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Abstract. Let t be a regular operator between Hilbert C∗-modules and t† be its
Moore–Penrose inverse. We investigate the Moore–Penrose invertibility of the Gram op-
erator t∗t. More precisely, we study some conditions ensuring that t† = (t∗t)†t∗ = t∗(tt∗)†

and (t∗t)† = t†t∗†. As an application, we get some results for densely defined closed
operators on Hilbert C∗-modules over C∗-algebras of compact operators.

1. Introduction. Hilbert C∗-modules are essentially objects like Hil-
bert spaces, except that the inner product, instead of being complex-valued,
takes its values in a C∗-algebra. Although Hilbert C∗-modules behave like
Hilbert spaces in some ways, some fundamental Hilbert space properties like
Pythagoras’ equality, self-duality, and even decomposition into orthogonal
complements do not hold in general. A (right) pre-Hilbert C∗-module over
a C∗-algebra A is a right A -module X equipped with an A -valued inner
product 〈·, ·〉 : X × X → A , (x, y) 7→ 〈x, y〉, which is A -linear in the
second variable y as well as 〈x, y〉 = 〈y, x〉∗ and 〈x, x〉 ≥ 0 with equality
only when x = 0. A pre-Hilbert A -module X is called a Hilbert A -module
if X is a Banach space with respect to the norm ‖x‖ = ‖〈x, x〉‖1/2, where
the latter norm is the norm of A . Each C∗-algebra A can be regarded as
a Hilbert A -module via 〈a, b〉 = a∗b (a, b ∈ A ). A Hilbert A -submodule
W of a Hilbert A -module X is an orthogonal summand if W ⊕W⊥ = X ,
where W⊥ denotes the orthogonal complement of W in X .

Throughout this paper we assume that A is an arbitrary C∗-algebra
(not necessarily unital) and X ,Y are Hilbert A -modules. By an operator
we mean a linear operator. We may deal with bounded and unbounded op-
erators at the same time, so we will denote bounded operators by capital
letters and unbounded operators by lower case letters. In addition, Dom(·),
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Ker(·) and Ran(·) stand for the domain, kernel and range of operators,
respectively. An operator t between X and Y is a linear operator with
Dom(t) ⊆ X and Ran(t) ⊆ Y . It is A -linear if t(xa) = t(x)a for all
x ∈ Dom(t) and all a ∈ A . The set of all A -linear operators between X
and Y is denoted by L(X ,Y ). As usual, L(X ) stands for L(X ,Y ) if
X = Y . An operator t ∈ L(X ,Y ) for which Dom(t) is a dense submod-
ule of X is called a densely defined operator. An operator t ∈ L(X ,Y ) is
called closed if its graph G(t) = {(x, t(x)) : x ∈ Dom(t)} is a closed submod-
ule of the Hilbert A -module X ⊕ Y equipped with the C∗-inner product
〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉 + 〈y1, y2〉. If s ∈ L(X ,Y ) is an extension of
t ∈ L(X ,Y ), we write t ⊆ s. As usual, this means that Dom(t) ⊆ Dom(s)
and s(x) = t(x) for all x ∈ Dom(t). If t has a closed extension, then
it is called closable and the operator t ∈ L(X ,Y ) with G(t) = G(t) is
called the closure of t. A densely defined operator t ∈ L(X ,Y ) is called
adjointable if there exists a densely defined operator t∗ ∈ L(Y ,X ) with
the domain Dom(t∗) = {y ∈ Y : there exist z ∈ X such that 〈t(x), y〉 =
〈x, z〉 for any x ∈ Dom(t)} satisfying the property 〈t(x), y〉 = 〈x, t∗(y)〉 for
any x ∈ Dom(t), y ∈ Dom(t∗). This property ensures that Dom(t∗) is a
submodule of Y and t∗ is a closed A -linear map. In the setting of Hilbert
spaces any densely defined closed operator has a densely defined adjoint,
but in the framework of Hilbert C∗-modules this does not occur in general.
It is notable that any adjointable operator with domain X is automatically
a bounded A -linear map. We denote by B(X ,Y ) the set of all adjointable
operators from X into Y . The set B(X ,X ) is abbreviated by B(X ).

If s ∈ L(X ,Y ) and t ∈ L(Y ,Z ) are densely defined operators between
Hilbert C∗-modules, we define the composition operator ts by (ts)(x) =
t(s(x)) for all x∈Dom(ts), where Dom(ts) = {x∈Dom(s) : s(x)∈Dom(t)}.
Then ts ∈ L(X ,Z ), but ts is not necessarily densely defined. Suppose two
densely defined operators t and s are adjointable; then it is easy to see that
s∗t∗ ⊆ (ts)∗. If T is a bounded adjointable operator, then s∗T ∗ = (Ts)∗.
Damaville [3] proved that under certain conditions the product of two regu-
lar operators between Hilbert C∗-modules is regular. Regular operators on
Hilbert C∗-modules were first introduced by Baaj and Julg [1] and exten-
sively studied in [11].

Definition 1.1. An operator t ∈ L(X ,Y ) is said to be regular if t
is densely defined, closed and adjointable and the range of 1 + t∗t is dense
in X . We denote the set of all regular operators in L(X ,Y ) by R(X ,Y ).
We abbreviate R(X ,X ) by R(X ).

This definition is equivalent to the notion of regularity introduced by
Woronowicz [18]. If t is regular, then t∗ is regular, t = t∗∗ and also t∗t is
regular and self-adjoint. It may occur that t∗ is regular but t is not (see [12,
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Propositions 2.2 and 2.3]). Also a densely defined operator t with a densely
defined adjoint operator t∗ is regular if and only if its graph is orthogonally
complemented in X ⊕ Y (see e.g. [6, 11]). Suppose t ∈ R(X ,Y ) and
define Qt = (1 + t∗t)−1/2 and Ft = tQt. Then Ran(Qt) = Dom(t), 0 ≤ Qt =
(1− F ∗t Ft)

1/2 ≤ 1 in B(X ) and Ft ∈ B(X ,Y ).

The following terminology is basic in our study (cf. [7]).

Definition 1.2. Let t ∈ R(X ,Y ). An operator s ∈ R(Y ,X ) is called
a Moore–Penrose inverse of t if tst = t, sts = s, (ts)∗ = ts and (st)∗ = st.

If t ∈ L(H ,H ′) is a densely defined closed operator between Hilbert
spaces, then Pyt’ev [13] proved that there is a densely defined closed operator
s satisfying the relations in Definition 1.2. Xu and Sheng [19] proved that
an adjointable operator acting on the whole of a Hilbert C∗-module has a
Moore–Penrose inverse if and only if it has closed range. In [7, Theorem 3.1],
a very useful necessary and sufficient condition for a regular operator t to
admit a unique Moore–Penrose inverse, denoted by t†, is given:

Theorem 1.3. If t ∈ R(X ,Y ), then the following conditions are equiv-
alent:

(i) t and t∗ have unique Moore–Penrose inverses which are adjoint to
each other, t† and t†∗.

(ii) X = Ker(t)⊕ Ran(t∗) and Y = Ker(t∗)⊕ Ran(t).

In this situation, t∗t†∗ and tt† are the projections onto Ran(t∗) = Ran(t∗t)
and Ran(t), respectively.

Recall that Dom(t†) := Ran(t) ⊕ Ker(t∗) and t† : Dom(t†) ⊆ Y → X
is defined by t†(t(x1 + x2) + x3) = x1 for all x1 ∈ Dom(t) ∩ Ran(t∗), x2 ∈
Dom(t) ∩Ker(t) and x3 ∈ Ker(t∗). The adjoint of t† is defined similarly.

In view of [7, Corollary 3.4], every regular operator with closed range
has a bounded adjointable Moore–Penrose inverse.

Let T be a bounded linear operator with closed range between Hilbert
spaces. The Gram operator of T is defined to be T ∗T . One interesting prob-
lem in matrix/operator theory is to investigate the Moore–Penrose inverse
(T ∗T )†. The equalities (T ∗T )† = T †T ∗† and T † = T ∗(TT ∗)† = (T ∗T )†T ∗

were proved in [4, 9] in the case when T is a bounded linear operator acting
on a Hilbert space. In this paper, we generalize them to the case where t
is a certain operator in the framework of Hilbert C∗-modules. We set con-
ditions which ensure that t∗(tt∗)† = t† and t† = (t∗t)†t∗ and (t∗t)† = t†t∗†.
We present an example showing that the equalities do not hold in general.
Finally, we apply our results to densely defined closed operators on Hilbert
C∗-modules over C∗-algebras of compact operators.
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2. Moore–Penrose invertibility of the Gram operator. In this
section we obtain unbounded versions of some results of [4] in the framework
of Hilbert C∗-modules. Indeed, we study some conditions which ensure that
t† = (t∗t)†t∗ = t∗(tt∗)† and (t∗t)† = t†t∗†. Our results are also reformulated
in terms of bounded adjointable operators.

Lemma 2.1. If t ∈ R(X ,Y ) has closed range, then so does tt∗.

Proof. If Ran(t) is closed, then Ran(t∗) is closed and X = Ker(t) ⊕
Ran(t∗). Let x ∈ Dom(t). Then x = z + t∗y, for some y ∈ Dom(t∗) and
z ∈ Ker(t) ⊆ Dom(t). Therefore t(x) = tt∗(y), that is, t and tt∗ have the
same range.

Theorem 2.2. Suppose t ∈ R(X ,Y ) and Ran(t∗) and Ran(t) are or-
thogonally complemented in X and Y , respectively. Then

(i) t∗(tt∗)† ⊆ t†,
(ii) t† ⊆ (t∗t)†t∗ if and only if Ran(t) ⊆ Dom(t∗).

If in addition t has closed range, then

(iii) t∗(tt∗)† = t†,
(iv) t† = (t∗t)†t∗ when Ran(t) ⊆ Dom(t∗).

Proof. The Moore–Penrose inverse of the regular operator tt∗ exists by
the orthogonal decompositions into direct summands and the fact that
Ran(t) = Ran(tt∗). To prove (i) we have Dom(t∗(tt∗)†) = Dom((tt∗)†) =
Ran(tt∗)+Ker(tt∗) ⊆ Ran(t)+Ker(t∗) = Dom(t†). Let x = tt∗(x1+x2)+x3 ∈
Dom((tt∗)†) with x1 ∈ Dom(tt∗) ∩ Ran(tt∗), x2 ∈ Dom(tt∗) ∩ Ker(tt∗) and
x3 ∈ Ker(tt∗) = Ker(t∗) = Ker(t†). Then (tt∗)†(x) = x1. Therefore

t†(x) = t†(tt∗(x1 + x2) + x3) = (t†t)t∗(x1) + 0 + 0 = t∗(x1) = t∗(tt∗)†(x),

that is, t∗(tt∗)† = t† on Dom(t∗(tt∗)†).

Let the operator inclusion of (ii) hold. Then Dom(t†) ⊆ Dom(t∗), which
implies that Ran(t) ⊆ Dom(t∗). Conversely, if Ran(t) ⊆ Dom(t∗) and x =

t(x1+x2)+x3 ∈ Dom(t†) with x1 ∈ Dom(t)∩Ran(t∗), x2 ∈ Dom(t)∩Ker(t)

and x3 ∈ Ker(t∗), then t†(x) = x1. Since Ran(t∗) = Ran(t∗t), we get

((t∗t)†t∗)(t(x1 + x2) + x3) = (t∗t)†(t∗t)x1 + 0 + 0

= (t∗t)†(t∗t)x1 = x1 = t†(x),

that is, (t∗t)†t∗ = t† on Dom(t†).

To demonstrate (iii) we suppose that t has closed range. Then tt∗ has
closed range and Ran(tt∗) = Ran(t). In this case, t† is everywhere defined.
Hence,

Dom(t∗(tt∗)†) = Ran(tt∗) + Ker(tt∗) = Ran(t) + Ker(t∗) = Dom(t†) = Y .
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The result now follows from (i). Finally, if t† is everywhere defined and
Ran(t) ⊆ Dom(t∗), then the inclusion of (ii) becomes an equality, which
completes the proof.

Corollary 2.3. Suppose t ∈ R(X ,Y ) has closed range and Ran(t) ⊆
Dom(t∗). Then

(i) t† = (t∗t)†t∗ = t∗(tt∗)†,
(ii) (t∗t)† = t†t∗†.

Proof. According to [6, Proposition 1.2] and [11, Theorem 3.2], Ran(t)
and Ran(t∗) are orthogonally complemented in Y and X , respectively.
These facts together with Theorem 2.2 imply the equalities of the first part.

The closedness of the range of t∗ and part (iii) of Theorem 2.2 ensure
that t∗† = t(t∗t)†. Therefore

t†t∗† = (t∗t)†t∗t(t∗t)† = (t∗t)†.

Corollary 2.4. Suppose T ∈ B(X ,Y ) has closed range. Then

(i) T † = (T ∗T )†T ∗ = T ∗(TT ∗)†,
(ii) (T ∗T )† = T †T ∗†.

This follows from the fact that B(X ,Y ) is a subset of R(X ,Y ). The
set of all regular operators was studied from a topological point of view in
[15–17].

The reader should be aware that the operator inclusions in Theorem 2.2
may be strict even for bounded operators.

Example 2.5. Let V be the Volterra operator on L2[0, 1], i.e., (V f)(x) =	x
0 f(y) dy. Then the adjoint of V is given by (V ∗f)(x) =

	1
x f(y) dy. The oper-

ators V and V ∗ are bounded and injective, that is, Ker(V ) = Ker(V ∗) = {0},
and Ran(V ) and Ran(V ∗) are dense in L2[0, 1]. Indeed,

L2[0, 1] = Ker(V ∗)⊕ Ran(V ) = Ran(V ),

L2[0, 1] = Ker(V )⊕ Ran(V ∗) = Ran(V ∗).

Moreover, we have

(V V ∗f)(x) =

x�

0

(1�
y

f(t) dt
)
dy = x

1�

x

f(y) dy +

x�

0

yf(y) dy.

We claim that Ran(V V ∗) 6= Ran(V ). To see this, we consider the identity
function f(x) = x in Ran(V ). If f = V V ∗g for some g ∈ L2[0, 1], then

f ′(x) =
d

dx

(x�
0

(1�
y

g(t) dt
)
dy
)

=

1�

x

g(t) dt for all x ∈ [0, 1],

which implies that f ′(1) = 0, a contradiction. This means that the Volterra

integral equation x = x
	1
x g(y) dy +

	x
0 yg(y) dy has no solution in L2[0, 1].
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Since Dom(V ∗(V V ∗)†) = Dom((V V ∗)†) = Ran(V V ∗) + Ker(V V ∗) =
Ran(V V ∗) + Ker(V ∗) = Ran(V V ∗), we have Dom(V ∗(V V ∗)†) ⊆ Ran(V ) =
Ran(V )+Ker(V ∗) = Dom(V †). The latter inclusion is strict since Ran(V V ∗)
⊂ Ran(V ). Hence, Dom(V ∗(V V ∗)†) ⊂ Dom(V †). This means that the op-
erator inclusions in Theorem 2.2 may be strict even for bounded operators
on Hilbert spaces. Another example can be found in the book of Ben-Israel
and Greville [2, Chapter 9, Ex. 26].

The above example also shows that the assumption on closedness of the
range of t in part (ii) of Corollary 2.3 cannot be removed.

Theorem 2.6. Suppose t ∈ R(X ), and Ran(t∗) and Ran(t) are orthog-
onally complemented in X . If S is a bounded adjointable operator which
commutes with t and t∗, then St† ⊆ t†S.

Proof. Suppose S commutes with t and t∗ and ω > 0. Then S commutes
with ω1 + tt∗, hence also with the bounded operator (ω1 + tt∗)−1. In view
of commutativity of S with t∗ and (ω1 + tt∗)−1, boundedness of S and
Theorem 2.8 of [14], we infer that

St† = S lim
ω→0+

t∗(ω1 + tt∗)−1 = lim
ω→0+

t∗(ω1 + tt∗)−1S = t†S on Dom(t†).

Proposition 2.7. Suppose t ∈ R(X ), and Ran(t∗) and Ran(t) are or-

thogonally complemented in X . Then t is selfadjoint if and only if t = t†t t∗.

Proof. The assertion follows from the fact that t†t is the orthogonal
projection onto Ran(t†) = Ker(t†∗)⊥ = Ker(t)⊥ = Ran(t∗), which implies

t∗ = t†t t∗.

We end our paper with the following useful observations. By an arbi-
trary C∗-algebra of compact operators we mean an algebra A of the form
c0-
⊕

i∈I K(Hi), i.e., A is the c0-direct sum of elementary C∗-algebras K(Hi)
of all compact operators acting on Hilbert spaces Hi, i ∈ I. If A is an ar-
bitrary C∗-algebra of compact operators, then for every pair of Hilbert A -
modules X ,Y , every densely defined closed operator t : Dom(t) ⊆X → Y
is automatically regular and has a Moore–Penrose inverse (cf. [6, 7, 5, 10]).
The following results follow from [7, Theorem 3.8].

Corollary 2.8. Suppose X and Y are Hilbert C∗-modules over an
arbitrary C∗-algebra of compact operators and t ∈ L(X ,Y ) is a densely de-
fined closed operator. Then the conclusions of Theorems 2.2, 2.6 and Propo-
sition 2.7 hold.
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