Cj,k := 2B′j × ((k − 2)r2B, (k + 1)r2B].
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This inequality is a straightforward consequence of [17, Lemmas 15.2 and
15.3]. Observe that

IB;j,k(y) � 1

(kr2B)3/2

�

Cj,k

|∇xht(x, y)| dµ(x) dt.

Therefore, by Schwarz’s inequality and Caccioppoli’s inequality,

IB;j,k(y) ≤
(µ× λ)(Cj,k)

(kr2B)3/2

[
1

(µ× λ)(Cj,k)

�

Cj,k

|∇xht(x, y)|2 dµ(x) dt

]1/2

≤
(µ× λ)(Cj,k)

(kr2B)3/2
1

rB

[
1

(µ× λ)(2Cj,k)

�

2Cj,k

ht(x, y)2 dµ(x) dt

]1/2
.

We now apply the parabolic Harnack inequality to the parabolic cylinder
2Cj,k to conclude that[

1

(µ× λ)(2Cj,k)

�

2Cj,k

ht(x, y)2 dµ(x) dt

]1/2
(5.15)

≤ C inf
(z,t)∈2Cj,k+2

ht(z, y)

≤ C 1

(µ× λ)(2Cj,k)

�

2Cj,k+2

ht(x, y) dµ(x) dt.

By combining the last two estimates, we obtain

IB;j,k(y) ≤ C

(kr2B)3/2
1

rB

�

2Cj,k+2

ht(x, y) dµ(x) dt(5.16)

≤ C

rB

(k+3)r2B�

kr2B

dt

t3/2

�

2B′
j

ht(x, y) dµ(x).

We now sum over j and k, and then use the facts that the covering {B′j} is
uniformly locally finite and that ‖ht(·, y)‖1 ≤ 1 for every y in M , to obtain

IB(y) ≤ C

rB

∞�

r2B

dt

t3/2

�

(2B)c

ht(x, y) dµ(x)(5.17)

≤ C

rB

∞�

r2B

dt

t3/2
≤ C

r2B
,

as required to prove the second estimate in (5.8), and to conclude the proof
of the claim.
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Theorem 5.3. Suppose that M is a Riemannian manifold satisfying
our standing assumptions. The Riesz transform ∇L −1/2 is bounded from
X1(M) to L1(M).

Proof. In view of Theorem 2.4 it suffices to prove that

(5.18) sup {‖∇L −1/2A‖1 : A an admissible X1-atom} <∞.
Fix such an atom A, and denote by B the ball associated to A. Recall that
rB ≤ s0. Observe that

‖∇L −1/2A‖1 = ‖∇L −1/2A‖L1(4B) + ‖∇L −1/2A‖L1((4B)c).

We shall estimate the two summands on the right hand side separately.
Clearly

‖∇L −1/2A‖L1(4B) ≤ µ(4B)1/2‖∇L −1/2A‖L2(4B)

≤
(
µ(4B)

µ(B)

)1/2

≤ C.

In the second inequality above we have used the fact that

‖∇L −1/2A‖L2(4B) ≤ ‖A‖2 ≤ µ(B)−1/2,

which follows from the L2-boundedness of the Riesz transform and the size
property of A. In the last inequality we have used the fact that the measure
µ is locally doubling. Therefore

(5.19) sup ‖∇L −1/2A‖L1(4B) <∞,

where the supremum is taken over all admissible X1-atoms A.
Thus, to conclude the proof of the theorem it suffices to show that

(5.20) sup ‖∇L −1/2A‖L1((4B)c) <∞,

where the supremum is taken over all admissible X1-atoms A. Observe that

∇L −1/2A = ∇L −1/2L L −1A = ∇L 1/2(L −1A).

Recall that by Corollary 3.3,

‖L −1A‖L2(B) ≤
1

λ1(B)
µ(B)−1/2,

so that

(5.21) ‖L −1A‖L1(B) ≤ µ(B)1/2‖L −1A‖L2(B) ≤
1

λ1(B)
.

Therefore

‖∇L −1/2A‖L1((4B)c) = ‖∇L 1/2(L −1A)‖L1((4B)c)

≤ Cr−2B ‖L
−1A‖L1(B)

≤ Cr−2B λ1(B)−1 ≤ C;
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the first inequality follows from Lemma 5.2 and the support property of A
combined with Remark 3.2, the second from (5.21), and the last from (4.2)
and (2.2).
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