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Abstract. For a locally compact group G and p ∈ (1,∞), we define and study the
Beurling–Figà-Talamanca–Herz algebras Ap(G,ω). For p = 2 and abelian G, these are pre-
cisely the Beurling algebras on the dual group Ĝ. For p = 2 and compact G, our approach
subsumes an earlier one by H. H. Lee and E. Samei. The key to our approach is not to
define Beurling algebras through weights, i.e., possibly unbounded continuous functions,
but rather through their inverses, which are bounded continuous functions. We prove that
a locally compact group G is amenable if and only if one—and, equivalently, every—
Beurling–Figà-Talamanca–Herz algebra Ap(G,ω) has a bounded approximate identity.

Introduction. A weight on a locally compact group G is a measurable,
locally integrable function ω : G→ [1,∞) such that

(1) ω(xy) ≤ ω(x)ω(y) (x, y ∈ G).

The corresponding Beurling algebra ([R–St, Definition 3.7.2]) is defined as

L1(G,ω) := {f ∈ L1(G) : ωf ∈ L1(G)}.
It is a subalgebra of L1(G) and a Banach algebra in its own right with
respect to the norm ‖ · ‖ω given by ‖f‖ω := ‖ωf‖1 for f ∈ L1(G,ω). There
is no loss of generality if we suppose that ω is continuous ([R–St, Theorem
3.7.5]). Beurling algebras have been objects of study in abstract harmonic
analysis for a long time, especially for abelian G (see [Kan] and [R–St], for
instance).

If G is abelian with dual group Ĝ, then the Fourier transform is an iso-
metric isomorphism between L1(G) and the Fourier algebra A(Ĝ) of Ĝ.
Consequently, if ω is any weight on G, then L1(G,ω) is isomorphic to
a subalgebra of A(Ĝ). In [Eym 1], P. Eymard defined the Fourier algebra
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A(G) for general, not necessarily abelian, locally compact groups G. This
brings up the natural question if there is a way to define certain subal-
gebras of A(G) which, for abelian G, correspond to the Beurling algebras
on L1(Ĝ).

In [L–S], H. H. Lee and E. Samei introduced the notion of a Beurling–
Fourier algebra. If G is a locally compact group and ω : G → [1,∞) is a
weight, then multiplication with ω defines a closed, densely defined operator
on L2(G), which is bounded if and only if ω is bounded, i.e., L1(G,ω) is triv-
ial. Consequently, Lee and Samei define what they call a weight on the dual
of G as a closed, densely defined operator on L2(G) affiliated with the group
von Neumann algebra VN(G). The resulting theory of Beurling–Fourier al-
gebras is particularly tractable for what Lee and Samei call central weights
on the duals of compact groups. Independently, these weights and their cor-
responding Beurling–Fourier algebras were also introduced and investigated
by J. Ludwig, L. Turowska, and the third-named author ([L–S–T]).

The approach in [L–S–T] is restricted to compact groups, and both in
[L–S] and [L–S–T], it is unclear if the given definitions of a Beurling–Fourier
algebra can be extended beyond the L2-context to define weighted variants
of the Figà-Talamanca–Herz algebras (see [Eym 2], [F-T], [Her 1], [Her 2],
and [Spe]). In the present note, we propose a different approach to Beurling–
Fourier algebras with the following features:

• if G is a locally compact abelian group with dual group Ĝ, then the
Beurling–Fourier algebras correspond—via the Fourier transform—to
the Beurling algebras on Ĝ;
• at least for compact G, our approach subsumes the one from [L–S]

(and thus of [L–S–T]);
• the definitions extend effortlessly from the L2-framework to a general
Lp-context with p ∈ (1,∞), which enables us to define Beurling–Figà-
Talamanca–Herz algebras.

The key idea is to not attempt to define a “dual” notion of weight,
but rather that of the inverse of a weight. This approach enables us to
define Beurling–Fourier algebras without any reference to the theory of von
Neumann algebras, on which [L–S] relies heavily, so that it can be adapted
to an Lp-context.

For the resulting Beurling–Figà-Talamanca–Herz algebras, we obtain an
extension of the Leptin–Herz theorem, which characterizes the amenable
locally compact groups through the existence of bounded approximate iden-
tities in their Figà-Talamanca–Herz algebras: a locally compact group is
amenable if and only if one—or, equivalently, every—of its Beurling–Figà-
Talamanca–Herz algebras has a bounded approximate identity.
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1. Beurling algebras through inverses of weights. We shall sup-
pose throughout that all weights are continuous: by [R–St, Theorem 3.7.5],
this is no limitation if one is only interested in the corresponding Beurling
algebras.

If G is a locally compact group and ω : G → [1,∞) is a weight, then ω
is bounded if and only if L1(G,ω) = L1(G) with an equivalent norm, i.e.,
unless L1(G,ω) is trivial, the multiplication operator induced by ω on L2(G)
is unbounded. The inverse of ω—with respect to pointwise multiplication—
however, is bounded on G, i.e., the corresponding multiplication operator
on L2(G) is bounded and thus lies in the multiplier algebra of C0(G), the
C∗-algebra of all continuous functions onG vanishing at infinity (represented
on L2(G) as multiplication operators).

For a locally compact group G, we denote by Cb(G) the C∗-algebra of all
bounded continuous functions on G. We note the following:

Proposition 1.1. Let G be a locally compact group. Then the following
are equivalent for non-negative α ∈ Cb(G) with ‖α‖∞ ≤ 1:

(i) there is a weight ω : G→ [1,∞) such that α = ω−1;
(ii) (a) the map

(2) C0(G)→ C0(G), f 7→ αf,

has dense range;
(b) there is Ω ∈ L∞(G×G) with ‖Ω‖∞ ≤ 1 such that

(3) α(x)α(y) = α(xy)Ω(x, y) (x, y ∈ G).

Moreover, if ω is as in (i), then

L1(G,ω) = {αf : f ∈ L1(G)}
and

‖αf‖ω = ‖f‖1 (f ∈ L1(G)).

Proof. (i)⇒(ii): Set

Ω(x, y) :=
ω(xy)

ω(x)ω(y)
(x, y ∈ G).

From (1), it is immediate that Ω ∈ Cb(G×G) ⊂ L∞(G×G) with ‖Ω‖∞ ≤ 1,
and by definition, (3) holds. Hence, (a) is satisfied. To see that (b) holds, note
that {αf : f ∈ C0(G)} is a self-adjoint subalgebra of C0(G) that strongly sep-
arates the points of G; it is therefore dense in C0(G) by the Stone–Weierstraß
theorem.

(ii)⇒(i): From (b), it is immediate that α(x) 6= 0 for all x ∈ G. Hence,
we can define ω := α−1. As ‖α‖∞ ≤ 1, it is clear that ω(G) ⊂ [1,∞).
From (a), it follows that ω satisfies (1).

The “moreover” part is obvious.
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The bottom line of Proposition 1.1 is that Beurling algebras can be
defined without any reference to a weight—a possibly unbounded continuous
function—but rather through the inverses of weights, which are bounded
continuous functions, i.e., multipliers of C0(G).

To adapt the notion of the inverse of a weight to the context of Fourier al-
gebras, we introduce the notion of a Hopf–von Neumann algebra (see [E–S]).
As is customary, we write ⊗̄ for the tensor product of von Neumann algebras.

Definition 1.2. A Hopf–von Neumann algebra is a pair (M,Γ ) where
M is a von Neumann algebra and Γ : M → M ⊗̄M is a co-multiplication,
i.e., a normal, faithful, unital ∗-homomorphism such that

(Γ ⊗ id) ◦ Γ = (id⊗ Γ ) ◦ Γ.

Whenever (M,Γ ) is a Hopf–von Neumann algebra, the unique predual
M∗ of M becomes a Banach algebra with respect to the product ∗ defined
via

(4) 〈f ∗ g, x〉 := 〈f ⊗ g, Γx〉 (f, g ∈M∗, x ∈M).

If M∗ is equipped with its canonical operator space structure (see [E–R] for
background on the theory of operator spaces), then (4) defines not only a
contractive, but completely contractive bilinear map, thus turning M∗ into
a completely contractive Banach algebra (see [E–R, p. 308]).

Example. Let G be a locally compact group, and M = L∞(G)—so that
M∗ = L1(G) and L∞(G)⊗̄L∞(G) ∼= L∞(G×G)—and define Γ : L∞(G)→
L∞(G×G) through

(Γφ)(x, y) := φ(xy) (φ ∈ L∞(G), x, y ∈ G).

It is easy to check that the product on L1(G) in the sense of (4) is just the
ordinary convolution product on L1(G).

The first part of Proposition 1.1 can thus be rephrased as:

Corollary 1.3. Let G be a locally compact group. Then the following
are equivalent for non-negative α ∈ Cb(G) with ‖α‖∞ ≤ 1:

(i) there is a weight ω : G→ [1,∞) such that α = ω−1;
(ii) (a) the map

(5) C0(G)→ C0(G), f 7→ αf,

has dense range;
(b) there is Ω ∈ L∞(G×G) with ‖Ω‖∞ ≤ 1 such that

α⊗ α = (Γα)Ω.
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2. Weight inverses and Beurling–Fourier algebras. Let G be a
locally compact group, and let λ : G→ B(L2(G)) be the left regular repre-
sentation of G on L2(G), i.e.,

(λ(x)ξ)(y) := ξ(x−1y) (ξ ∈ L2(G), x, y ∈ G).

Through integration, λ “extends” to a ∗-representation of the group algebra
L1(G); we use the symbol λ for it as well. We define

C∗r (G) := λ(L1(G))
‖·‖

and VN(G) := λ(L1(G))
weak∗

,

the reduced group C∗-algebra and the group von Neumann algebra of G,
respectively. The Fourier algebra A(G) of G is the predual of VN(G) (see
[Eym 1]).

We introduce a co-multiplication

Γ̂ : VN(G)→ VN(G)⊗̄VN(G) ∼= VN(G×G),

thus turning A(G) into a completely contractive Banach algebra. To this
end, define W ∈ B(L2(G×G)) via

(Wξ)(x, y) := ξ(x, xy) (ξ ∈ L2(G×G), x, y ∈ G).

Then
Γ̂ : B(L2(G))→ B(L2(G×G)), T 7→W−1(T ⊗ 1)W,

is a co-multiplication, satisfying

Γ̂ λ(x) = λ(x)⊗ λ(x) (x ∈ G);

it follows that Γ̂ VN(G) ⊂ VN(G × G). Let the product on A(G) induced
by Γ̂ be denoted by ∗̂. Given f, g ∈ A(G) and x ∈ G, we have

〈f ∗̂ g, λ(x)〉 = 〈f ⊗ g, Γ̂ λ(x)〉 = 〈f ⊗ g, λ(x)⊗ λ(x)〉 = f(x)g(x),

i.e., ∗̂ is pointwise multiplication.
Whenever M is a von Neumann algebra, its predual M∗ is an M -bimo-

dule in a canonical manner:

〈x, yf〉 := 〈xy, f〉 = 〈y, fx〉 (f ∈M∗, x, y ∈M).

Also, if A is a C∗-algebra, we write M(A) for its multiplier algebra.
With an eye on Corollary 1.3, we define:

Definition 2.1. Let G be a locally compact group G. A weight inverse
is an element ω−1 ofM(C∗r (G)) with ‖ω−1‖ ≤ 1 such that the following are
satisfied:

(a) the maps

(6) C∗r (G)→ C∗r (G), x 7→ xω−1,

and

(7) C∗r (G)→ C∗r (G), x 7→ ω−1x,

have dense range;
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(b) there is Ω ∈ VN(G×G) with ‖Ω‖ ≤ 1 such that

ω−1 ⊗ ω−1 = (Γ̂ω−1)Ω.

The corresponding Beurling–Fourier algebra is defined as

A(G,ω) := {ω−1f : f ∈ A(G)}.

Remarks. 1. We have not defined what ω is: the ω in A(G,ω) is thus
purely symbolic. However, a simple Hahn–Banach argument shows that
ω−1 : L2(G) → L2(G) is injective with dense range (as is (ω−1)∗). We
can thus define ω : ω−1L2(G) → L2(G) as the inverse of ω−1 : L2(G) →
ω−1L2(G). It is immediate ([Yos, Proposition II.6.2]) that ω is closable and
thus extends to a closed (necessarily densely defined) operator on L2(G).

2. If ω−1 is self-adjoint, then it is sufficient that one of (6) or (7) have
dense range.

At first glance, it may seem bewildering that we do not require weight
inverses to be positive elements ofM(C∗r (G)). The reason for this is that we
are interested in later extending Definition 2.1 to an Lp-context for general
p ∈ (1,∞), where there is no suitable notion of positivity available. Still,
not requiring in Definition 2.1 that ω−1 be positive does not yield any more
Beurling–Fourier algebras, as the next proposition shows:

Proposition 2.2. Let G be a locally compact group, and let ω−1 ∈
M(C∗r (G)) be a weight inverse. Then |(ω−1)∗| ∈ M(C∗r (G)) is also a weight
inverse such that the corresponding Beurling–Fourier algebra coincides with
A(G,ω).

Proof. Due to Definition 2.1(a), the sets {xω−1 : x ∈ C∗r (G)} and
{ω−1x : x ∈ C∗r (G)} are dense in C∗r (G), as are {x(ω−1)∗ : x ∈ C∗r (G)}
and {(ω−1)∗x : x ∈ C∗r (G)}.

Let (ω−1)∗ = u|(ω−1)∗| be the polar decomposition of (ω−1)∗. Then

{x|(ω−1)∗| : x ∈ C∗r (G)} ⊃ {x|(ω−1)∗| |(ω−1)∗| : x ∈ C∗r (G)}
= {(xω−1)(ω−1)∗ : x ∈ C∗r (G)}

is dense in C∗r (G), as is—by an analogous argument—{|(ω−1)∗|x : x ∈
C∗r (G)}, i.e.,

C∗r (G)→ C∗r (G), x 7→ x|(ω−1)∗|,
and

C∗r (G)→ C∗r (G), x 7→ |(ω−1)∗|x,
each have dense range.

As we remarked after Definition 2.1, (ω−1)∗ is injective with dense range.
Consequently, the partial isometry u must be unitary; note also that u ∈
VN(G) ([Tak, Proposition II.3.14]). Let Ω be as in Definition 2.1(b). Then
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we have

|(ω−1)∗| ⊗ |(ω−1)∗| = (ω−1 ⊗ ω−1)(u⊗ u) = (Γ̂ω−1)Ω(u⊗ u)

= (Γ̂ |(ω−1)∗|)(Γ̂ u)Ω(u⊗ u).

As ‖(Γ̂ u)Ω(u ⊗ u)‖ = ‖Ω‖ ≤ 1, it follows that |(ω−1)∗| satisfies Definition
2.1(b) with (Γ̂ u)Ω(u⊗ u) en lieu of Ω.

Finally, note that

A(G,ω) = {ω−1f : f ∈ A(G)} = {ω−1uf : f ∈ A(G)}
= {|(ω−1)∗|f : f ∈ A(G)},

so that the Beurling–Fourier algebras corresponding to ω−1 and |(ω−1)∗|
coincide.

For abelian groups and positive weight inverses, the Beurling–Fourier
algebras in the sense of Definition 2.1 are in perfect duality with the classical
Beurling algebras, as we shall now see.

If G is a locally compact abelian group with dual group Ĝ, we always
suppose that Haar measures on G and Ĝ are scaled such that the Fourier
inversion formula ([Rud, 1.5.1, Theorem]) holds. In this case, there is a
unique unitary P : L2(G) → L2(Ĝ)—the Plancherel transform—that co-
incides with the Fourier transform F : L1(G) → A(Ĝ) on L1(G) ∩ L2(Ĝ).
By F̂ and P̂, we denote the Fourier and Plancherel transforms, respectively,
arising from Ĝ. Also, if G is any locally compact group and if φ ∈ L∞(G), we
denote the corresponding multiplication operator on L2(G) by Mφ (slightly
abusing notation, we shall often write φ instead of Mφ). Finally, if G is a
locally compact group, and φ : G → C is any function, we define functions
φ̄, φ̌, and φ̃ on G by letting

φ̄(x) := φ(x), φ̌(x) := φ(x−1), φ̃(x) := φ(x−1) (x ∈ G).

The following lemma is known by all likelihood, but for lack of a suitable
reference, we give a proof:

Lemma 2.3. Let G be a locally compact abelian group with dual group Ĝ.
Then

(8) P∗λ(f)P = M(F̂f)∨ (f ∈ L1(Ĝ)).

Proof. Let f, ξ ∈ L1(G) ∩ L2(G). Then

P(λ(f)ξ) = F(f ∗ ξ) = (Ff)(Pξ).
It follows that

(9) Pλ(f)P∗ = MFf (f ∈ L1(G)).

Let V ∈ B(L2(G)) be the unitary operator given by V ξ := ξ̌ for ξ ∈
L2(G). It is routinely checked that P∗ = V P̂. Replacing the rôles of G
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and Ĝ, from (9) we obtain

P∗λ(f)P = V P̂λ(f)P̂∗V = VMF̂fV = M(F̂f)∨ (f ∈ L1(Ĝ)),

which proves (8).

Lemma 2.4. Let G be a locally compact abelian group with dual group Ĝ,
and let F : L1(G) → A(Ĝ) be the Fourier transform. Then F∗ : VN(Ĝ) →
L∞(G) is a ∗-isomorphism that maps C∗r (Ĝ) onto C0(G) and satisfies

(10) (F∗ ⊗F∗) ◦ Γ̂ = Γ ◦ F∗.
Proof. Since F is an isomorphism of Banach algebras and since the mul-

tiplication in L1(G) and A(Ĝ) arises from Γ and Γ̂ , respectively, it is clear
that (10) holds.

To tell the Hilbert space inner product of L2(Ĝ) apart from a Banach
space duality 〈·, ·〉, we write 〈·|·〉. Let f, g ∈ L1(G), and let ξ, η ∈ L2(G) be
such that g = ξη̄; we have

〈g,F∗(λ(f))〉 = 〈ξη̄,F∗(λ(f))〉 = 〈F(ξη̄), λ(f)〉

= 〈Pξ ∗ P̃η, λ(f)〉 = 〈λ(f)Pξ | Pη〉 = 〈P∗λ(f)Pξ | η〉
= 〈M(F̂f)∨ξ | η〉 by Lemma 2.3

= 〈g, (F̂f)∨〉.
It follows that

(11) F∗(λ(f)) = P∗λ(f)P = (F̂f)∨.

From the first equality, it is immediate that F∗ is a ∗-homomorphism. The
second equality shows that F∗ maps the algebra λ(L1(Ĝ)), which is dense
in C∗r (Ĝ), onto a dense subalgebra of C0(G).

Proposition 2.5. Let G be a locally compact abelian group with dual
group Ĝ, and let F : L1(G)→ A(Ĝ) be the Fourier transform. Then:

(i) a continuous function ω : G → [1,∞) is a weight if and only if
(ω̂)−1 := (F∗)−1(ω−1) is a positive weight inverse, in which case
F(L1(G,ω)) = A(Ĝ, ω̂);

(ii) if ω−1 ∈M(C∗r (Ĝ)) is a positive weight inverse, then (F∗ω−1)−1 is
a weight on G.

Proof. As F∗ is a ∗-isomorphism mapping C∗r (Ĝ) onto C0(G), it is clear
that F∗ and its inverse respect positivity and map the closed unit balls of
M(C∗r (Ĝ)) and Cb(G) onto each other.

Let ω be a weight on G. Then α := (ω̂)−1 is a non-negative function in
the unit ball of Cb(G) satisfying Corollary 1.3(ii)(a). From Lemma 2.4, we
conclude that (ω̂)−1 := (F∗)−1(α) satisfies Definition 2.1, i.e., is a weight
inverse.
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Conversely, if ω−1 ∈ M(C∗r (Ĝ)) is a positive weight inverse, then α :=
F∗ω−1 is a non-negative function in the unit ball of Cb(G) satisfying Corol-
lary 1.3(ii), so that (F∗ω−1)−1 is a weight by that corollary.

Let ω : G → [1,∞) be a weight, and let (ω̂)−1 be defined as in (i). To
see that F(L1(G,ω)) = A(Ĝ, ω̂), first note that

(F∗)−1φ = PMφP∗ (φ ∈ L∞(G))

by (11). Let f ∈ L1(G). Choose ξ, η ∈ L2(G) such that f = ξη̄. Then

F(ω−1f) = F(ω−1ξη̄) = P(Mω−1ξ) ∗ P̃η

= ((PMω−1P∗)Pξ) ∗ P̃η = (F∗)−1(ω−1)(Ff).

We now give examples of weight inverses in the sense of Definition 2.1:

Examples. 1. Let G be a locally compact abelian group with dual
group Ĝ, and let F : L1(G) → A(Ĝ) denote the Fourier transform. By
Proposition 2.5(i), (ω̂)−1 := (F∗)−1(ω−1) is a weight inverse for every weight
ω : G → [1,∞), and F(L1(G,ω)) = A(Ĝ, ω̂) holds. By Proposition 2.5(ii),
every weight inverse in M(C∗r (Ĝ)) arises in this fashion.

2. In [L–S], H. H. Lee and E. Samei define Beurling–Fourier algebras
using an explicit definition of a weight on the dual of a locally compact
group G ([L–S, Definition 2.4]). A weight in their sense is a closed, densely
defined, positive operator ω on L2(G) affiliated with VN(G) and satisfying
various conditions. In particular, they require:

(i) ω has a bounded inverse ω−1 ∈ VN(G);
(ii) (Γ̂ω)(ω−1 ⊗ ω−1) ≤ 1 (for the definition of Γ̂ω, see [L–S]);
(iii) {xω−1 : x ∈ VN(G)} is weak∗ dense in VN(G).

By multiplying ω, if necessary, with a positive scalar, there is also no loss of
generality to suppose that ‖ω−1‖ ≤ 1.

Suppose that G is compact, so that

(12) C∗r (G)∗∗ = VN(G) =M(C∗r (G)),

and let ω be a weight on the dual of G in the sense of [L–S, Definition 2.4].
We claim that ω−1 is a weight inverse in the sense of Definition 2.1. First
of all, note that ω−1 ∈ M(C∗r (G)) by (12). Since the weak∗ topology of
VN(G) restricted to C∗r (G) is the weak topology, we deduce that {xω−1 :
x ∈ C∗r (G)} is norm dense in C∗r (G); as ω−1 is positive, {ω−1x : x ∈ C∗r (G)}
is also norm dense in C∗r (G). Finally, set Ω := (Γ̂ω)(ω−1 ⊗ ω−1), so that

ω−1 ⊗ ω−1 = (Γ̂ω−1)(Γ̂ω)(ω−1 ⊗ ω−1) = (Γ̂ω−1)Ω.

It follows that the central weights discussed in [L–S, Subsection 2.2] as
well as the weights introduced in [L–S–T, Section 3] all yield weight inverses
in the sense of Definition 2.1.
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So far, we have used the term “Beurling–Fourier algebras” without show-
ing that they are indeed algebras.

For the next theorem note that, if G is a locally compact group and
ω−1 ∈M(C∗r (G)) is a weight inverse, then (6) has a dense range, so that its
adjoint is injective, as is the restriction

(13) A(G)→ A(G), f 7→ ω−1f,

to A(G).

Theorem 2.6. Let G be a locally compact group, and let ω−1∈M(C∗r (G))
be a weight inverse. Then A(G,ω) is a dense subalgebra of A(G). Moreover,
if A(G,ω) is equipped with the unique operator space structure turning the
bijection

A(G)→ A(G,ω), f 7→ ω−1f,

into a complete isometry, then it is a completely contractive Banach algebra.

We refrain from giving a proof here because we will prove a more general
result in the context of Figà-Talamanca–Herz algebras (see Theorem 3.2
below).

3. Beurling–Figà-Talamanca–Herz algebras. Let G once again be
a locally compact group, let p ∈ (1,∞), and let λp : G → B(Lp(G)) be the
left regular representation of G on Lp(G), meaning

(λp(x)ξ)(y) := ξ(x−1y) (ξ ∈ Lp(G), x, y ∈ G);

we also write λp for the representation of L1(G) on Lp(G) obtained through
integration. We define

PFp(G) := λp(L1(G))
‖·‖

and PMp(G) := λp(L1(G))
weak∗

,

the p-pseudofunctions and the p-pseudomeasures on G, respectively; we also
define

M(PFp(G)) := {x ∈ PMp(G) :

xPFp(G) ⊂ PFp(G) and PFp(G)x ⊂ PFp(G)}.
The p-pseudomeasures form a weak∗ closed subspace of the dual Banach
space B(Lp(G)) and thus have a canonical predual, the Figà-Talamanca–
Herz algebra Ap(G).

For what follows, we require the theory of p-operator spaces, which is
outlined in [Daw], for instance.

There is a p-completely contractive, weak∗ continuous map Γ̂p : PMp(G)
→ PMp(G×G) with

Γ̂pλp(x) = λp(x)⊗ λp(x) (x ∈ G);
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there also exists a canonical, weak∗ continuous, p-complete contraction θ :
PMp(G × G) → (Ap(G)⊗̂pAp(G))∗ such that the preadjoint (θΓ̂p)∗ :
Ap(G)⊗̂pAp(G) → Ap(G) is pointwise multiplication (here, ⊗̂p stands for
the projective tensor product of p-operator spaces; see [Daw] for the defini-
tion).

As A(G) is a completely contractive VN(G)-bimodule, Ap(G) is a p-com-
pletely contractive PMp(G)-bimodule. We can thus extend Definition 2.1:

Definition 3.1. Let G be a locally compact group G, and let p ∈ (1,∞).
A weight inverse is an element ω−1 ofM(PFp(G)) with ‖ω−1‖ ≤ 1 such that
the following are satisfied:

(a) the maps

(14) PFp(G)→ PFp(G), x 7→ xω−1,

and

(15) PFp(G)→ PFp(G), x 7→ ω−1x,

have dense range;
(b) there is Ω ∈ PMp(G×G) with ‖Ω‖ ≤ 1 such that

ω−1 ⊗ ω−1 = (Γ̂pω
−1)Ω.

The corresponding Beurling–Figà-Talamanca–Herz algebra is defined as

Ap(G,ω) := {ω−1f : f ∈ Ap(G)}.

We have a canonical extension of Theorem 2.6 to Beurling–Figà-Tala-
manca–Herz algebras:

Theorem 3.2. Let G be a locally compact group, let p ∈ (1,∞), and let
ω−1 ∈M(PFp(G)) be a weight inverse. Then Ap(G,ω) is a dense subalgebra
of Ap(G). Moreover, if Ap(G,ω) is equipped with the unique p-operator space
structure turning the bijection

(16) Ap(G)→ Ap(G,ω), f 7→ ω−1f,

into a complete isometry, then it is a p-completely contractive Banach al-
gebra.

Proof. To show that Ap(G,ω) is dense in Ap(G), let x ∈ PMp(G) be
such that 〈f, x〉 = 0 for f ∈ Ap(G,ω), i.e., 〈ω−1f, x〉 = 〈f, xω−1〉 = 0 for f ∈
Ap(G). It follows that xω−1 = 0. As (15) has dense range in PFp(G), the set
{ω−1y : y ∈ PMp(G)} is weak∗ dense in PMp(G), so that xPMp(G) = {0}.
Since PMp(G) is unital, we conclude that x = 0, so that Ap(G,ω) is dense
in Ap(G) by the Hahn–Banach theorem.
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To see that Ap(G,ω) is multiplicatively closed, let f, g ∈ Ap(G), let
x ∈ PMp(G), and note that

〈(ω−1f)(ω−1g), x〉 = 〈(ω−1 ⊗ ω−1)(f ⊗ g), θΓ̂px〉
= 〈(ω−1 ⊗ ω−1)θ∗(f ⊗ g), Γ̂px〉
= 〈(Γ̂pω−1)Ωθ∗(f ⊗ g), Γ̂px〉
= 〈Ωθ∗(f ⊗ g), Γ̂p(xω

−1)〉
= 〈(Γ̂p)∗(Ωθ∗(f ⊗ g)), xω−1〉
= 〈ω−1(Γ̂p)∗(Ωθ∗(f ⊗ g)), x〉,

i.e.,

(17) (ω−1f)(ω−1g) = ω−1(Γ̂p)∗(Ωθ∗(f ⊗ g)) ∈ Ap(G,ω).

Hence, Ap(G,ω) is a subalgebra of Ap(G).

Since θ∗, (Γ̂p)∗, and

Ap(G×G)→ Ap(G×G), F 7→ ΩF,

are p-complete contractions, so is their composition, and it follows from (17)
that Ap(G,ω) is a p-completely contractive Banach algebra.

If G is a locally compact group and ω is a weight on G, then L1(G,ω) =
L1(G) with equivalent norms if and only if ω is bounded, which is trivially
satisfied for compact G. In view of the duality between L1- and Fourier
algebras, one should expect a similar result for Beurling–Fourier algebras
which should always be true on discrete groups. Indeed, this holds even for
Beurling–Figà-Talamanca–Herz algebras:

Proposition 3.3. Let G be a locally compact group, and let ω−1 ∈
M(PFp(G)) be a weight inverse. Then the following are equivalent:

(i) the inclusion map from Ap(G,ω) into Ap(G) is surjective;
(ii) the inclusion map from Ap(G,ω) into Ap(G) is surjective and has

a p-completely bounded inverse;
(iii) ω−1 is left invertible in PMp(G).

If G is discrete, then ω−1 is automatically invertible in M(PFp(G)), so that
(i)–(iii) hold.

Proof. (iii)⇒(ii)⇒(i) hold trivially.

(i)⇒(iii). The composition of (16) with the canonical inclusion of
Ap(G,ω) into Ap(G) is

Ap(G)→ Ap(G), f 7→ ω−1f.
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If this map is bijective, then so is

PMp(G)→ PMp(G), x 7→ xω−1.

As PMp(G) is unital, ω−1 must be left invertible in PMp(G).
If G is discrete, then PFp(G) is unital, so that M(PFp(G)) = PFp(G).

From the density of the ranges of (14) and (15) in PFp(G) it is clear that the
left ideals {xω−1 : x ∈ PFp(G)} and {ω−1x : x ∈ PFp(G)} are both dense
in PFp(G) and thus, by basic Banach algebra theory, in all of PFp(G). It
follows that ω−1 is invertible in PFp(G).

Remark. Suppose that p = 2 and that ω−1 ∈ M(C∗r (G)) is a weight
inverse such that (13) is surjective (and thus, automatically, bijective). As
(ω−1)∗ = u|(ω−1)∗| with u ∈ VN(G) unitary—see the proof of Proposi-
tion 2.2—it follows that

A(G) 7→ A(G), f 7→ |(ω−1)∗|f,
is also bijective. Hence, |(ω−1)∗| is left invertible in VN(G) and, being self-
adjoint, actually invertible. This entails that (ω−1)∗ is invertible in VN(G)
and thus inM(C∗r (G)). In the p = 2 situation, we thus have the equivalence
of:

(i) the inclusion map from A(G,ω) into A(G) is surjective;
(ii) the inclusion map from A(G,ω) into A(G) is surjective and has a

completely bounded inverse;
(iii) ω−1 is invertible in M(C∗r (G)).

4. A weighted Leptin–Herz theorem. It is well known that, for any
locally compact group G and any weight ω : G → [1,∞), the Beurling
algebra L1(G,ω) has a bounded approximate identity ([R–St, Proposition
3.7.7]). On the other hand, H. Leptin proved in [Lep] that a locally compact
group G is amenable if and only if A(G) has a bounded approximate identity.
This result was subsequently extended in to Figà-Talamanca–Herz algebras
in [Her 2] by C. Herz, who claimed this extension to be folklore.

In this section, we prove a weighted version of the Leptin–Herz theorem:
a locally compact group G is amenable if and only if, for all p ∈ (1,∞) and
all weight inverses ω−1 ∈M(PFp(G)), the algebra Ap(G,ω) has a bounded
approximate identity.

As Ap(G,ω) is dense in Ap(G) with the inclusion being (p-completely)
contractive, any bounded approximate identity for Ap(G,ω) is automatically
an approximate identity for Ap(G), thus forcing G to be amenable. If one
tries to adapt the proof in the unweighted case—via Følner type conditions—
difficulties show up immediately: in general, the functions in Ap(G,ω) with
compact support need not be dense in Ap(G,ω). We thus pursue a different
route, which is inspired by the theory of Kac algebras (see [E–S]).
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Definition 4.1. Let G be a locally compact group, and let p ∈ [1,∞).
We call a net (ξα)α of non-negative norm one functions in Lp(G) a (Pp)-net
if

sup
x∈K
‖λp(x)ξα − ξα‖p → 0

for a compact K ⊂ G.

Remark. The choice of terminology in Definition 4.1 is, of course, due to
property (Pp) introduced by H. Reiter (see [R–St, Definition 8.3.1]). A locally
compact group G is amenable if and only if it has property (Pp) for one—
and, equivalently, for all—p ∈ [1,∞) ([Pie, Theorem 6.14]), i.e., there is a
(Pp)-net in Lp(G).

For any p ∈ (1,∞), the (Pp)-nets are defined in terms of an asymptotic
invariance property. For the proof of our weighted Leptin–Herz theorem, we
require three more such properties, which we formulate as three lemmas.

Lemma 4.2. Let G be an amenable locally compact group, and let p ∈
(1,∞). Then:

(i) the augmentation character 1 ∈ L∞(G) on L1(G) extends uniquely
to a multiplicative linear functional on M(PFp(G));

(ii) for any (Pp)-net (ξα)α in Lp(G), we have

(18) ‖xξα − 〈x, 1〉ξα‖p → 0 (x ∈M(PFp(G))).

Proof. It follows from [Cow, Theorem 5] that 1 extends (necessarily
uniquely) to PFp(G) as a (necessarily multiplicative) bounded linear func-
tional. Fix a ∈ PFp(G) with 〈a, 1〉 = 1, and define

φ :M(PFp(G))→ C, x 7→ 〈xa, 1〉.
Clearly, φ is a continuous functional extending 1. To see that φ is multi-
plicative, let (eα)α be a bounded approximate identity for L1(G), so that
(λp(eα))α is a bounded approximate identity for PFp(G). We obtain for
x, y ∈M(PFp(G)):

〈xy, φ〉 = 〈xya, 1〉 = lim
α
〈xλ(eα)ya, 1〉 = lim

α
〈xλ(eα), 1〉〈ya, 1〉

= lim
α
〈xλ(eα)a, 1〉〈ya, 1〉 = 〈xa, 1〉〈ya, 1〉 = 〈x, φ〉〈y, φ〉.

It is obvious that φ is the only multiplicative extension of 1 from PFp(G)
toM(PFp(G)) (for the sake of simplicity, we will also denote this extension
by 1). This proves (i).

For the proof of (ii), first note that (18) holds for x ∈ λp(L1(G)): this
is due to the fact the the functions with compact support are dense in
L1(G). Due to the norm density of λ(L1(G)) in PFp(G), we obtain (18)
for x ∈ PFp(G) as well. Finally, let x ∈ M(PFp(G)) be arbitrary. Fix
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a ∈ PFp(G) with 〈a, 1〉 = 1, so that ‖aξα − ξα‖p → 0 and thus

‖xξα − xaξα‖p → 0.

As 〈xa, 1〉 = 〈x, 1〉, we obtain

‖xξα − 〈x, 1〉ξα‖p ≤ ‖xξα − xaξα‖p + ‖xaξ − 〈xa, 1〉ξα‖p → 0.

Let p ∈ (1,∞) be arbitrary. As in the case p = 2, we define Wp ∈
B(Lp(G×G)) by letting

(Wpξ)(x, y) := ξ(x, xy) (ξ ∈ Lp(G×G), x, y ∈ G),

As in that case, we have

(19) Γ̂px = W−1p (x⊗ 1)Wp (x ∈ PMp(G×G)).

Observe also that, if q ∈ (1,∞) is dual to p, i.e., 1/p+ 1/q = 1, then

(20) W ∗p = W−1q and (W−1p )∗ = Wq.

Lemma 4.3. Let G be a locally compact group, let p ∈ (1,∞), and let
(ξα)α be a (Pp)-net in Lp(G). Then

(21) ‖Wp(η ⊗ ξα)− η ⊗ ξα‖p → 0 (η ∈ Lp(G))

and

(22) ‖W−1p (η ⊗ ξα)− η ⊗ ξα‖ → 0 (η ∈ Lp(G)).

Proof. If η has compact support, (21) is immediate from Definition 4.1;
the general case follows by the usual density argument. Clearly, (22) follows
from (21).

Lemma 4.4. Let G be a locally compact group, let p, q ∈ (1,∞) be dual to
each other, let ω−1 ∈M(PFp(G)), let Ω ∈ PMp(G×G) be as in Definition
3.1(b), and let (ξα)α be a (Pq)-net in Lq(G). Then

(23) ‖Ω∗(η ⊗ ξα)− η ⊗ (ω−1)∗ξα‖q → 0 (η ∈ Lp(G)).

Proof. By Definition 3.1(b) and (19), we have

ω−1 ⊗ ω−1 = (Γ̂ω−1)Ω = W−1p (ω−1 ⊗ 1)WpΩ.

Through taking adjoints—taking (20) into account—we obtain

(24) (ω−1)∗ ⊗ (ω−1)∗ = Ω∗W−1q ((ω−1)∗ ⊗ 1)Wq.

As (ξα)α is a (Pq)-net, we deduce from Lemma 4.3 that

‖Ω∗W−1q ((ω−1)∗ ⊗ 1)Wq(η ⊗ ξα)−Ω∗((ω−1)∗η ⊗ ξα)‖q → 0.

In view of (24), this yields (23) in the case where η ∈ (ω−1)∗Lq(G); the
general case follows from the fact that (ω−1)∗Lq(G) is dense in Lq(G).

For our next result, the technical heart of our argument, recall the notion
of a weak approximate identity of a Banach algebra A: this a net (eα)α in A
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such that

aeα → a and eαa→ a (a ∈ A)

in the weak topology of A (see, for instance, [B–D, Definition 11.3]).

Proposition 4.5. Let G be a locally compact group, let (ξα)α∈A be a
(P1)-net in L1(G), let p, q ∈ (1,∞) be dual to each other, and let the net
(eα)α∈A in Ap(G) be defined by

eα(x) := 〈λp(x)ξ1/pα , ξ1/qα 〉 (x ∈ G, α ∈ A).

Then, if ω−1∈M(PFp(G)) is a weight inverse, the net (〈ω−1, 1〉−1ω−1eα)α∈A
in Ap(G,ω) is a weak approximate identity for Ap(G,ω).

Proof. It is clear that (〈ω−1, 1〉−1ω−1eα)α∈A is bounded in Ap(G,ω).
Also note that

(ω−1eα)(x) = 〈λp(x)ω−1ξ1/pα , ξ1/qα 〉 (x ∈ G, α ∈ A).

Let f ∈ Ap(G). Without loss of generality, suppose that there exist
η ∈ Lp(G) and ζ ∈ Lq(G) with 〈ω−1η, ζ〉 = 1 such that f(x) = 〈λp(x)η, ζ〉
for x ∈ G; this means that

(ω−1f)(x) = 〈λp(x)ω−1η, ζ〉

for x ∈ G.

There is a canonical complete isomorphism κ : PMp(G) → Ap(G,ω)∗,
given by

〈ω−1f, κ(x)〉 = 〈f, x〉 (x ∈ PMp(G)).

Fix x ∈ PMp(G).

From the proof of Theorem 3.2, we see that for α ∈ A,

(25) 〈(ω−1f)〈ω−1, 1〉−1ω−1eα, κ(x)〉
= 〈ω−1, 1〉−1〈ω−1(Γ̂p)∗(Ωθ∗(f ⊗ eα)), κ(x)〉
= 〈ω−1, 1〉−1〈Ωθ∗(f ⊗ eα), Γ̂px〉
= 〈ω−1, 1〉−1〈θ∗(f ⊗ eα), (Γ̂px)Ω〉
= 〈ω−1, 1〉−1〈θ∗(f ⊗ eα),W−1p (x⊗ 1)WpΩ〉

= 〈ω−1, 1〉−1〈ζ ⊗ ξ1/qα ,W−1p (x⊗ 1)WpΩ(η ⊗ ξ1/pα )〉

= 〈ω−1, 1〉−1〈Ω∗W−1q (x∗ ⊗ 1)Wq(ζ ⊗ ξ1/qα ), (η ⊗ ξ1/pα )〉.

As (ξα)α∈A is a (P1)-net, (ξ
1/q
α )α∈A is a (Pq)-net. From Lemmas 4.3 and 4.4,

we conclude that

‖Ω∗W−1q (x∗ ⊗ 1)Wq(ζ ⊗ ξ1/qα )− x∗ζ ⊗ (ω−1)∗ξα‖q → 0
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and thus

〈ζ ⊗ ξ1/qα ,W−1p (x⊗ 1)WpΩ(η ⊗ ξ1/pα )〉 − 〈ζ ⊗ ξ1/qα , xη ⊗ ω−1ξ1/pα 〉

= 〈Ω∗W−1q (x∗ ⊗ 1)Wq(ζ ⊗ ξ1/qα )− x∗ζ ⊗ (ω−1)∗ξα, η ⊗ ξ1/pα 〉 → 0.

Together with (25), this yields

(26)

lim
α
〈(ω−1f)〈ω−1, 1〉−1ω−1eα, κ(x)〉 − 〈ω−1, 1〉−1〈ζ ⊗ ξ1/qα , xη⊗ω−1ξ1/pα 〉 = 0.

On the other hand, as (ξα)α∈A is a (P1)-net, (ξ
1/p
α )α∈A is a (Pp)-net, so

that

‖ω−1ξ1/pα − 〈ω−1, 1〉ξ1/pα ‖p → 0

by Lemma 4.2(ii) and thus

(27) 〈ζ ⊗ ξ1/qα , xη ⊗ ω−1ξ1/pα 〉 = 〈f, x〉〈ξ1/qα , ω−1ξ1/pα 〉
→ 〈f, x〉〈ω−1, 1〉 = 〈ω−1f, κ(x)〉〈ω−1, 1〉.

Combined, (26) and (27) yield

lim
α
〈(ω−1f)〈ω−1, 1〉−1ω−1eα − f, κ(x)〉 = 0.

As x ∈ PMp(G) was arbitrary, this completes the proof.

Summing everything up, we obtain:

Theorem 4.6. The following are equivalent for a locally compact group G:

(i) G is amenable;
(ii) for every p∈(1,∞) and for every weight inverse ω−1∈M(PFp(G)),

the Beurling–Figà-Talamanca–Herz algebra Ap(G,ω) has a bounded
approximate identity;

(iii) there are p ∈ (1,∞) and a weight inverse ω−1 ∈ M(PFp(G))
such that the Beurling–Figà-Talamanca–Herz algebra Ap(G,ω) has
a bounded approximate identity

Proof. (i)⇒(ii): Let p ∈ (1,∞), and let ω−1 ∈ M(PFp(G)) be a weight
inverse. As G is amenable, it has Reiter’s property (P1) ([Pie, Proposition
6.12]), i.e., there is a (P1)-net in L1(G). By Proposition 4.5, this means that
Ap(G,ω) has a weak bounded approximate identity. By a standard Banach
algebra result (see [B–D, Proposition 11.4], for example), this means that
Ap(G,ω) already has a bounded approximate identity.

(ii)⇒(iii) is trivial.
(iii)⇒(i): As we remarked at the beginning of this section, the existence

of a bounded approximate identity for Ap(G,ω) already implies the existence
of one for Ap(G). By the unweighted Leptin–Herz theorem ([Pie, Theorem
10.4]), this means that G is amenable.
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