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Numerical radius inequalities for 2×2 operator matrices

by
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Abstract. We derive several numerical radius inequalities for 2×2 operator matrices.
Numerical radius inequalities for sums and products of operators are given. Applications
of our inequalities are also provided.

1. Introduction. Let B(H) be the space of all bounded linear operators
on a complex Hilbert space H with inner product 〈·, ·〉. The numerical range
of A ∈ B(H), denoted by W (A), is the subset of the complex numbers given
by

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}.
The numerical radius of A, w(A), is defined by

w(A) = sup{|λ| : λ ∈W (A)}.
It is well-known that w(·) defines a norm on B(H), which is equivalent to
the usual operator norm ‖ · ‖. In fact, for A ∈ B(H), we have

(1.1)
1

2
‖A‖ ≤ w(A) ≤ ‖A‖.

Also, it is known that w(·) is weakly unitarily invariant, that is,

(1.2) w(U∗AU) = w(A)

for every unitary U ∈ B(H). For other properties of the numerical radius,
the reader is referred to [7] and [8]. Recent numerical radius inequalities
for commutators of operators and operator matrices have been given in [9]
and [10].

The following numerical radius inequalities for a product of operators
have been given in [6]: If A,B ∈ B(H), then

(1.3) max(‖A+B‖2, ‖A−B‖2)−
∥∥|A∗|2 + |B∗|2

∥∥ ≤ 2w(AB∗)
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and

(1.4)
∥∥|A∗|2 + |B∗|2

∥∥−min(‖A+B‖2, ‖A−B‖2) ≤ 2w(AB∗),

where |X| = (X∗X)1/2.
The aim of this paper is to present new numerical radius inequalities

for 2 × 2 operator matrices. In Section 2, we give an inequality stronger
than (1.3), and a corresponding reverse type inequality. Moreover, we derive
sharp estimates for the numerical radii of 2 × 2 operator matrices. One of
the applications of our results is a generalization of (1.1). In Section 3, we
give numerical radius inequalities for sums and products of operators from
which (1.4) follows as a special case.

2. Inequalities for the numerical radii of 2×2 operator matrices.
In this section, we introduce new inequalities for the numerical radii of
2 × 2 operator matrices in B(H⊕H). A general 2 × 2 operator matrix in
B(H⊕H) is an operator of the form

[
A B
C D

]
, where A,B,C,D ∈ B(H).

The operator
[
A 0
0 D

]
is called the diagonal part of

[
A B
C D

]
, and

[
0 B
C 0

]
is the

off-diagonal part. It is well-known (see, e.g., [3, p. 107]) that

w

([
A 0

0 D

])
≤ w

([
A B

C D

])
,(2.1)

w

([
0 B

C 0

])
≤ w

([
A B

C D

])
,(2.2)

which are pinching type inequalities. Moreover, it is known (see, e.g., [4,
p. 81]) that

(2.3) w

([
A 0

0 D

])
= max(w(A), w(D)),

while several estimates for w
([

0 B
C 0

])
have been given in [10].

For A ∈ B(H) with A2 = 0, it is known (see, e.g., [12]) that

(2.4) w(A) = 1
2‖A‖.

Since
[
0 B
0 0

]2
=
[
0 0
C 0

]2
=
[
0 0
0 0

]
, the subadditivity of the numerical radius

w(·) and the inequalities (2.1), (2.2), together with the identities (2.3) and
(2.4), imply that

w

([
A B

C D

])
≤ max(w(A), w(D)) +

‖B‖+ ‖C‖
2

and

w

([
A B

C D

])
≥ max

(
max(w(A), w(D)), w

([
0 B

C 0

]))
.
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In particular, if C = D = 0, then

(2.5) max

(
w(A),

‖B‖
2

)
≤ w

([
A B

0 0

])
≤ w(A) +

‖B‖
2
.

Now, we start by presenting numerical radius inequalities for 2 × 2 op-
erator matrices. In order to do this, we need the following two lemmas
containing a series of new inequalities for the usual operator norm.

Lemma 2.1. Let A,B ∈ B(H). Then

(2.6) max(‖A+B‖2, ‖A−B‖2)

≥ max
(
‖A2+B2‖,

∥∥|A|2+|B|2
∥∥, ∥∥|A∗|2+|B∗|2

∥∥)+ ∣∣‖A+B‖2 − ‖A−B‖2
∣∣

2

and

(2.7) min(‖A+B‖2, ‖A−B‖2)

≥ max
(
‖A2+B2‖,

∥∥|A|2+|B|2
∥∥, ∥∥|A∗|2+|B∗|2

∥∥)− ∣∣‖A+B‖2 − ‖A−B‖2
∣∣

2
.

Proof. To prove (2.6), observe that

(2.8) max(‖A+B‖2, ‖A−B‖2)

=
1

2

(
‖A+B‖2 + ‖A−B‖2 +

∣∣‖A+B‖2 − ‖A−B‖2
∣∣)

≥ 1

2

(
‖(A+B)2‖+ ‖(A−B)2‖+

∣∣‖A+B‖2 − ‖A−B‖2
∣∣)

≥ 1

2

(
‖(A+B)2 + (A−B)2‖+

∣∣‖A+B‖2 − ‖A−B‖2
∣∣)

= ‖A2 +B2‖+

∣∣‖A+B‖2 − ‖A−B‖2
∣∣

2
.

On the other hand,

(2.9) max(‖A+B‖2, ‖A−B‖2)

=
1

2

(
‖A+B‖2 + ‖A−B‖2 +

∣∣‖A+B‖2 − ‖A−B‖2
∣∣)

=
1

2

(∥∥|A+B|2
∥∥+

∥∥|A−B|2∥∥+
∣∣‖A+B‖2 − ‖A−B‖2

∣∣)
≥ 1

2

(∥∥|A+B|2 + |A−B|2
∥∥+

∣∣‖A+B‖2 − ‖A−B‖2
∣∣)

=
∥∥|A|2 + |B|2

∥∥+

∣∣‖A+B‖2 − ‖A−B‖2
∣∣

2
.
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Replacing A and B by A∗ and B∗, respectively, in (2.9) we obtain

max(‖A+B‖2, ‖A−B‖2) ≥
∥∥|A∗|2 + |B∗|2

∥∥(2.10)

+

∣∣‖A+B‖2 − ‖A−B‖2
∣∣

2
.

Now, (2.6) follows from (2.8)–(2.10).

The inequality (2.7) can be proved by a similar argument.

Lemma 2.2. Let A,B ∈ B(H). Then

(2.11) max(‖A+B‖2, ‖A−B‖2)
≤ min

(∥∥|A|2 + |B|2
∥∥+ ‖A∗B +B∗A‖,

∥∥|A∗|2 + |B∗|2
∥∥+ ‖AB∗ +BA∗‖

)
and

(2.12) min(‖A+B‖2, ‖A−B‖2)
≥ max

(∥∥|A|2 + |B|2
∥∥− ‖A∗B +B∗A‖,

∥∥|A∗|2 + |B∗|2
∥∥− ‖AB∗ +BA∗‖

)
.

Proof. Observe that (A±B)∗(A±B) = |A|2 + |B|2± (A∗B+B∗A), and
so

‖A±B‖2 = ‖(A±B)∗(A±B)‖
=
∥∥|A|2 + |B|2 ± (A∗B +B∗A)

∥∥
≤
∥∥|A|2 + |B|2

∥∥+ ‖A∗B +B∗A‖.

Consequently,

(2.13) max(‖A+B‖2, ‖A−B‖2) ≤
∥∥|A|2 + |B|2

∥∥+ ‖A∗B +B∗A‖.

Replacing A and B by A∗ and B∗, respectively, in (2.13), we obtain

(2.14) max(‖A+B‖2, ‖A−B‖2) ≤
∥∥|A∗|2 + |B∗|2

∥∥+ ‖AB∗ +BA∗‖.

Now, (2.11) follows from (2.13) and (2.14).

The inequality (2.12) follows by a similar argument.

Remark. Since A∗B +B∗A is self-adjoint, we have

‖A∗B +B∗A‖ = w(A∗B +B∗A)

≤ w(A∗B) + w(B∗A)

= 2w(A∗B) (since w(A∗B) = w(B∗A)).

Similarly,

(2.15) ‖AB∗ +BA∗‖ ≤ 2w(AB∗).

In view of (2.15), it is evident that the inequality (2.11) is stronger than
(1.3).
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As employed in the proof of Lemma 2.1, it is known that for real numbers
a and b, we have

(2.16) max(a, b) =
a+ b

2
+
|a− b|

2
.

We now derive operator norm inequalities related to (2.16).

Lemma 2.3. Let X,Y ∈ B(H). Then

(2.17) max(‖X‖2, ‖Y ‖2)

≥
max

(
‖X2 + Y 2‖,

∥∥|X|2 + |Y |2
∥∥, ∥∥|X∗|2 + |Y ∗|2

∥∥)
2

+
|‖X‖2 − ‖Y ‖2|

2
,

(2.18) min(‖X‖2, ‖Y ‖2)

≥
max

(
‖X2 + Y 2‖,

∥∥|X|2 + |Y |2
∥∥, ∥∥|X∗|2 + |Y ∗|2

∥∥)
2

−
∣∣‖X‖2 − ‖Y ‖2∣∣

2
,

(2.19) max(‖X‖2, ‖Y ‖2)

≤ 1

2
min

(∥∥|X|2 + |Y |2
∥∥+

∥∥|X|2−|Y |2∥∥, ∥∥|X∗|2 + |Y ∗|2
∥∥+

∥∥|X∗|2−|Y ∗|2∥∥),
and

(2.20) min(‖X‖2, ‖Y ‖2)

≥ 1

2
max

(∥∥|X|2 + |Y |2
∥∥−∥∥|X|2−|Y |2∥∥,∥∥|X∗|2 + |Y ∗|2

∥∥−∥∥|X∗|2−|Y ∗|2∥∥).
Proof. The inequalities (2.17)–(2.20) follow, respectively, from Lemmas

2.1 and 2.2 by letting A = X + Y and B = X − Y.

Now, we need the following lemma [2].

Lemma 2.4. Let X,Y ∈ B(H) be nonzero operators. Then the relation
‖X + Y ‖ = ‖X‖+ ‖Y ‖ holds if and only if ‖X‖ ‖Y ‖ ∈W (X∗Y ), where the
bar denotes closure.

A particular case of the inequality (2.17) says that if X,Y ∈ B(H), then

‖X2 + Y 2‖
2

+

∣∣‖X‖2 − ‖Y ‖2∣∣
2

≤ max(‖X‖2, ‖Y ‖2),

and so

(2.21)
‖X2 + Y 2‖

2
≤ max(‖X‖2, ‖Y ‖2).

Based on Lemma 2.4, a condition for equality in (2.21) can be stated:
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Theorem 2.5. Let X,Y ∈ B(H) be nonzero operators. Then

‖X2 + Y 2‖
2

= max(‖X‖2, ‖Y ‖2) if and only if

w(X∗2Y 2) = max(‖X‖4, ‖Y ‖4).
Proof. Suppose that ‖X2 + Y 2‖/2 = max(‖X‖2, ‖Y ‖2). Since

‖X2 + Y 2‖
2

≤ ‖X
2‖+ ‖Y 2‖

2
≤ ‖X‖

2 + ‖Y ‖2

2
≤ max(‖X‖2, ‖Y ‖2),

we have

‖X‖2 + ‖Y ‖2

2
= max(‖X‖2, ‖Y ‖2),(2.22)

‖X2‖+ ‖Y 2‖ = ‖X‖2 + ‖Y ‖2,(2.23)

‖X2 + Y 2‖ = ‖X2‖+ ‖Y 2‖.(2.24)

It follows from (2.22) and (2.23) that

(2.25) ‖X2‖ = ‖X‖2 = ‖Y ‖2 = ‖Y 2‖.
The equality (2.24), together with Lemma 2.4 and (2.25), implies that

(2.26) max(‖X‖4, ‖Y ‖4) = ‖X2‖ ‖Y 2‖ ∈W (X∗2Y 2),

and so

(2.27) max(‖X‖4, ‖Y ‖4) ≤ w(X∗2Y 2).

This inequality, together with

w(X∗2Y 2) ≤ ‖X∗2Y 2‖ ≤ ‖X‖2‖Y ‖2 ≤ max(‖X‖4, ‖Y ‖4),
implies that w(X∗2Y 2) = max(‖X‖4, ‖Y ‖4). This proves the “only if” part.

For the “if” part, suppose that

(2.28) w(X∗2Y 2) = max(‖X‖4, ‖Y ‖4).
Then, by the second inequality of (1.1), we have

w(X∗2Y 2) ≤ ‖X∗2Y 2‖ ≤ ‖X∗2‖ ‖Y 2‖ = ‖X2‖ ‖Y 2‖(2.29)

≤ ‖X‖2‖Y ‖2 ≤ ‖X‖
4 + ‖Y ‖4

2
≤ max(‖X‖4, ‖Y ‖4).

The inequality (2.29), together with (2.28), implies that

‖X‖2‖Y ‖2 =
‖X‖4 + ‖Y ‖4

2
,(2.30)

‖X2‖ ‖Y 2‖ = ‖X‖2‖Y ‖2,(2.31)

w(X∗2Y 2) = ‖X2‖ ‖Y 2‖.(2.32)

The equalities (2.30) and (2.31) imply that

(2.33) ‖X2‖ = ‖X‖2 = ‖Y ‖2 = ‖Y 2‖.
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Also, (2.32) implies that ‖X2‖ ‖Y 2‖ ∈W (X∗2Y 2), and so

‖X2 + Y 2‖
2

=
‖X2‖+ ‖Y 2‖

2
(by Lemma 2.4)

= max(‖X‖2, ‖Y ‖2) (by (2.33)),

as required.

Based on (1.1) and (2.6), an upper bound for the numerical radius of the
general 2× 2 operator matrix

[
A B
C D

]
can be derived:

Theorem 2.6. Let A,B,C,D ∈ B(H). Then

w

([
A B

C D

])
≤ min(α, β),

where

α =

√
‖A+B‖2 + ‖A−B‖2

2
+

√
‖C +D‖2 + ‖C −D‖2

2
,

β =

√
‖A+ C‖2 + ‖A− C‖2

2
+

√
‖B +D‖2 + ‖B −D‖2

2
.

Proof. We have

w

([
A B

0 0

])
≤
∥∥∥∥[A B

0 0

]∥∥∥∥ (by the second inequality of (1.1))(2.34)

=

∥∥∥∥[A B

0 0

][
A∗ 0

B∗ 0

]∥∥∥∥1/2 =

∥∥∥∥[|A∗|2 + |B∗|2 0

0 0

]∥∥∥∥1/2
=
∥∥|A∗|2 + |B∗|2

∥∥1/2
and so

(2.35) w

([
A B

0 0

])

≤
√

max(‖A+B‖2, ‖A−B‖2)− |‖A+B‖2 − ‖A−B‖2|
2

(by (2.6))

=

√
‖A+B‖2 + ‖A−B‖2

2
.

For the general case, let U =
[
0 I
I 0

]
. Then U is unitary, and it follows from

the subadditivity of the numerical radius w(·) that
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(2.36) w

([
A B

C D

])
≤ w

([
A B

0 0

])
+ w

([
0 0

C D

])

= w

([
A B

0 0

])
+ w

(
U∗
[
D C

0 0

]
U

)
(by (1.2))

≤
√
‖A+B‖2 + ‖A−B‖2

2
+

√
‖C +D‖2 + ‖C −D‖2

2
(by (2.35))

= α.

Also, by applying (2.36) to
[
A∗ C∗
B∗ D∗

]
, and observing that w

([
A B
C D

])
=

w
([

A∗ C∗
B∗ D∗

])
, we have

(2.37) w

([
A B

C D

])
= w

([
A∗ C∗

B∗ D∗

])

≤
√
‖A∗ + C∗‖2 + ‖A∗ − C∗‖2

2
+

√
‖B∗ +D∗‖2 + ‖B∗ −D∗‖2

2

=

√
‖A+ C‖2 + ‖A− C‖2

2
+

√
‖B +D‖2 + ‖B −D‖2

2
= β.

Now, the result follows from (2.36) and (2.37).

Another upper bound for the numerical radius of the operator
[
A B
C D

]
is

as follows.

Theorem 2.7. Let A,B,C,D ∈ B(H). Then

w

([
A B

C D

])
≤ min(α, β),

where

α =
√

min(‖A+B‖2, ‖A−B‖2) + 2w(AB∗)

+
√

min(‖D + C‖2, ‖D − C‖2) + 2w(DC∗),

β =
√

min(‖A+ C‖2, ‖A− C‖2) + 2w(A∗C)

+
√

min(‖B +D‖2, ‖B −D‖2) + 2w(D∗B).

Proof. Since the operators AA∗+BB∗ and (A±B)(A±B)∗ are positive,
and since AA∗ +BB∗ = (A±B)(A±B)∗ ∓ (AB∗ +BA∗), we have

‖AA∗ +BB∗‖ = w(AA∗ +BB∗)

= w((A±B)(A±B)∗ ∓ (AB∗ +BA∗))

≤ w((A±B)(A±B)∗) + w(AB∗ +BA∗)

= ‖(A±B)(A±B)∗‖+ w(AB∗ +BA∗)
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= ‖A±B‖2 + w(AB∗ +BA∗)

≤ ‖A±B‖2 + w(AB∗) + w(BA∗)

= ‖A±B‖2 + 2w(AB∗) (since w(AB∗) = w(BA∗)),

and so

(2.38) ‖AA∗ +BB∗‖ ≤ min(‖A+B‖2, ‖A−B‖2) + 2w(AB∗).

The inequality (2.34), together with (2.38), implies that

(2.39) w

([
A B

0 0

])
≤
√

min(‖A+B‖2, ‖A−B‖2) + 2w(AB∗).

Now, the proof of the general case can be obtained by an argument
similar to that used in the proof of Theorem 2.6.

An application of Theorem 2.7 yields

Corollary 2.8. Let A,B,C,D ∈ B(H).

(a) If AB∗ = 0 and DC∗ = 0, then

(2.40) w

([
A B

C D

])
≤ min(‖A+B‖, ‖A−B‖) + min(‖D + C‖, ‖D − C‖).

(b) If A∗C = 0 and D∗B = 0, then

(2.41) w

([
A B

C D

])
≤ min(‖A+ C‖, ‖A− C‖) + min(‖B +D‖, ‖B −D‖).

We need the following lemma concerning the numerical radii of certain
2× 2 operator matrices. This lemma has been used in [9] and [10].

Lemma 2.9 (see, e.g., [1]). Let A,B ∈ B(H). Then

w

([
A B

B A

])
= max(w(A+B), w(A−B)).

Using Lemma 2.9, a particular case of Corollary 2.8 can be stated:

Corollary 2.10. Let A,B ∈ B(H). If AB∗ = 0 or A∗B = 0, then

(2.42) max(w(A+B), w(A−B)) ≤ 2 min(‖A+B‖, ‖A−B‖).
Proof. The result follows from (2.40) and (2.41), by letting C = B,

D = A, and using Lemma 2.9.

Remark. It should be mentioned here that (2.42) is not true for arbi-
trary operators A,B ∈ B(H). To see this, consider a nonzero A ∈ B(H),
and let B = A.

An upper bound for the numerical radius of the operator
[
A B
0 0

]
has been

given in (2.39). Now we present a lower bound for this numerical radius.
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Theorem 2.11. Let A,B ∈ B(H). Then

(2.43) w

([
A B

0 0

])
≥ 1

2

√
max(‖A+B‖2, ‖A−B‖2)− 2w(AB∗).

Proof. We have

(2.44) w2

([
A B

0 0

])
≥ 1

4

∥∥∥∥[A B

0 0

]∥∥∥∥2 (by the first inequality of (1.1))

=
1

4
‖AA∗ +BB∗‖

≥ 1

4
(max(‖A+B‖2, ‖A−B‖2)− 2w(AB∗)) (by (1.3)).

It remains to show that the right-hand side of (2.44) is nonnegative. In
fact, it is shown in [5] that

(2.45) 2‖AB∗‖ ≤ ‖A∗A+B∗B‖.
This inequality, together with the second inequality of (1.1), implies that

(2.46) 2w(AB∗) ≤ ‖A∗A+B∗B‖.
It follows from (2.6) applied to A∗ and B∗ that

(2.47) max(‖A+B‖2, ‖A−B‖2) = max(‖A∗ +B∗‖2, ‖A∗ −B∗‖2)

≥ ‖A∗A+B∗B‖+
1

2

∣∣‖A∗ +B∗‖2 − ‖A∗ −B∗‖2
∣∣

= ‖A∗A+B∗B‖+
1

2

∣∣‖A+B‖2 − ‖A−B‖2
∣∣

≥ 2w(AB∗) +
1

2

∣∣‖A+B‖2 − ‖A−B‖2
∣∣ (by (2.46)),

and so

(2.48) max(‖A+B‖2, ‖A−B‖2)− 2w(AB∗) ≥ 1

2

∣∣‖A+B‖2 − ‖A−B‖2
∣∣.

Now, it follows from (2.48) that the right-hand side of (2.44) is nonneg-
ative, and so

w

([
A B

0 0

])
≥ 1

2

√
max(‖A+B‖2, ‖A−B‖2)− 2w(AB∗),

as required.

Remark. If AB∗ = 0, then (2.39) and (2.43) imply that

1

2
max(‖A+B‖, ‖A−B‖) ≤ w

([
A B

0 0

])
≤ min(‖A+B‖, ‖A−B‖).

In particular, letting B = 0, we obtain (1.1).
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Now, we need the following lemma, which has also been used in [9]
and [10].

Lemma 2.12 (see, e.g., [1]). Let A,B ∈ B(H). Then

w

([
A −B
B A

])
= max(w(A+ iB), w(A− iB)).

In the following result, we derive another lower bound for the numerical
radius of the operator

[
A B
0 0

]
. In fact, a special case of this result has been

given in [9], using a different analysis.

Theorem 2.13. Let A,B ∈ B(H). Then

(2.49) w

([
A B

0 0

])
≥ 1

2
max(w(A±B), w(A± iB)).

Proof. Let U =
[
0 I
I 0

]
. Then U is unitary, and

max(w(A+B), w(A−B)) = w

([
A B

B A

])
(by Lemma 2.9)(2.50)

= w

([
A B

0 0

]
+ U∗

[
A B

0 0

]
U

)

≤ w
([
A B

0 0

])
+ w

(
U∗
[
A B

0 0

]
U

)

= 2w

([
A B

0 0

])
(by (1.2)).

Moreover, let V =
[
I 0
0 −I

]
. Then V is unitary, and

(2.51) max(w(A+ iB), w(A− iB))

= w

([
A −B
B A

])
(by Lemma 2.12)

= w

(
V ∗
[
A B

0 0

]
V + U∗

[
A B

0 0

]
U

)

≤ w
(
V ∗
[
A B

0 0

]
V

)
+ w

(
U∗
[
A B

0 0

]
U

)

= 2w

([
A B

0 0

])
(by (1.2)).

Now, the result follows from (2.50) and (2.51).
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To give further upper bounds for the numerical radius of
[
A B
C D

]
, we need

the following compression inequality.

Lemma 2.14 (see, e.g., [11]). Let A,B,C,D ∈ B(H). Then∥∥∥∥[A B

C D

]∥∥∥∥ ≤ ∥∥∥∥[‖A‖ ‖B‖‖C‖ ‖D‖

]∥∥∥∥.
Theorem 2.15. Let A,B,C,D ∈ B(H). Then

w

([
A B

C D

])
≤ min(α, β),

where

α =
1√
2

√
‖A‖2 + ‖B‖2 +

√
(‖A‖2 − ‖B‖2)2 + 4‖AB∗‖2

+
1√
2

√
‖C‖2 + ‖D‖2 +

√
(‖C‖2 − ‖D‖2)2 + 4‖DC∗‖2

and

β =
1√
2

√
‖A‖2 + ‖C‖2 +

√
(‖A‖2 − ‖C‖2)2 + 4‖A∗C‖2

+
1√
2

√
‖B‖2 + ‖D‖2 +

√
(‖B‖2 − ‖D‖2)2 + 4‖D∗B‖2

Proof. First, we prove that

(2.52)

w

([
A B

0 0

])
≤ 1√

2

√
‖A‖2 + ‖B‖2 +

√
(‖A‖2 − ‖B‖2)2 + 4‖AB∗‖2.

We have

w2

([
A B

0 0

])
≤
∥∥∥∥[A B

0 0

]∥∥∥∥2 (by the second inequality of (1.1))(2.53)

=

∥∥∥∥[A∗ 0

B∗ 0

][
A B

0 0

]∥∥∥∥
=

∥∥∥∥[A∗A A∗B

B∗A B∗B

]∥∥∥∥
≤
∥∥∥∥[‖A∗A‖ ‖A∗B‖‖B∗A‖ ‖B∗B‖

]∥∥∥∥ (by Lemma 2.14)
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=

∥∥∥∥[ ‖A‖2 ‖A∗B‖‖A∗B‖ ‖B‖2

]∥∥∥∥
=

1

2

(
‖A‖2 + ‖B‖2 +

√
(‖A‖2 − ‖B‖2)2 + 4‖A∗B‖2

)
,

where the last equality follows from the fact that the usual operator norm of
a positive (semidefinite) matrix is its largest eigenvalue. Now, (2.52) follows
from (2.15).

The proof of the result for the general operator
[
A B
C D

]
can be obtained

by an argument similar to that given in the proof of Theorem 2.6.

An application of Theorem 2.15 yields

Corollary 2.16. Let A,B,C,D ∈ B(H).

(a) If AB∗ = 0 and DC∗ = 0, then

w

([
A B

C D

])
≤ max(‖A‖, ‖B‖) + max(‖C‖, ‖D‖).

(b) If A∗C = 0 and D∗B = 0, then

w

([
A B

C D

])
≤ max(‖A‖, ‖C‖) + max(‖B‖, ‖D‖).

Remarks. (1) Comparing the upper bounds for the numerical radius of[
A B
0 0

]
given in (2.5), (2.39), and (2.52), it can be seen that none of them is

uniformly better than the others. This can be demonstrated as follows: Let

α =
√

min(‖A+B‖2, ‖A−B‖2) + 2w(AB∗),

β =
1√
2

√
‖A‖2 + ‖B‖2 +

√
(‖A‖2 − ‖B‖2)2 + 4‖A∗B‖2,

γ = w(A) +
‖B‖

2
.

If we take, for example, A =
[
1 0
0 −1

]
and B =

[
1 0
0 2

]
, then α > β > γ. On the

other hand, if A =
[
1 1
1 0

]
and B =

[
0 −1
−1 1

]
, then γ > β > α.

(2) Comparing the lower bounds for the numerical radius of
[
A B
0 0

]
given

in Theorems 2.11, 2.13, and (2.5), it can be seen that none of them is uni-
formly better than the others. This can be demonstrated by constructing
suitable 2× 2 matrices. We leave the details to the reader.

(3) Our numerical radius inequalities for 2 × 2 operator matrices are
sharp. For example, in Theorems 2.6, 2.7, and 2.15, equality holds if we
choose A = I, B = C = D = 0. In Theorem 2.11, equality holds if we
choose A = 0, B = I.
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3. Inequalities for the numerical radii of sums and products of
operators. In this section, we introduce numerical radius inequalities for
sums and products of operators. First, we need the following simple lemma
on complex numbers.

Lemma 3.1. Let z0, . . . , zn−1 ∈ C, and let uj = e2ijπ/n, j = 0, . . . , n− 1,
be the nth roots of unity. Then

n−1∑
k=0

|zk|2 =
1

n

n−1∑
k=0

∣∣∣n−1∑
j=0

ukj zj

∣∣∣2.
Our result for sums of operators can be stated as follows.

Theorem 3.2. Let A0, . . . , An−1 ∈ B(H). Then

(3.1)

n−1∑
k=0

w2(Ak) ≥
1

n2
max

Γ⊆{0,...,n−1}
w2
(∑
k∈Γ

n−1∑
j=0

ukjAj

)
.

Proof. Let x ∈ H with ‖x| = 1, and let Γ ⊆ {0, . . . , n− 1}. Then

n−1∑
k=0

|〈Akx, x〉|2 =
1

n

n−1∑
k=0

∣∣∣n−1∑
j=0

ukj 〈Ajx, x〉
∣∣∣2 (by Lemma 3.1)(3.2)

≥ 1

n

∑
k∈Γ

∣∣∣n−1∑
j=0

〈ukjAjx, x〉
∣∣∣2 ≥ 1

n2

∣∣∣∑
k∈Γ

n−1∑
j=0

〈ukjAjx, x〉
∣∣∣2.

Now,

(3.3)

n−1∑
k=0

w2(Ak) =

n−1∑
k=0

sup{|〈Ajx, x〉|2 : x ∈ H, ‖x‖ = 1}

≥ sup
{n−1∑
k=0

|〈Akx, x〉|2 : x ∈ H, ‖x‖ = 1
}

≥ 1

n2
sup
{∣∣∣∑
k∈Γ

n−1∑
j=0

〈ukjAjx, x〉
∣∣∣2 : x ∈ H, ‖x‖ = 1

}
(by (3.2))

=
1

n2
sup
{∣∣∣〈∑

k∈Γ

n−1∑
j=0

ukjAjx, x
〉∣∣∣2 : x ∈ H, ‖x‖ = 1

}

=
1

n2
w2
(∑
k∈Γ

n−1∑
j=0

ukjAj

)
for all Γ ⊆ {0, . . . , n− 1}. Now, the result follows from (3.3).
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The following result, related to (2.11) and (2.12), gives lower bounds for
the numerical radius of a product of operators. It can be easily seen that
(1.4) follows from this result as a special case.

Theorem 3.3. Let A,B ∈ B(H). Then

w(AB∗) ≥ max(α, β),

where

α =
1

2

∣∣‖AA∗ +BB∗‖ −min(‖A+B‖2, ‖A−B‖2)
∣∣,

β =
1

4

∣∣‖A+B‖2 − ‖A−B‖2
∣∣.

Proof. By (2.38), we have

(3.4) 2w(AB∗) ≥ ‖AA∗ +BB∗‖ −min(‖A+B‖2, ‖A−B‖2).

Also, Lemma 2.2, together with (2.15), implies that

(3.5) 2w(AB∗) ≥ min(‖A+B‖2, ‖A−B‖2)− ‖AA∗ +BB∗‖.

Consequently, (3.4) and (3.5) imply that

(3.6) w(AB∗) ≥ α.

On the other hand, (2.6) and (2.11) imply that

‖AA∗ +BB∗‖+ ‖AB∗ +BA∗‖
≥ max(‖A+B‖2, ‖A−B‖2)

≥ ‖AA∗ +BB∗‖+
|‖A+B‖2 − ‖A−B‖2|

2
,

and so

‖AB∗ +BA∗‖ ≥ 1

2

∣∣‖A+B‖2 − ‖A−B‖2
∣∣.

This inequality, together with (2.15), implies that

(3.7) w(AB∗) ≥ β.

Now, the result follows from (3.6) and (3.7).

An application of Theorem 3.3 yields

Corollary 3.4. Let T ∈ B(H) with the Cartesian decomposition T =
A+ iB. Then

(3.8) w(AB) ≥ 1

2
‖T‖2 − 1

4
‖T ∗T + TT ∗‖.

Proof. This follows by applying Theorem 3.3 to the operators A and iB,
and observing that ‖A± iB‖ = ‖T‖ and 2(A2 +B2) = T ∗T + TT ∗.
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A fundamental inequality for the numerical radius is the power inequal-
ity, which says that for T ∈ B(H),

(3.9) w(Tn) ≤ (w(T ))n

for n = 1, 2, . . . (see, e.g., [8, p. 118]).
Now, we need the following lemma, which includes refinements of (1.1).

Lemma 3.5 ([13]). Let T ∈ B(H). Then

1

4
‖TT ∗ + T ∗T‖ ≤ w2(T ) ≤ 1

2
‖TT ∗ + T ∗T‖.

We close this paper with the following result, a reverse type inequality
of the power inequality (3.9), when n = 2.

Theorem 3.6. Let T ∈ B(H) with the Cartesian decomposition T =
A+ iB. Then

w(T 2) + 2 min(‖A‖2, ‖B‖2) ≥ w2(T ).

Proof. Replacing A and B by T and T ∗, respectively, in Theorem 3.3,
we obtain

w(T 2) ≥ 1

2

∣∣‖TT ∗ + T ∗T‖ −min
(
‖T + T ∗‖2, ‖T − T ∗‖2

)∣∣
≥ 1

2

(
‖TT ∗ + T ∗T‖ −min

(
‖T + T ∗‖2, ‖T − T ∗‖2

))
=

1

2

(
‖TT ∗ + T ∗T‖ − 4 min(‖A‖2, ‖B‖2)

)
.

≥ w2(T )− 2 min(‖A‖2, ‖B‖2) (by Lemma 3.5).
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