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Theorem 1.5 of [BGPP], which the authors themselves call the main the-
orem of their note, follows immediately from [DL, Corollary 2.5] whose proof
seems more direct. Also, Theorem 1.3 of [BGPP] follows immediately from
[DL, Corollary 2.5], but, in fact, it is already a straightforward consequence
of [JK, Theorem 3].

For the reader’s convenience we reproduce below [DL, Corollary 2.5] and
explain the underlying notation and terminology.

The space cca(Σ, λ,X) contains a closed infinite-dimensional subspace M
such that every nonzero ν ∈ M is λ-everywhere of infinite variation.

Here X denotes an infinite-dimensional Banach space and λ denotes a
nonatomic probability measure on a σ-algebra Σ of subsets of some set.
Moreover, cca(Σ, λ,X) stands for the Banach space of λ-continuous measures
on Σ with values in X whose range is relatively compact, equipped with
the uniform norm. We say that ν ∈ cca(Σ, λ,X) is λ-everywhere of infinite
variation if |ν|(A) = ∞ whenever A ∈ Σ and λ(A) > 0.
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