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On generalized derivations in Banach algebras

by

Nadia Boudi and Said Ouchrif (Zitoune Meknes)

Abstract. We study generalized derivations G defined on a complex Banach algebra
A such that the spectrum σ(Gx) is finite for all x ∈ A. In particular, we show that if A is
unital and semisimple, then G is inner and implemented by elements of the socle of A.

1. Introduction. The notion of generalized derivation is due to Bre-
šar [6]. Let A be an algebra. A linear mapping G : A → A is called a
generalized derivation if there exists a derivation d : A → A such that
G(xy) = (Gx)y + xdy for all x, y ∈ A. A linear map T : A → A is called a
left centralizer in case T (xy) = (Tx)y for all x, y ∈ A. If G is a generalized
derivation determined by a derivation d, thenG−d is a left centralizer. Hence
a generalized derivation is a sum of a derivation and a left centralizer. We
say G is inner if there exist a, b ∈ A such that Gx = ax+ xb for all x ∈ A.
Obviously, if the algebra is unital then Gx = (G1)x + dx for all x ∈ A;
in this case G is inner if and only if d is inner [6]. For results concerning
generalized derivations we refer the reader to [1, 6, 14, 16].

The purpose of this paper is to investigate generalized derivations G
on a complex Banach algebra A such that the spectrum of Gx is finite for
every x ∈ A. In particular, we will show that if G is a generalized derivation
defined on a complex semisimple Banach algebra A such that σ(Gx) is finite
for all x ∈ A, then GA ⊆ socA. Our results generalize those of [7, 8] which
deal with derivations d on a Banach algebra satisfying ]σ(dx) <∞ for every
x ∈ A. In [4, 5], one can find other conditions entailing that the range of a
bounded derivation lies in the socle modulo the radical of a Banach algebra.
It should be pointed out that inner generalized derivations G defined on
a Banach algebra A such that ]σ(Gx) = 1 for every x ∈ A were studied
in [5].

Our study is closely connected with questions concerning derivations
mapping into the radical. For details, we refer the readers to [17, 18], and
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the references therein. We also mention the work of Curto and Mathieu [11],
where spectrally bounded generalized inner derivations were investigated.

2. The case of dense algebras. We first give some tools and notation.
Let X be a vector space. As usual, L(X) denotes the algebra of all linear
operators on X. If X is a Banach space, the Banach algebra of all bounded
linear operators on X is denoted by B(X). The dual of X will be denoted
by X∗ and we will denote by u ⊗ f the linear operator on X defined for
any u ∈ X and f ∈ X∗ by (u ⊗ f)(x) = f(x)u for x ∈ X. Moreover, I
denotes the identity mapping on X and ]F denotes the cardinality of a
set F . Let T be an operator on X. The point spectrum of T is σp(T ) =
{λ ∈ C : λI − T is not injective}.

Let A be an arbitrary algebra. We denote by radA the Jacobson radical
of A, and by Z(A) the centre modulo the radical, defined by

Z(A) = {a ∈ A : ax− xa ∈ radA for all x ∈ A}.

For every a, b ∈ A let δa,b denote the inner generalized derivation defined by
δa,b(x) = ax+xb for all x ∈ A. Recall that δa = δa,−a is the inner derivation
determined by a.

Now let X be a Banach space and let A be a standard operator algebra
on X. It is well-known that every derivation d : A → A is of the form
dS = TS−ST for some T ∈ B(X) [10]. Similarly, we can prove the following
result.

2.1. Lemma. Let X be a complex Banach space and A a dense algebra
of bounded linear operators on X. Suppose that A is closed and contains
finite rank operators. Then every generalized derivation G on A is of the
form GS = TS + ST ′ for some T, T ′ ∈ B(X).

Proof. Let G be a generalized derivation on A determined by a deriva-
tion d. Since the algebra A is semisimple, d and G are continuous [15]. On
the other hand, since A is a dense algebra containing finite rank operators,
we check easily that A contains a rank one operator. Let f be a nonzero
linear functional such that u ⊗ f ∈ A for some 0 6= u ∈ X. Applying again
the density of A, we see that x ⊗ f ∈ A for all x ∈ X. Choose v ∈ X such
that f(v) = 1 and define linear maps T, T ′ : X → X by

Tx = (d(x⊗ f))v, T ′x = (G(x⊗ f))v

for all x ∈ X. We check at once that T, T ′ are continuous and

(d(Sx⊗f))v = (dS)x+S(d(x⊗f)v), (G(Sx⊗f))v = (GS)x+S(d(x⊗f)v)

for every x ∈ A. As a result, dS = TS − ST and GS = T ′S − ST for all
S ∈ A.
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Our proofs involve techniques that have become standard in this area: the
Jacobson density theorem, its generalizations and results on locally linearly
dependent operators. Let U and V be vector spaces over a field F and
let V0 be a finite-dimensional subspace of V . Amitsur [2] proved that if
T1, . . . , Tn : U → V are linear operators such that T1u, . . . , Tnu are linearly
dependent modulo V0 for every u ∈ U , then there exist scalars α1, . . . , αn,
not all zero, such that S = α1T1 + · · ·+ αnTn satisfies

dimSU ≤ dimV0 +
(
n+ 1

2

)
− 1.

Aupetit [3, p. 86] proved that if U and V are complex vector spaces and
V0 = {0}, then S can be chosen so that rankS ≤ n − 1. Brešar and Šemrl
[9, Theorem 2.2] extended Aupetit’s result to the case of arbitrary infinite
fields.

2.2. Theorem. Let X be a complex vector space and A a dense algebra
of linear operators on X. Suppose that there are linear operators A,B on
X and an integer n ∈ N∗ such that #σp(AS + SB) ≤ n for all S ∈ A.
Then there exist λ ∈ C and finite rank operators F, F ′ ∈ L(X) such that
A = λI + F and B = −λI + F ′.

Proof. If X is finite-dimensional, there is nothing to prove. So, assume
that X is infinite-dimensional. Suppose first that the set

{ξ1, . . . , ξn+1, Bξ1, . . . , Bξn+1}
is linearly independent for some ξ1, . . . , ξn+1 in X. Then there is S ∈ A such
that Sξi = 0 and SBξi = iξi. This entails that (AS + SB)ξi = iξi for each
1 ≤ i ≤ n+1. Consequently, {1, . . . , n+1} ⊆ σp(AS+SB), a contradiction.
Thus for any ξ1, . . . , ξn+1 in X, the set {ξ1, . . . , ξn+1, Bξ1, . . . , Bξn+1} is
linearly dependent. According to [8, Lemma 3.1], there exists a finite rank
operator F ′ such that B = λI + F ′. Let J be a basis of the subspace F ′X
and write A = −λI + F for some linear operator F .

We claim that F has finite rank. Suppose this is not true and let
ξ1, . . . , ξn+1 ∈ X be such that the set {Fξ1, . . . , F ξn+1} ∪ J is linearly inde-
pendent. Then there exists S ∈ A such that SJ = {0} and SFξi = iξi for
each 1 ≤ i ≤ n+1. This implies that (AS+SB)Fξi = (FS+SF ′)Fξi = iFξi
and hence #σp(AS + SB) ≥ n+ 1, a contradiction. Now the result follows
from [2].

For a semisimple algebra A the socle socA of A is the sum of all minimal
left ideals of A. If there are no minimal left ideals in A, then socA = {0} by
definition. The socle of A is a direct sum of simple ideals. Now suppose that
A is a complex semisimple Banach algebra. Then every element of socA has
finite spectrum. Moreover, socA is the largest algebraic ideal of A.
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2.3. Proposition. Let X be a complex vector space and let A be a
subalgebra of L(X) acting densely on X. Suppose that there are finite rank
operators F, F ′ in L(X) satisfying FS + SF ′ ∈ A for all S ∈ A. Then
F ′ ∈ socA and FA ⊆ A.

Proof. IfX is finite-dimensional, we have L(X) = A = socA. So suppose
that X is infinite-dimensional. Write F =

∑p
i=1 ui⊗ϕi and F ′ =

∑r
j=1 vj ⊗

ϕ′j for linearly independent sets {u1, . . . , up}, {v1, . . . , vr} of vectors in X and
linear functionals ϕ1, . . . , ϕp, ϕ

′
1, . . . , ϕ

′
r. Choose w1, . . . , wr in X such that

the set {w1, . . . , wr, u1, . . . , up} is linearly independent. There are S, S′ ∈ A
such that

Svj = wj , S′wj = vj , and S′ui = 0 (1 ≤ i ≤ p, 1 ≤ j ≤ r).
Then

S′(FS + SF ′)ξ = F ′ξ

for all ξ ∈ X. Hence F ′ = S′(FS + SF ′) ∈ A. Finally, FA ⊆ A.

The above result is sharp in the following sense.

2.4. Example. Let X be a complex Banach space with a Schauder basis
{en}∞n=1 and suppose that the topological dual of X is not separable (for
instance, X = l1). For every integer n, denote by e∗n the bounded linear
functional on X defined by e∗n(em) = δmn for every m ∈ N∗. Let A be the
closed subalgebra of B(X) generated by u ⊗ e∗n for every integer n and all
u ∈ X. Observe that A is a dense algebra of linear operators on X. Let f
be a bounded linear functional on X such that f does not lie in the closed
linear span of {e∗n}. Pick 0 6= u ∈ X and set F = u ⊗ f . Then it is easy to
check that FA ⊆ A, but F 6∈ A.

2.5. Corollary. Let X be a complex vector space and let A be a sub-
algebra of L(X) acting densely on X. Suppose that there are A,B in L(X)
satisfying AS + SB ∈ A for all S ∈ A and there exists n ∈ N∗ such that
#σp(AS + SB) ≤ n for all S ∈ A. Then there exist finite rank operators
F, F ′ in L(X) and a scalar λ ∈ C such that F ′ ∈ socA, FA ⊆ A, A = λI+F
and B = −λI + F ′.

Proof. According to Theorem 2.2, there exist finite rank operators F, F ′

∈ L(X) satisfying A = λI + F and B = −λI + F ′ for some scalar λ ∈ C.
Obviously, FS + SF ′ ∈ A for all S ∈ A. Now the above proposition yields
the desired result.

3. The case of Banach algebras. We will denote the set of all prim-
itive ideals in A by Prim(A). Recall that primitive ideals are the kernels
of irreducible representations of A. For every primitive ideal P we denote
by πP an irreducible representation of A on a Banach space XP such that
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KerπP = P . In particular, recall that the algebra A/P can be seen as a
subalgebra of B(XP ) acting densely on XP . If Prim(A) is nonempty, we will
often use the following result [19, Theorem 2.2.9]:

σ(x) ∪ {0} =
⋃

P∈Prim(A)

σ(x+ P ) ∪ {0}.

Recall that for a given linear operator T from a Banach space X into a
Banach space Y , the separating space of T is the set

S(T ) = {y ∈ Y : there is a sequence (xn)n in X with xn→ 0 and Txn→ y}.
Clearly, S(T ) is a closed subspace of Y . By the closed graph theorem, T is
continuous if and only if S(T ) = {0}. Moreover, the map T̂ : X → Y/S(T )
defined by T̂ (x) = Tx + S(T ) is continuous. More details can be found
in [20].

3.1. Lemma. Let A be a complex Banach algebra and let G be a con-
tinuous generalized derivation on A determined by a derivation d of A. If
P is a primitive ideal of A, then dP ⊆ P .

Proof. Let {xk} be a sequence in A such that xk → 0 and dxk → y ∈ A.
Since G is continuous, we infer that 0 = limG(zxk) = zy for each z ∈ A.
Consequently, Ay = {0}. Let us denote by I the closed ideal

I = {u ∈ A : Au = {0}}.
Then S(d) ⊆ I ⊆ radA. Consequently, the map d : A → A/I defined by
da = da+ I is continuous. Next let u ∈ I. For all x ∈ A, we have

0 = d(xu) = x(du).

It follows that A(du) = {0}, which shows that dI ⊆ I. Now we can define the
map d̃ : A/I → A/I such that d̃(a+ I) = da+ I. Note that d̃ is continuous.
According to [12, Proposition 2.7.22], d̃ leaves invariant every primitive ideal
of A/I. Let P be a primitive ideal of A. Then P/I is a primitive ideal of A/I.
Thus, dP ⊆ P + I = P .

An algebra is said to be semiprime if {0} is the only two-sided ideal I
for which I2 = {0}. Recall that every semisimple algebra is semiprime. Note
the following consequence of the above proof.

3.2. Lemma. Let A be a complex semiprime Banach algebra and let G
be a continuous generalized derivation on A determined by a derivation d
of A. Then d is continuous.

3.3. Remark. One is tempted to expect that the derivation d in Lem-
ma 3.1 is also continuous. But this is not true in general. Indeed, it follows
from [18, Example 1.1] that there exists a Banach algebra A and a discon-
tinuous derivation d on A such that A2 6= {0} and A(dA) = (dA)A = {0}.
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Pick a ∈ A such that aA 6= {0}. Let G : A → A be the left centralizer
defined by Gx = ax. Then G is continuous. Moreover, G can be seen as a
generalized derivation determined by the derivation d.

We now come to our first general result.

3.4. Theorem. Let A be a complex Banach algebra and let G be a
continuous generalized derivation on A determined by a derivation d of A.
Suppose that ]σ(Gx) <∞ for all x ∈ A. Then there exists a ∈ A such that
a+ radA ∈ soc(A/radA) and dx− δa(x) ∈ radA for all x ∈ A.

Proof. By [8, Lemma 2.1], there exists n ∈ N∗ such that ]σ(Gx) ≤ n for
all x ∈ A. If Prim(A) is empty, there is nothing to prove. So suppose that
Prim(A) is nonempty and let P be a primitive ideal of A. By Lemma 3.1,
dP ⊆ P , so denote by dP the induced derivation on A/P .

Our next step will be to prove that dP is of the form dP (S) = TS −
ST for some linear operator T on XP . Suppose that this is not true; then
XP is infinite-dimensional. Let ζ1, . . . , ζn+1 be linearly independent vectors
from XP . Applying the Jacobson density theorem and [9, Theorem 3.6] we
see that there exist x, y ∈ A such that

(πPd(y))ζi = iζi, (πP y)ζi = 0, (πPx)ζi = ζi.

This implies that (πPG(xy))ζi = iζi. As a result, {1, . . . , n+1} ⊆ σ(G(xy)),
a contradiction.

Now let T be a linear operator on XP such that dP (S) = TS − ST
for every S ∈ A/P . Suppose that there are linearly independent vectors
ζ1, . . . , ζn+1 in XP such that the set {ζ1, . . . , ζn+1, T ζ1, . . . , T ζn+1} is linearly
independent. Then we can choose x, y ∈ A such that

(πP (y))ζi = 0, (πP (y))(Tζi) = iζi, (πP (x))ζi = ζi.

Thus (πPG(xy))ζi = −iζi and {−1, . . . ,−(n + 1)} ⊆ σ(G(xy)), a contra-
diction. It follows from [8, Lemma 3.1] that there exists λ ∈ C such that
T −λI has finite rank. Clearly, dP (S) = δT−λI(S) for every S ∈ A/P . Thus,
σ(dx+ P ) is finite for all x ∈ A.

Now assume towards a contradiction that there exist distinct primitive
ideals P1, . . . , Pn+1 of A such that dA * Pi for 1 ≤ i ≤ n + 1. For each
i ∈ {1, . . . , n+ 1}, let the inner derivation dPi be implemented by the oper-
ator Ti. Then we can find ζi ∈ XPi such that the vectors ζi, Tiζi are linearly
independent. Applying the extended Jacobson density theorem [13], we get
elements x, y ∈ A such that

πi(y)ζi = 0, πi(y)Tiζi = iζi, πi(x)ζi = ζi, 1 ≤ i ≤ n+ 1.

This entails that (πiG(xy))ζi = −iζi for each i. Hence {−1, . . . ,−(n + 1)}
⊆ σ(G(xy)), a contradiction.
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We have thereby shown that σ(dx) is finite for all x ∈ A. Using [5,
Theorem 2.4], we get the desired conclusion.

3.5. Proposition. Let A be a complex Banach algebra and let G be a
continuous generalized derivation on A. Suppose that ]σ(Gx) < ∞ for all
x ∈ A. Then there exist at most a finite number of primitive ideals Pi of A
such that G(A) * Pi.

Proof. Fix n ∈ N∗ such that ]σ(Gx) ≤ n for all x ∈ A. Suppose that
G is determined by a derivation d. It follows from Theorem 3.4 that there
exists a ∈ A such that a+ radA ∈ soc(A/radA) and dx− δa(x) ∈ radA for
all x ∈ A. Further, there exist at most a finite number of primitive ideals Pi
of A such that dA * Pi.

Next assume that there exist distinct primitive ideals P1, . . . , Pn+1 of
A such that dA ⊆

⋂n+1
i=1 Pi and GA * Pi for 1 ≤ i ≤ n + 1. In order to

simplify the notation we write πi, Xi instead of πPi , XPi respectively. For
1 ≤ i ≤ n+ 1, pick xi ∈ A such that Gxi 6∈ Pi and choose ζi ∈ Xi such that
(πi(Gxi))ζi 6= 0. Applying the extended Jacobson density theorem [13], we
can find yi ∈ A such that

πi(yi)((πiGxi)ζi) = iζi, πj(yi)((πjGxj)ζj) = 0 for j 6= i, 1 ≤ j ≤ n+ 1.

Set x = x1y1 + · · · + xn+1yn+1. Then πi(Gx)((πiGxi)ζi) = i(πiGxi)ζi. We
have proved that {1, . . . , n+ 1} ⊆ σ(Gx). This contradiction completes the
proof.

We are now in a position to prove our main result.

3.6. Theorem. Let A be a complex Banach algebra and let G be a
continuous generalized derivation on A. Suppose that ]σ(Gx) < ∞ for all
x ∈ A. Then Ga + radA ∈ soc(A/radA) for all a ∈ A. Moreover , if A is
unital then there are u, v ∈ A such that u+ radA, v+ radA ∈ soc(A/radA)
and (G− δu,v)A ⊆ radA.

Proof. Fix n ∈ N∗ such that ]σ(Gx) ≤ n for every x ∈ A. Let G be de-
termined by the derivation d. It follows from Theorem 3.4 that there exists
a ∈ A such that a + radA ∈ soc(A/radA) and dx − δa(x) ∈ radA for all
x ∈ A. Let P be a primitive ideal of A. Since πP (a) has finite rank, there ex-
ists a finite-dimensional subspace H of XP such that XP = Ker(πP (a))⊕H.

Now assume towards a contradiction that there exists x ∈ A such
that πP (Gx) has infinite rank. Then we check easily that there exist linearly
independent vectors ζ1, . . . , ζn+1 in Ker(πP (a)) such that the set
{ζ1, . . . , ζn+1, πP (Gx)ζ1, . . . , πP (Gx)ζn+1} is linearly independent and
contained in KerπP (a). Now we can choose y ∈ A such that

πP (y)πP (Gx)ζi = iζi, 1 ≤ i ≤ n+ 1.
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This entails that

πP (G(xy))(πP (Gx))ζi = i(πP (Gx))ζi
for each i. Consequently, {1, . . . , n+ 1} ⊆ σ(G(xy)), a contradiction.

As a result, Gx + P ∈ soc(A/P ) for all x ∈ A. Now using the above
proposition and [8, Proposition 2.2], we find that Gx+radA ∈ soc(A/radA)
for all x ∈ A.

Finally, suppose that A is unital. Then

Gx = (G1)x− δa(x) ∈ radA, ∀x ∈ A.
3.7. Corollary. Let A be a complex semisimple Banach algebra and let

G be a generalized derivation on A. Suppose that ]σ(Gx) <∞ for all x ∈ A.
Then G(A) ⊆ socA. Moreover , if A is unital then there exist u, v ∈ socA
such that G = δu,v.

In the case of generalized inner derivations, we have the following char-
acterization.

3.8. Theorem. Let A be a complex Banach algebra and let a, b ∈ A.
Then the following conditions are equivalent :

(1) #σ(ax+ xb) <∞ for every x in A,
(2) ax+ xb+ radA ∈ soc(A/radA) for every x in A,
(3) there exist u ∈ Z(A) and a′, b′ ∈ A such that a′+radA, b′+radA ∈

soc(A/radA) and a = u+ a′, b = −u− b′.
Proof. The implication (3)⇒(1) is clear, and (1)⇒(2) is a direct con-

sequence of Theorem 3.6. So suppose that (2) is true. Then ]σ(ax + xb +
radA) <∞ for all x ∈ A. It follows from [3, Theorem 3.1.5] that σ(ax+xb)
is finite for all x ∈ A. Next we use the temporary notation A = A/radA
and x + radA = x for every x ∈ A. Since the generalized derivation δa,b
is determined by the inner derivation δ−b, Theorem 3.4 tells us that there
exists b′ ∈ A such that b′ ∈ socA and δb′+bA ⊆ radA. Set −u = b + b′.
Then u ∈ Z(A) and (δa,b − δa−u,−b′)A ⊆ radA. Applying again [3, Theo-
rem 3.1.5], we infer that ]σ(δa−u,−b′x) <∞ for all x ∈ A. By Theorem 3.6,
δa−u,−b′(A) ⊆ socA. Since b′ ∈ socA, it follows that (a− u)A ⊆ socA.
Now it is easy to see that the ideal of A generated by a− u is algebraic.
Consequently, a− u ∈ socA and (3) is proved.
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