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Uniformly ergodic A-contractions on Hilbert spaces

by

Laurian Suciu (Sibiu)

Abstract. We study the concept of uniform (quasi-) A-ergodicity for A-contractions
on a Hilbert space, where A is a positive operator. More precisely, we investigate the role
of closedness of certain ranges in the uniformly ergodic behavior of A-contractions. We
use some known results of M. Lin, M. Mbekhta and J. Zemánek, and S. Grabiner and
J. Zemánek, concerning the uniform convergence of the Cesàro means of an operator,
to obtain similar versions for A-contractions. Thus, we continue the study of A-ergodic
operators developed earlier by the author.

1. Notations and preliminaries. Let H be a complex Hilbert space
and B(H) be the algebra of all bounded linear operators on H, where the
identity operator is denoted by I = IH. For T ∈ B(H), T ∗ means the adjoint
operator, while R(T ) and N (T ) denote the range and the null-space of T ,
respectively.

An operator T ∈ B(H) is mean ergodic on H if the limit

lim
n→∞

1
n

n−1∑
j=0

T jh = Qh(1.1)

exists for any h ∈ H, where Q is the projection onto N (I − T ) along
R(I − T ). In this case, one has the (direct sum) decomposition

H = R(I − T ) +̇N (I − T ).(1.2)

If the projection Q is orthogonal, or equivalently N (I−T ) = N (I−T ∗),
we say that T is orthogonally mean ergodic. Similarly, if the limit (1.1) is
uniform on the unit ball and Q is an orthogonal projection, we say that T is
orthogonally uniformly ergodic on H. This is a stronger concept than the one
studied by N. Dunford [3], E. Ed-Dari [4], S. Grabiner and J. Zemánek [6],
M. Lin [8], M. Mbekhta and J. Zemánek [9], Y. Tomilov and J. Zemánek [15],
J. Zemánek [16] and other authors, in the context of Banach spaces.
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Clearly, any contraction on H, that is, an operator T ∈ B(H) satisfying
T ∗T ≤ I, is orthogonally mean ergodic, but in general it is not orthogonally
uniformly ergodic. At the same time, there exist mean ergodic operators
without bounded powers. In [12–14] we have obtained such operators be-
longing to a class of generalized contractions which are defined below.

Let A ∈ B(H) be a fixed positive operator, A 6= 0. Then T ∈ B(H) is
called an A-contraction on H if it satisfies the inequality

T ∗AT ≤ A.(1.3)

Clearly, we can, and will, always assume ‖A‖ = 1.
If there is equality in (1.3), we say that T is an A-isometry on H. It is

known ([2], [7]) that if T is a contraction such that the strong limit ST =
s-limn T

∗nTn is not the zero operator then T is an ST -isometry. Moreover,
ST is an orthogonal projection if and only if ST commutes with T .

An A-contraction T induces the orthogonal decomposition

H = R(A−AT )⊕N (A−AT ),(1.4)

where
N := N (A−AT ) = N (A1/2 −A1/2T ) = N (A− T ∗A)

and it is an invariant subspace for T (see [11]), A1/2 being the square root
of A. But the subspace N is not invariant for A and T ∗, and in general we
have

N 6= N∗ := N (A1/2 − T ∗A1/2).

We recall from [12, 14] that N = N∗ if and only if N∗ is invariant for A,
which also means that H admits the orthogonal decomposition

H = R(A1/2 −A1/2T )⊕N .(1.5)

When N = N∗ one has N = N (A) ⊕ A1/2N and N 	 N (A) = N (I − T̂ ),
where T̂ is the contraction on R(A) defined (in virtue of (1.3)) by

T̂A1/2h = A1/2Th (h ∈ H).(1.6)

Since T̂ is orthogonally mean ergodic on R(A) it follows (see [14]) that
the sequence An(T ) := n−1

∑n−1
j=0 A

1/2T j (n ≥ 1) strictly converges in B(H)
(that is, An(T ) and An(T )∗ strongly converge in B(H)), and we have

lim
n→∞

An(T )h = P∗A
1/2h, lim

n→∞
An(T )∗h = A1/2P∗h(1.7)

for any h ∈ H, where P∗ ∈ B(H) is the orthogonal projection onto N∗.
Clearly, the two limits in (1.7) coincide if and only if N = N∗, which, ac-
cording to the terminology from [12, 14], means that the A-contraction T is
A-ergodic. In this case, we briefly say that the operator T is A-ergodic.

An important class of A-ergodic operators is the class of regular A-
contractions T , that is, satisfying the condition AT = A1/2TA1/2. For a
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regular A-contraction T we have A − T ∗A = A1/2(A1/2 − T ∗A1/2), whence
it follows that N∗ ⊂ N . This implies A1/2N∗ ⊂ A1/2N ⊂ N∗, hence T is
A-ergodic on H. Ergodic properties of regular A-contractions were studied in
[13]. But those facts refer only to the strong convergence of the corresponding
Cesàro means.

In the present paper we introduce and study the concept of uniform
(quasi-) A-ergodicity for A-contractions, an analogous notion in this setting
to that of orthogonally uniform ergodicity (defined above). We obtain similar
versions for A-contractions of some results of Lin [8], Mbekhta–Zemánek [9]
and Grabiner–Zemánek [6]. Especially, we want to stress the role of some
closed operator ranges in the uniformly ergodic behavior of A-contractions.

2. Ranges and null-spaces for A-contractions. In this section we
study certain properties of ranges and null-spaces of operators which play
an important role in the ergodic behavior of A-contractions. We begin with
facts concerning null-spaces.

Proposition 2.1. If T is an A-contraction on H then

N = N (A1/2(I − T )m) = N (A(I − T )m) = N ((I − T ∗)mA)(2.1)

and

N∗ = N ((I − T ∗)mA1/2),(2.2)

for any integer m ≥ 2.

Proof. Let T be an A-contraction and let h ∈ N (A1/2(I − T )2). Then
k = (I − T )h ∈ N , and since N is invariant for T we have A1/2T jk = A1/2k
for j ≥ 1. Thus for n ≥ 1 we get

A1/2k =
1
n

n−1∑
j=0

A1/2T j(I − T )h =
1
n

(A1/2h−A1/2Tnh),

which implies by (1.3) that ‖A1/2k‖ ≤ (2/n)‖A1/2h‖ → 0 (n → ∞). Hence
A1/2k = 0, which means h ∈ N , and so we have proved the inclusion
N (A1/2(I−T )2) ⊂ N . The converse inclusion is true because N is invariant
for T . Thus, we have the first equality in (2.1) for m = 2. Also, the second
equality in (2.1) for any m is based on the fact that the operator A1/2 is
injective on its range.

Now, we show (2.2) for m = 2. Let h ∈ N ((I − T ∗)2A1/2), so that
k = (I − T ∗)A1/2h ∈ N (I − T ∗). Then T ∗jk = k for j ≥ 1, hence for n ≥ 1,

k =
1
n

n−1∑
j=0

T ∗j(I − T ∗)A1/2h =
1
n

(A1/2h− T ∗nA1/2h).
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Since (1.3) implies T ∗nATn ≤ A we have ‖T ∗nA1/2‖ ≤ 1 (as ‖A‖ = 1), and
obtain

‖k‖ ≤ 1
n

(‖A1/2h‖+ ‖T ∗nA1/2‖ ‖h‖) ≤ 2
n
‖h‖

for any n ≥ 1, and consequently k = 0. Thus, h ∈ N∗ and we have proved
the inclusion N ((I − T ∗)2A1/2) ⊂ N∗. As the converse inclusion is trivial,
the equality (2.2) is true for m = 2.

Considering now the last equality in (2.1), let h ∈ N ((I − T ∗)2A). Then
by (2.2) for m = 2 we have A1/2h ∈ N ((I − T ∗)2A1/2) = N∗, therefore
h ∈ N ((I−T ∗)A) = N . Conversely, if h ∈ N then as above A1/2h ∈ N∗ and
by (2.2), the casem = 2, one has (I−T ∗)2Ah = 0, that is, h ∈ N ((I−T ∗)2A).
Hence, the last equality in (2.1) also holds for m = 2.

Finally, all equalities of (2.1) and (2.2) for m > 2 can be obtained by
recurrence.

Corollary 2.2. If T is A-ergodic then

N = N (A1/2(I − T )m) = N (A(I − T )m)

= N ((I − T ∗)mA) = N ((I − T ∗)mA1/2)

and the orthogonal decomposition

H = R(A1/2(I − T )m)⊕N
holds for any integer m ≥ 2.

Clearly, the case m = 1 holds trivially in this corollary. Now, we can infer
certain relations between the orthogonal complements of the subspaces from
(2.1) and (2.2), that is, between the corresponding operator ranges. But in
ergodic theory it is important to know when some of these ranges are closed.
Concerning this, we have the following.

Theorem 2.3. Let T be a regular A-contraction on H.
(i) R(A(I −T )p) is closed for some (equivalently , all) p ≥ 1 if and only

if R(A1/2(I − T )q) is closed for some (equivalently , all) q ≥ 1. In
this case

R(A(I − T )p) = R(A1/2(I − T )q), p, q ≥ 1.(2.3)

(ii) R((I−T ∗)pA) is closed for some (equivalently , all) p ≥ 2 if and only
if R((I − T ∗)qA1/2) is closed for some (equivalently , all) q ≥ 1. In
this case

R((I − T ∗)pA) = R((I − T ∗)qA1/2), p ≥ 2, q ≥ 1.(2.4)

If furthermore R((I − T ∗)A) is closed , then the relations (2.4) hold
true for p, q ≥ 1.
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Proof. (i) Suppose that R(A(I − T )m) is closed for some integer m ≥ 2.
Then from (2.1) and (2.2) we infer for 1 ≤ p ≤ m,

R(A(I − T )p) = R(A1/2(I − T )p) = R(A(I − T )m) = R(A(I − T )m)

= R(A1/2(I − T )pA1/2(I − T )m−p)

⊂ R(A1/2(I − T )p) ∩R(A(I − T )p),

where we have used the fact that T is a regular A-contraction. This implies

R(A(I − T )p) = R(A1/2(I − T )p) = R(A(I − T )m) =: R
for 1 ≤ p ≤ m, and that R is a closed invariant subspace for A1/2(I − T ).
This operator is surjective on the subspace R = R(A1/2(I − T )m−1) =
R(A(I − T )m), and since T is a regular A-contraction, we also have

R(A(I − T )m+1) = A1/2(I − T )R(A1/2(I − T )m) = A1/2(I − T )R = R.
In particular, R(A(I − T )m+1) is closed. Using the above argument, one
shows by recurrence that all subspaces R(A(I − T )p) and R(A1/2(I − T )q)
(p, q ≥ 1) coincide, that is, the relations (2.3) hold, if R(A(I−T )m) is closed
for some m ≥ 2.

Now assume thatR(A(I−T )) is closed. Since T is a regular A-contraction
one has

R(A1/2(I − T )) = R(A(I − T )) = R(A(I − T )) ⊂ R(A1/2(I − T )),

and it follows that R(A1/2(I − T )) = R(A(I − T )). Then, using the decom-
position (1.5) we deduce that

R(A(I − T )2) = A1/2(I − T )R(A1/2(I − T ))

= A1/2(I − T )H = R(A1/2(I − T )),

and in particular R(A(I − T )2) is closed. This implies by the above remark
that the relations (2.3) hold true for any p, q ≥ 1.

Conversely, if R(A1/2(I−T )m) is closed for some integer m ≥ 1, then by
Proposition 2.1 we have the decomposition

H = R(A1/2(I − T )m)⊕N (A1/2(I − T )m),

whence as above R(A(I−T )2m) = R(A1/2(I−T )m). Hence R(A(I−T )2m)
is closed if R(A1/2(I − T )m) is closed.

(ii) Suppose that R((I − T ∗)mA) is closed for some integer m ≥ 2. Since
T is a regular A-contraction, from (2.1) and (2.2) we have, for 1 ≤ q ≤ m,

R((I − T ∗)qA1/2) = R((I − T ∗)mA) = R((I − T ∗)mA)

= R((I − T ∗)qA1/2(I − T ∗)m−qA1/2) ⊂ R((I − T ∗)qA1/2),

whence

R((I − T ∗)qA1/2) = R((I − T ∗)mA) =: R∗, 1 ≤ q ≤ m.
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It follows that R∗ = R((I − T ∗)m−1A1/2) is a closed invariant subspace for
I − T ∗ and (I − T ∗)R∗ = R∗, that is, I − T ∗ is surjective on R∗. Hence, we
also have

R((I − T ∗)m+1A) = (I − T ∗)R∗ = R∗,

and in particular R((I − T ∗)m+1A) is a closed subspace. So, one finds by
recurrence that all subspaces R((I−T ∗)qA1/2) and R((I−T ∗)pA) coincide,
for any q ≥ 1 and p ≥ m.

Now, since R((I−T ∗)jA1/2) is closed for 1 ≤ j ≤ m− 1, Proposition 2.1
shows that

H = R((I − T ∗)jA1/2)⊕N ((I − T ∗)A1/2),(2.5)

and using this decomposition and the fact that T is a regular A-contraction
we obtain

R((I − T ∗)j+1A) = (I − T ∗)A1/2R((I − T ∗)jA1/2) = R((I − T ∗)A1/2).

Hence all subspaces R((I − T ∗)qA1/2) and R((I − T ∗)pA) coincide for any
q ≥ 1 and p ≥ 2, that is, we have the relations (2.4), if the rangeR((I−T ∗)A)
is closed for some m ≥ 2.

Conversely, suppose that R((I − T ∗)mA1/2) is closed for some integer
m ≥ 1. Then by Proposition 2.1 we have

H = R((I − T ∗)mA1/2)⊕N ((I − T ∗)mA1/2),

and from this we get R((I − T ∗)2mA) = R((I − T ∗)mA1/2). In particular,
R((I − T ∗)2mA) is closed, where 2m ≥ 2.

Next, we assume that R((I − T ∗)A) is closed. Then, as above,

R((I − T ∗)A1/2) = R((I − T ∗)A) ⊂ R((I − T ∗)A1/2),

hence R((I − T ∗)A1/2) = R((I − T ∗)A), and this range is closed. So, from
the decomposition (2.5) for j = 1 we obtain

R((I − T ∗)2A) = R((I − T ∗)A1/2) = R((I − T ∗)A),

this range being closed. Finally, using the above remark, we conclude that
all ranges from (2.4) coincide.

In the ergodic case we have the following theorem, partially suggested by
Proposition 4.5 from [6].

Theorem 2.4. Let T ∈ B(H) be A-ergodic.

(i) R(A1/2−A1/2T ) is closed if and only if R((A1/2−A1/2T )2) is closed.
In this case, the ranges coincide.

(ii) R(A1/2 − T ∗A1/2) is closed if and only if R((A1/2 − T ∗A1/2)2) is
closed. In this case, the ranges coincide.
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(iii) If R(A1/2−A1/2T ) = R(A) and this range is closed , then the opera-
tors (A1/2−A1/2T )|R(A) and I − T ∗|R(A) are invertible in B(R(A))
and

(2.6) [(A1/2 −A1/2T )|R(A)]
−1A1/2h

= lim
n→∞

1
n

n−1∑
j=1

j(A1/2|R(A))
−1A1/2Tn−j−1h

and

((I − T ∗)|R(A))
−1A1/2h = lim

n→∞

1
n

n−1∑
j=1

jT ∗(n−j−1)A1/2h,(2.7)

for any h ∈ H.
Proof. (i) Let B = A1/2 −A1/2T and R = R(B). First suppose that the

subspace R is closed. Then

R = BH = B(R⊕N ) = BR = R(B2),

hence R(B2) is closed. Conversely, if R(B2) is closed then

R = B(R⊕N ) = BR ⊂ B2H = R(B2) ⊂ R,
therefore R = R(B2), and consequently R is closed.

(ii) Let R∗ = R(B∗). If R∗ is closed then, as N = N∗, we have

R∗ = B∗(R∗ ⊕N∗) = B∗R∗ = R(B∗2),

hence R∗ = R(B∗2), and in particular R(B∗2) is closed. Conversely, if
R(B∗2) is closed then as T is A-ergodic one has H = R(B∗)⊕N∗, so

R∗ = B∗H = B∗R(B∗) ⊂ R(B∗2) = R(B∗2) ⊂ R∗,
that is, R∗ = R(B∗2) and R∗ is closed.

(iii) Now suppose that R = R(A) and that this range is closed. Then
R(A) = R(A1/2). Indeed, as N (A) = N (A1/2) we have R(A1/2) = R(A) =
R(A) ⊂ R(A1/2), hence R(A1/2) is closed and so R(A) = R(A1/2). Hence
A1/2 is invertible in B(R(A)). Also, if T̂ is the contraction on R(A) given
in (1.6), from the assumption R = R(A) we infer that R(I − T̂ ) = R(A),
or equivalently N (I − T̂ ) = {0}. So, I − T̂ is invertible in B(R(A)) and by
Proposition 4.5 of [6] we have, for h′ ∈ H,

(I − T̂ )−1A1/2h′ = lim
n→∞

1
n

n−1∑
j=1

jT̂n−j−1A1/2h′ = lim
n→∞

1
n

n−1∑
j=1

jA1/2Tn−j−1h′.

Since R(A) = R(A1/2), for any h ∈ H there exists k ∈ H such that A1/2h =
(I−T̂ )Ak = (A1/2−A1/2T )A1/2k. HenceR(A) is an invariant (in fact, reduc-
ing) subspace for A1/2 −A1/2T and the operator V := (A1/2 −A1/2T )|R(A)
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is surjective on R(A). It is also injective because if V A1/2h = 0 then
A1/2h ∈ R(A) ∩ N = {0} by our assumption that R(A) = N⊥, there-
fore A1/2h = 0. Thus, V is invertible in B(R(A)), and for h and k as above
we get

lim
n→∞

1
n

n−1∑
j=1

jA1/2Tn−j−1h = (I − T̂ )−1A1/2h = Ak = A1/2V −1A1/2h,

whence the formula (2.6) immediately follows.
Next, we remark that the subspace R∗ = R(A1/2 − T ∗A1/2) is closed, in

fact R∗ = R = R(A). Indeed, as R(I − T̂ ) = R is closed, Theorem 1 of [8]
shows R(I − T̂ ∗) is also closed, where T̂ ∗ = (T̂ )∗, hence

R∗ = (I − T ∗)AH = A1/2(I − T̂ ∗)A1/2H = A1/2R(I − T̂ ∗)
= A1/2R(I − T̂ ) = A1/2R = A1/2R(A),

A1/2 being invertible on R(A). Since R∗ = R, it follows that R∗ = R =
R(A). This implies that the operator W := I − T ∗|R(A) is surjective on
R(A). It is also injective because

R(A) ∩N (I − T ∗) = R(W ) ∩N (W ) = {0}
by Theorem 3.2 of [14]. Thus, W is invertible in B(R(A)) and Proposition
4.5 of [6] yields

W−1A1/2h = lim
n→∞

1
n

n−1∑
j=1

jT ∗(n−j−1)A1/2h (h ∈ H),

which is the formula (2.7).

Remark 2.5. Let T be an A-contraction on H and R,R∗ be as in the
previous proof. Then the condition R = R(A) is equivalent to N∗ = N (A).
In this case it follows that T is A-ergodic, because N (A) reduces A, hence we
also have R∗ = R(A). Moreover, by the same argument as in the previous
proof, R = R(A) implies R∗ = R(A), and therefore R = R(A) = R∗.

If R = R(A), then by Theorem 2.4 of [14] we have

lim
n→∞

1
n

n−1∑
j=0

A1/2T jh = lim
n→∞

1
n

n−1∑
j=0

T ∗A1/2h = 0 (h ∈ H).

3. Uniform quasi-A-ergodicity. In this section we investigate certain
conditions under which for a given A-contraction T on H there exists an
operator Q ∈ B(H) such that n−1

∑n−1
j=0 A

1/2T j converges uniformly to Q in
B(H). We then say that T is uniformly quasi-A-ergodic. In this case, we infer
from (1.7) that Q = P∗A

1/2, where P∗ is the orthogonal projection onto the
null-space N∗. Obviously, the limit Q = P∗A

1/2 of such an A-contraction T
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is a self-adjoint operator if and only if T is A-ergodic. An A-contraction can
be uniformly quasi-A-ergodic and not A-ergodic, as in the following

Example 3.1. Let A, T ∈ B(C2) be the operators given by

A =

(
2 1
1 1

)
, T =

(
0 0
1 1

)
.

Then AT = T ∗AT =
(

1 1
1 1

)
, therefore T is an A-contraction on C2. Since A

is invertible and

A1/2 =
1√
5

(
3 1
1 2

)
, A1/2T =

1√
5

(
1 1
2 2

)
,

the operator T̂ = A1/2TA−1/2 on C2 has the form

T̂ =
1
5

(
1 2
2 4

)
.

Furthermore, since N (A) = {0} we have

N∗ = N (I − T̂ ) = {(λ, 2λ) : λ ∈ C},
and T̂ is just the orthogonal projection corresponding to this null-space.
Then, as T 2 = T , we obtain

1
n

n−1∑
j=0

A1/2T j − T̂A1/2 =
1
n
A1/2[I + (n− 1)T ]−A1/2T =

1
n
A1/2(I − T )→ 0

as n → ∞. Hence T is uniformly quasi-A-ergodic. On the other hand, we
have N = {0} ⊕ C, so N 6= N∗, and consequently T is not A-ergodic.

Proposition 3.2. Let T be an A-contraction on H.
(i) If T̂ is orthogonally uniformly ergodic on R(A), then T is uniformly

quasi-A-ergodic on H.
(ii) If A is an orthogonal projection in B(H), then the converse of (i)

holds true.

Proof. (i) If P0 ∈ B(AH) is the orthogonal projection onto N (I − T̂ ),
then for n ≥ 1 we have (since ‖A‖ = 1)∥∥∥∥ 1

n

n−1∑
j=0

A1/2T j − P∗A1/2

∥∥∥∥ ≤ sup
‖h‖≤1

∥∥∥∥( 1
n

n−1∑
j=0

T̂ j − P0

)
A1/2h

∥∥∥∥
≤
∥∥∥∥ 1
n

n−1∑
j=0

T̂ j − P0

∥∥∥∥.
Hence, if the contraction T̂ is orthogonally uniformly ergodic on R(A), then
T is uniformly quasi-A-ergodic on H.
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(ii) Suppose that A is an orthogonal projection in B(H). As A = A2, for
n ≥ 1 we obtain∥∥∥∥ 1

n

n−1∑
j=0

T̂ j − P0

∥∥∥∥ = sup
h∈AH,‖h‖≤1

∥∥∥∥( 1
n

n−1∑
j=0

T̂ j − P0

)
Ah

∥∥∥∥
= sup

h∈AH,‖h‖≤1

∥∥∥∥( 1
n

n−1∑
j=0

AT j − P∗A
)
h

∥∥∥∥ ≤ ∥∥∥∥ 1
n

n−1∑
j=0

AT j − P∗A
∥∥∥∥.

Consequently, if T is uniformly quasi-A-ergodic on H, then T̂ is orthogonally
uniformly ergodic on R(A).

Remark 3.3. It is easy to see that, if A is an orthogonal projection in
B(H), then the matrix form of the A-contractions T on H relative to the
decomposition H = N (A)⊕R(A) is

T =

(
S R

0 C

)
,

where S ∈ B(N (A)) and R ∈ B(R(A),N (A)) are arbitrary operators, while
C is a contraction on R(A). Furthermore, we have CAh = ATh = T̂Ah for
h ∈ H, therefore C = T̂ . We also observe that ATh = T̂Ah = ATAh for
h ∈ H, which means AT = ATA. Hence T is a regular A-contraction if A is
an orthogonal projection.

Conversely, we can show that a regular A-contraction T on H is also a
Q-contraction, Q being the orthogonal projection onto R(A). In addition, in
this case the two contractions T̂ on R(A) = R(Q) associated to T relative to
A and Q (as in (1.6)) coincide. Thus, from Proposition 3.2 it follows that if T
is uniformly quasi-Q-ergodic then T is also uniformly quasi-A-ergodic. The
converse is also true if R(A) is closed, that is, T uniformly quasi-A-ergodic
implies T uniformly quasi-Q-ergodic; this is a consequence of Proposition
3.2 and Corollary 4.2 below.

Now, from the previous proposition and Theorem 1 of [9] we infer the
following

Corollary 3.4. If T is an A-contraction on H such that the range
R(A1/2(I − T )m) is closed for some integer m ≥ 1, then T is uniformly
quasi-A-ergodic.

Proof. Firstly, we have

R(A1/2(I − T )m) = (I − T̂ )mA1/2H ⊂ R((I − T̂ )m)

⊂ R((I − T̂ )m) = R(A1/2(I − T )m).
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Thus, if R(A1/2(I − T )m) is closed, then so is R((I − T̂ )m), and Theo-
rem 1 of [9] implies that the contraction T̂ is orthogonally uniformly ergodic
on R(A). Then Proposition 3.2 shows that T is uniformly quasi-A-ergodic
on H.

Remark 3.5. If T is a regular A-contraction, we can prove the assertion
of the above corollary directly, as follows. First notice that in view of Theo-
rem 2.3 we can suppose that R = R(B) is closed, where B = A1/2−A1/2T .
Since H = R⊕N , we have R = BH = BR so the operator B is surjective
on R. But it is also injective on R because N (B|R) ⊂ R∩N = {0}. Hence
C = B|R is invertible in B(R).

Now we prove that Bn := n−1
∑n−1

j=0 A
1/2T j (n ≥ 1) converges uniformly

to A1/2P as n→∞, P being the orthogonal projection onto the null-spaceN
(that is, P = P∗ in this case). Let h ∈ H with ‖h‖ = 1. We write h = h0 +h1

where h0 ∈ R and h1 ∈ N . Then Bnh = Bnh0 + A1/2h1 = Bnh0 + A1/2Ph,
and since C is invertible, one has h0 = CC−1h0 = Ch2. Thus, we deduce
that

‖Bnh−A1/2Ph‖ = ‖Bnh0‖ =
∥∥∥∥ 1
n

n−1∑
j=0

A1/2T j(A1/2 −A1/2T )h2

∥∥∥∥
=

1
n

∥∥∥∥ n−1∑
j=0

(AT j −AT j+1)h2

∥∥∥∥ =
1
n
‖A(I − Tn)C−1h0‖

≤ 2
n
‖C−1‖,

because ‖h0‖ ≤ ‖h‖ ≤ 1. Consequently, ‖B −A1/2P‖ → 0 as n→∞, i.e. T
is uniformly quasi-A-ergodic on H. In fact, T is A-ergodic, being a regular
A-contraction on H.

We also notice that, concerning the converse to the assertion of Corol-
lary 3.4, we will show in the following section a partial result, using a stronger
concept than uniform quasi-A-ergodicity for A-contractions.

4. Uniform A-ergodicity. We say that an A-contraction T on H is
uniformly A-ergodic (briefly, T is uniformly A-ergodic) if it is A-ergodic and
uniformly quasi-A-ergodic.

Concerning the converse to the assertion of Corollary 3.4 one has

Theorem 4.1. If T ∈ B(H) is uniformly A-ergodic and R(A) is closed ,
then R(A1/2 −A1/2T ) = R(A1/2 − T ∗A1/2) and this range is closed.

Proof. Let R, Bn and P be as in Remark 3.5. Suppose that R(A) is
closed and ‖Bn − PA1/2‖ → 0 as n→∞.
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First we show that R is closed. Since R(A) = R(A1/2), it follows that
R = R(I − T̂ ), hence the subspace R reduces T̂ . We define S := T̂ |R, which
is a contraction on R. As A1/2 is invertible in B(A1/2H), for r ∈ R and
n ≥ 1 we obtain

1
n

n−1∑
j=0

Sjr =
1
n

n−1∑
j=0

A1/2T jA−1/2r = BnA
−1/2r.

But A−1/2r ∈ R, because T being A-ergodic one has

R = (A−AT )H = A1/2R,

hence A1/2 is invertible on R. Also, one obtains

BnR ⊂
n−1∨
j=0

SjA1/2R =
n−1∨
j=0

SjR ⊂ R,

therefore R is invariant for Bn, n ≥ 1. As PR = {0}, we obtain for r ∈ R
and n ≥ 1,∥∥∥∥ 1

n

n−1∑
j=0

Sjr

∥∥∥∥ = ‖(Bn − PA1/2)A−1/2r‖ ≤ ‖A−1/2|R‖ ‖Bn − PA1/2‖ ‖r‖,

whence it follows that n−1
∑n−1

j=0 S
j → 0 (n → ∞) uniformly in B(R). So,

there exists an integer n0 ≥ 1 such that∥∥∥∥ 1
n0

n0−1∑
j=0

Sj

∥∥∥∥ < 1,

hence I − n−1
0

∑n0−1
j=0 Sj is an invertible operator in B(R). Since

I − 1
n0

n0−1∑
j=0

Sj =
1
n0

(I − S)
n0−1∑
j=1

j−1∑
i=0

Si,

the invertibility of the product and the fact that the factors on the right
side commute imply that the operator I −S is invertible in B(R). Therefore
(I − S)R = R, which leads to

(A1/2 −A1/2T )R = (I − T̂ )A1/2R = (I − T̂ )R = (I − S)R = R,

and next
R = (A1/2 −A1/2T )R ⊂ (A1/2 −A1/2T )H = R.

Consequently, the subspace R is closed.
Now, we show that the ranges R∗ = R(A1/2 − T ∗A1/2) and R coincide.

Being in the A-ergodic case, we know that R∗ = R, hence R∗ ⊂ R. Since
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T ∗A1/2h = A1/2T̂ ∗h for any h ∈ R(A), we obtain

(A1/2 − T ∗A1/2)R∗ = A1/2(I − T̂ ∗)R∗ = A1/2(I − S∗)R = A1/2R = R,
whence

R = (A1/2 − T ∗A1/2)R∗ ⊂ (A1/2 − T ∗A1/2)H = R∗.
Finally, we get R = R∗, and the proof is finished.

Corollary 4.2. Let T ∈ B(H) be A-ergodic with R(A) closed. The
following assertions are equivalent :

(i) T is uniformly A-ergodic;
(ii) T̂ is orthogonally uniformly ergodic on R(A);
(iii) R(A1/2(I − T )m) is closed for some integer m ≥ 1;
(iv) R(A−AT ) is closed ;
(v) R(A− T ∗A) is closed ;
(vi) R(A1/2 − T ∗A1/2) is closed ;
(vii) For every h ∈ R(A−AT ) one has

sup
n≥1

∥∥∥∥ n∑
j=0

A1/2T jh

∥∥∥∥ <∞.(4.1)

Furthermore, if these conditions are satisfied we have

R(A−AT ) = R(A1/2 −A1/2T ) = R(A1/2 − T ∗A1/2)(4.2)
= R(A− T ∗A).

Proof. Clearly, (i) implies (iii) (with m = 1) by Theorem 4.1, and (iii) is
equivalent to (ii) by Theorem 1 of [9].

On the other hand,R(A) is a closed reducing subspace for A1/2, therefore
A0 := A1/2|R(A) is an invertible operator on R(A). Since

R(A−AT ) = A0R(I − T̂ ) = A1/2R(I − T̂ ∗) = R(A− T ∗A),

because A1/2T̂ ∗h = T ∗A1/2h for h ∈ R(A), it follows from the above remark
that (iii), (iv) and (v) are equivalent. Also, (v) implies

R∗ := R(A1/2 − T ∗A1/2) ⊂ R(A− T ∗A) ⊂ R∗,
hence R∗ = R(A− T ∗A), and in particular R∗ is a closed subspace. So, (v)
implies (vi) and

R := R(A1/2 −A1/2T ) = R(A−AT ) = R(A− T ∗A).

Since we also have

R = R = R∗ ⊃ R∗ ⊃ (A1/2 − T ∗A1/2)A1/2H = R,
it follows that R = R∗. Conversely, if the range R∗ is closed, then
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R(A− T ∗A) = A1/2R∗ = A0R∗ = R(A− T ∗A),

that is, R(A− T ∗A) is closed, and consequently (vi) implies (v).
Now, (ii) implies by Corollary 1 of [8] that

sup
n≥1

∥∥∥ n∑
j=0

T̂ jk
∥∥∥ <∞

for every k ∈ R(I − T̂ ) = R = R(A−AT ), the last equality holding because
T is A-ergodic. As A1/2k ∈ R(I − T̂ ) for k as above, we can put A1/2k
instead of k in the previous condition, to obtain (4.1). Therefore, (ii) implies
(vii). Finally, the implication (vii)⇒(i) follows from the following proposition
(where the closedness of R(A) is not necessary).

Proposition 4.3. If the A-contraction T on H is A-ergodic and satisfies
the condition (4.1), then T is uniformly A-ergodic.

Proof. Let T be as in the hypothesis and R, Bn and P be as in Re-
mark 3.5. Since the subspace R is reducing for the operators A1/2T j , j ≥ 0
(see [14]), it is also reducing for Bn, n ≥ 1. Then from the condition (4.1)
we infer that the sequence {nBn|R}n≥1 is bounded in B(R), therefore {Bn}
uniformly converges to zero in B(R). Let h ∈ H with ‖h‖ = 1. We put
h = h0 +h1 where h0 ∈ R and h1 ∈ N = R⊥. Then Bnh = Bnh0 +A1/2h1 =
Bnh0 +A1/2Ph. Therefore

‖(Bn −A1/2P )h‖ = ‖Bnh0‖ ≤ ‖Bn|R‖,

whence ‖Bn −A1/2P‖ ≤ ‖Bn|R‖, and hence ‖Bn −A1/2P‖ → 0 as n→∞.
In conclusion, T is uniformly A-ergodic.

Since in the A-ergodic case the above subspace R reduces the operators
A1/2T j (j ≥ 0), the condition (4.1) is equivalent to

sup
n≥1

∥∥∥( n∑
j=0

A1/2T j
)∣∣∣
R

∥∥∥ <∞.(4.3)

Proposition 4.4. Let T be a regular A-contraction on H. If the range
R(A1/2 −A1/2T ) is closed then the condition (4.3) is satisfied.

Proof. Suppose that R = R(A1/2 − A1/2T ) is a closed subspace. Then
the operator A1/2−A1/2T is invertible in B(R), being surjective by Theorem
2.4(i), and injective by (1.5), on R. Therefore, there exists a constant c > 0
such that ‖k‖ ≤ c‖h‖ for every h = (A1/2−A1/2T )k ∈ R with k ∈ H. Thus,
using the fact that T is a regular A-contraction, we obtain for h as above
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∥∥∥ n∑
j=0

A1/2T jh
∥∥∥ =

∥∥∥ n∑
j=0

A(T j − T j+1)k
∥∥∥ ≤ ‖A(I − Tn+1)k‖

≤ ‖A1/2k‖+ ‖A1/2Tn+1k‖ ≤ 2c‖h‖.
Hence the condition (4.3) holds true.

Remark 4.5. For an A-contraction T on H one has in general R0 :=
R(A−AT ) 6= R(A1/2 −A1/2T ) = R. But R0 and R are contained in R(A)
and R0 = Ã0R, where Ã0 = A1/2|R(A)

is an injective operator on R(A).
Hence R = (Ã0)−1R0 is a closed subspace if R0 is. But if R(A) is closed
then Ã0 = A0 is an invertible operator on R(A), and in this case R0 is closed
if R is.

Next, we investigate the case when the range R0 is closed in the following
theorem which completes Theorem 2.4 and Corollary 4.2.

Theorem 4.6. Let T ∈ B(H) be A-ergodic with R = R(A−AT ) closed.
Then the relations (4.2) hold true and :

(i) The subspace R is reducing for T , the operators A and I − T are
invertible on R and

(I − T |R)−1r = lim
n→∞

1
n

n−1∑
j=1

jTn−j−1r (r ∈ R).(4.4)

(ii) The operators T0 := T |H0 where H0 = R ⊕ N (I − T ), and T∗ :=
T ∗|R(A)

, are orthogonally uniformly ergodic on H0 and R(A), re-
spectively. Moreover , we have the relations

R = R(I − T0) = R(I − T∗),(4.5)

R(A) = R⊕N (I − T ∗), N (I − T ∗) = A1/2N = N (I − T∗),(4.6)

R(I − T ) = R⊕N (A), N (A) = (I − T )N ,(4.7)

and

N (I − T ) = N ∩ [(I − T ∗)N (A)]⊥ = N (I − T0).(4.8)

Proof. (i). SinceR(A−AT ) is closed,R = R(A1/2−A1/2T ) is also closed
by Remark 4.5, so R = R(A−AT ). Then A1/2R = R, hence AR = R and
A is an invertible operator on R, because R ⊂ R(A1/2) and A1/2 is injective
on R(A1/2). On the other hand, since R is closed, Corollary 3.4 implies that
T is uniformly A-ergodic.

Let Bn := n−1
∑n−1

j=0 A
1/2T j , n ≥ 1. The subspace R is invariant for

T ∗, because T ∗R = T ∗A1/2R ⊂ R and R = R is reducing for A1/2T , T
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being A-ergodic. Hence R is invariant for B∗n, and putting A1 = A1/2|R and
T̃ := T ∗|R, for r ∈ R with ‖r‖ = 1 and n ≥ 1 we obtain∥∥∥∥ 1

n

n−1∑
j=0

T̃ jr

∥∥∥∥ = ‖B∗nA−1
1 r‖ ≤ ‖A−1

1 ‖
‖B∗nA−1

1 r‖
‖A−1

1 r‖

≤ ‖A−1
1 ‖ ‖B

∗
n|R‖ ≤ ‖A−1

1 ‖ ‖B
∗
n −A1/2P‖.

Since ‖B∗n − A1/2P‖ → 0 as n→∞, we have n−1
∑n−1

j=0 T̃
j → 0 as n→∞,

uniformly in B(R). Thus the operator I − T̃ is invertible in B(R), therefore
(I − T̃ )R = R. This implies

R = (I − T ∗)A1/2R = (A1/2 − T ∗A1/2)R ⊂ R(A1/2 − T ∗A1/2) ⊂ R = R,

whence R = R(A1/2 − T ∗A1/2) = (A1/2 − T ∗A1/2)R. Next we get

R(A− T ∗A) = R = (A1/2 − T ∗A1/2)R = (A− T ∗A)A−1
1 R ⊂ R(A− T ∗A),

which leads to R = R(A− T ∗A). Hence the relations (4.2) are proved.
Now we remark that

R = (A1/2 −A1/2T )H = (A1/2 −A1/2T )(R⊕N ) = (A1/2 −A1/2T )R.

Since A1/2 is invertible on R, we get (I − T )R = R, therefore the subspace
R is reducing for T and the operator I − T is surjective on R. Clearly, it is
also injective on R, because N (I − T |R) ⊂ R∩N = {0}. We infer that it is
invertible on R, and Proposition 4.5 of [6] implies that (I − T |R)−1 is given
by the limit from (4.4). Thus we have proved assertion (i).

(ii) First we show that N (A) = (I − T )N . Clearly, (I − T )N ⊂ N (A).
Next, if h0 ∈ N (A) and h is orthogonal to (I − T )N , then (I − T ∗)h0 is
orthogonal to N , therefore (I − T ∗)h0 ∈ R, and also h0 ∈ R because I − T ∗
is invertible on R. Hence h0 = 0, and we have N (A) = (I − T )N .

Now, using the decomposition H = R⊕N , we obtain

R(I − T ) = (I − T )R⊕ (I − T )N = R⊕N (A),

whence N (I − T ∗) = N 	N (A) = A1/2N (see [12, 14]), and consequently

R(A) = R⊕N (I − T ∗).

Let us prove that the operator T∗ := T ∗|R(A)
is orthogonally uniformly

ergodic. Let h ∈ R(A) with ‖h‖ = 1. Putting h = h0 + h1 with h0 ∈ R and
h1 ∈ N (I − T ∗) = N (I − T∗), for n ≥ 1 we have

n−1
n−1∑
j=0

T j
∗h = n−1

n−1∑
j=0

T j
∗h0 + h1.

So, if P1 ∈ B(AH) is the orthogonal projection onto N (I − T∗) and A1 :=
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A1/2|R, we infer that∥∥∥∥ 1
n

n−1∑
j=0

T j
∗h− P1h

∥∥∥∥ =
∥∥∥∥ 1
n

n−1∑
j=0

T j
∗h0

∥∥∥∥ = ‖(B∗n − PA1/2)A−1
1 h0‖

≤ ‖A−1
1 ‖ ‖Bn −A1/2P‖,

P being as usual the orthogonal projection ofH onto N . Since T is uniformly
A-ergodic, we conclude that ‖n−1

∑n−1
j=0 T

j
∗ − P1‖ → 0 (n → ∞), hence T∗

is orthogonally uniformly ergodic on R(A). This implies by Theorem 1 of [8]
that R(I − T∗) is closed, in fact R(I − T∗) = R because N (I − T∗) =
N (I − T ∗). Also, we infer that

R(I − T ∗) = R∨ (I − T ∗)N (A),

whence
N (I − T ) = N ∩ [(I − T ∗)N (A)]⊥.

Now, the subspace H0 = R ⊕ N (I − T ) is clearly invariant for T , and
the operator T0 := T |H0 is orthogonally uniformly ergodic on H0. Indeed, if
h = r + k ∈ H0 with r ∈ R and k ∈ N (I − T ), and if P0 ∈ B(H0) is the
orthogonal projection onto N (I − T ), then for n ≥ 1 we have as above∥∥∥∥ 1

n

n−1∑
j=0

T j
0h− P0h

∥∥∥∥ =
∥∥∥∥n−1

n−1∑
j=0

T j
0 r

∥∥∥∥ =
∥∥∥∥A−1

1

(
1
n

n−1∑
j=0

A1T
j
0 r −A1Pr

)∥∥∥∥
≤ ‖A−1

1 ‖ ‖(Bn −A1/2T )r‖
≤ ‖A−1

1 ‖ ‖Bn −A1/2P‖ ‖r‖.

Since T is uniformly A-ergodic on H we obtain∥∥∥∥ 1
n

n−1∑
j=0

T j
0 − P0

∥∥∥∥→ 0 (n→∞),

and consequently T0 is orthogonally uniformly ergodic on H0. Finally, we
deduce from Theorem 1 of [8] that R(I−T0) is closed, in fact R(I−T0) = R
because N (I − T0) = N (I − T ). Thus, assertion (ii) and all relations (4.5)–
(4.8) are proved, and the proof is finished.

Corollary 4.7. If T ∈ B(H) is A-ergodic with A injective and the
range R(A−AT ) is closed , then T is orthogonally uniformly ergodic on H.

Proof. If N (A) = {0} then N (I − T ) = N , hence we have H0 = H in
the above theorem.

Also, we infer immediately from Theorem 4.6, Corollary 4.2 and Propo-
sition 4.5 of [6] the following
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Corollary 4.8. Let T be an A-contraction on H such that R = R(A).
The following assertions are equivalent :

(i) R = R(A);
(ii) T is uniformly A-ergodic on H;
(iii) I − T |R is invertible in B(R);
(iv) (A1/2 −A1/2T )|R is invertible in B(R);
(v) supn≥1 ‖

∑n
j=0A

1/2T j‖ <∞;
(vi) supn≥1 supAh 6=0 ‖Bn(T )h‖/‖A1/2h‖ <∞, where

Bn(T ) = n−1
n−1∑
j=1

jA1/2Tn−j−1, n ≥ 1.

Let us remark that if (I−T ∗)N (A) = N (A) in Theorem 4.6 thenN (I−T )
= N (I−T ∗), and in this case T is orthogonally mean ergodic on H, T being
also orthogonally uniformly ergodic on its reducing subspace R(A) = H0. In
general, T is not orthogonally mean ergodic even if T is uniformly A-ergodic,
as we can see in the following example. But if T is orthogonally uniformly
ergodic and is an A-contraction then T is uniformly A-ergodic.

Example 4.9. Let A, T ∈ B(C3) be the operators given by

A =

2 0 2
0 1 0
2 0 2

 , T =

1 0 1
0 0 0
0 0 0

 .

Then T is a regular A-contraction on C3 and we have

R = R(A−AT ) = {0} ⊕ C⊕ {0}, N (A) = {(λ, 0,−λ) : λ ∈ C}
and

N (I − T ) = C⊕ {0} ⊕ {0} 6= {(λ, 0, λ) : λ ∈ C} = N (I − T ∗).
Thus, T is not orthogonally uniformly ergodic. But T is uniformly A-ergodic.
Indeed, we first observe that T = TP , P being the orthogonal projection
onto the subspace N = C ⊕ {0} ⊕ C = N∗. Also, since T 2 = T , it follows
that A1/2T j = A1/2T = A1/2TP = A1/2P (j ≥ 1), because A1/2T = A1/2

on N . Then we obtain

1
n

n−1∑
j=0

A1/2T j −A1/2P =
1
n
A1/2(I − T )→ 0 (n→∞).

Finally, we also remark that [(I − T ∗)N (A)] ∩ N (A) = {0}, but the two
subspaces are not orthogonal.

This example gives a regular A-contraction T which is uniformly A-
ergodic with R 6= R(A) and R closed, such that T is not orthogonally
mean ergodic.
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Now, we can get a non-regular A-contraction T on C3 with A non-
injective and R = R(A), such that T is orthogonally uniformly ergodic,
hence also uniformly A-ergodic (see Corollaries 4.7 and 4.8).

Example 4.10. Let A, T ∈ B(C3) be the operators given by

A =

1 0 1
0 1 0
1 0 1

 , T =

0 0 0
1 0 1
0 0 0

 .

It is easy to see that T is non-regular A-ergodic on C3 with N = N (A) =
{(λ, 0,−λ) : λ ∈ C}. Hence R = R(A) and by Corollary 4.8, T is uniformly
A-ergodic. Since T 2 = 0 we have

1
n

n−1∑
j=0

T j =
1
n

(I + T )→ 0 (n→∞),

and the orthogonal projection onto N (I − T ) is the null operator, because
(I − T ∗)N (A) = N (A) which implies N (I − T ) = N 	N (A) = {0}. So, T
is orthogonally uniformly ergodic on C3 and in this case H0  C3, H0 being
the corresponding subspace from Theorem 4.6.

This example also shows that, in general, H0 is not the largest invariant
subspace for T with the property that T |H0 is orthogonally uniformly ergodic.

The finite-dimensional examples presented above show some new phe-
nomena concerning the concept of uniform (quasi-) A-ergodicity. Of course,
such examples can also be given in the infinite-dimensional case, where we
can get classes of operators which are uniformly A-ergodic without being or-
thogonally uniformly ergodic, even operators which are not power bounded.
We will exhibit such classes of operators below.

Firstly, let T ∈ B(H) be hyponormal, that is, satisfying T ∗T ≤ TT ∗, such
that N (I−T ) 6= 0. Then N (I−T ) reduces T (I−T is also hyponormal), and
if A0 ∈ B(N (I−T )) is an arbitrary positive operator and A = A0⊕0 ∈ B(H),
we have T ∗AT = A, that is, T is an A-isometry. Since AT = TA, it follows
that T is just a regular A-isometry, hence T is A-ergodic. Moreover, T is
even uniformly A-ergodic because n−1

∑n−1
j=0 A

1/2T j = A1/2 for any n ≥ 1.
Here R(A − AT ) = {0} so it is a closed subspace, but neither R(A) nor
R(I − T ) is closed in general. Also, {n−1Tn} may not converge to 0 in the
strong operator topology (even for some unilateral weighted shifts; see [7]).
Thus, by the well known results on uniform ergodicity ([6], [8], [9], [15], [16])
it follows that such operators T are not orthogonally uniformly ergodic, and
clearly, they are not power bounded in general.

Now let T be a regularA-contraction for a positive operatorA onH. Then
from Corollary 3.4 and Remark 4.5 we see that the closedness of R(A−AT )
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ensures that T is uniformly A-ergodic. But the first relation in (4.7) shows
that R(I − T ) is not closed, hence T is not orthogonally uniformly ergodic
on H, in general. For T as above it is clear that R0 = R(A − AT ) ⊂
R(A1/2−A1/2T ) = R, and as we have seen, R is closed if R0 is. Conversely,
R0 is closed if R is, and in fact R0 = R in this case. Indeed, when R is
closed, by Theorem 2.4(i) we have (using the condition AT = A1/2TA1/2)

R = R((A1/2 −A1/2T )2) = R[(A−AT )(I − T )] ⊂ R(A−AT ) = R0,

hence R = R0.
By Remark 3.3 the class of all regular A-contractions on H for any 0 ≤

A ∈ B(H) can be identified with the class of P -contractions on H, P being
any orthogonal projection in B(H). On the other hand, if T is a P -contraction
then R(P ) is an invariant subspace for T ∗ and if we put T1 = T ∗|R(P ) then
T is a lifting of T0 = T ∗1 , which means (see [5]) that PT = T0P . Conversely,
if T ∈ B(H) andM⊂ H is an invariant subspace for T ∗ such that T ∗|M is a
contraction onM, then T is a lifting for (T ∗|M)∗ and one has (PM ∈ B(H)
being the orthogonal projection ontoM)

T ∗PMT = PM(T ∗|M)(T ∗|M)∗PM ≤ PM,
hence T is a PM-contraction on H. Thus, by the above remark, the class of
all regular A-contractions on H can be identified with the class of all liftings
T (in B(H)) of contractions on invariant subspaces of T ∗.

Liftings of contractions have been studied and applied in operator theory
(see [5]), and we now see that such operators are ergodic in the sense of A-
contractions. In view of the matrix representation of T in Remark 3.3 (where
S and R are arbitrary operators), it is clear that a lifting of a contraction is
not power bounded in general.

Finally, we mention a class of A-isometries having bounded powers.
According to [10] we say that 0 6= T ∈ B(H) is a quasi-isometry if it is

a T ∗T -isometry. Clearly, such a T has bounded powers, and ‖T‖ = 1 if and
only if T is hyponormal ([10]). Also, a contractive quasi-isometry T is regular
if and only if T is quasinormal (that is, T ∗T 2 = TT ∗T ). A quasi-isometry T
has a matrix representation on H = R(T )⊕N (T ∗) of the form

T =

(
V S

0 0

)
(4.9)

where V = T |R(T )
is an isometry and S is a bounded linear operator from

N (T ∗) into R(T ). Using this representation we find that ‖T‖ = 1 if and only
if V ∗S = 0 and ‖S‖ ≤ 1. But if we suppose only V ∗S = 0, then T ∗T 2 = T
and it is easy to see that

N (T ∗T − T ) = N (I − V )⊕N (S).
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Since T ∗T = IR(T )
⊕ S∗S in this case, we infer that

T ∗TN (T ∗T − T ) = N (I − V ) ⊂ N (T ∗T − T ),

which (since T is power bounded) implies that T is T ∗T -ergodic. On the
other hand, since

I − T =

(
I − V −S

0 I

)
, T ∗T − T =

(
I − V −S

0 S∗S

)
it follows (by Lemma 3.14 of [10]) that R(T ∗T − T ) is closed if and only if
R(I−T ) and R(S) are closed. Now in view of the condition V ∗S = 0 we de-
duce (by Theorem 3.11 [10]) thatR(S) is closed, if and only ifR(T ) is closed,
and so we conclude thatR(T ∗T−T ) is closed if and only ifR(T ) andR(I−T )
are closed. Since T is power bounded one has n−1‖Tn‖ → 0 (n → ∞), and
so the fact that R(I − T ) is closed means that T is uniformly ergodic (as in
[9], [6], [8]). But it is easy to see that N (I − T ) = N (I − V ) = N (I − T ∗)
when V ∗S = 0, hence one has (1.2) and T is even orthogonally uniformly er-
godic if R(I−T ) is closed, and in this case T is also uniformly T ∗T -ergodic.
This shows that T can be uniformly T ∗T -ergodic without R(T ∗T −T ) being
closed, as it happens if R(I − T ) is closed but R(T ) is not.
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