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On the Heyde theorem for discrete Abelian groups

by

G. M. Feldman (Kharkov)

Abstract. Let X be a countable discrete Abelian group, Aut(X) the set of au-
tomorphisms of X, and I(X) the set of idempotent distributions on X. Assume that
α1, α2, β1, β2 ∈ Aut(X) satisfy β1α

−1

1
± β2α

−1

2
∈ Aut(X). Let ξ1, ξ2 be independent ran-

dom variables with values in X and distributions µ1, µ2. We prove that the symmetry
of the conditional distribution of L2 = β1ξ1 + β2ξ2 given L1 = α1ξ1 + α2ξ2 implies that
µ1, µ2 ∈ I(X) if and only if the group X contains no elements of order two. This theorem
can be considered as an analogue for discrete Abelian groups of the well-known Heyde
theorem where the Gaussian distribution on the real line is characterized by the symmetry
of the conditional distribution of one linear form given another.

1. Introduction. The well-known Skitovich–Darmois theorem asserts
that a Gaussian distribution on the real line is characterized by the inde-
pendence of two linear forms of independent random variables. A similar
result of Heyde characterizes a Gaussian distribution by the symmetry of
the conditional distribution of one linear form given another.

Theorem A (C. C. Heyde [6], see also [7, §13.4]). Let ξ1, . . . , ξn, n ≥ 2,
be independent random variables, and let αj , βj be nonzero constants such

that βiα
−1
i ± βjα

−1
j 6= 0 for all i 6= j. If the conditional distribution of

L2 = β1ξ1 + · · ·+ βnξn given L1 = α1ξ1 + · · ·+αnξn is symmetric, then all

random variables ξj are Gaussian.

Let X be a locally compact Abelian separable metric group. Denote by
Y = X∗ the character group of X. Let (x, y) be the value of a character
y ∈ Y on an element x ∈ X. Denote by M1(X) the convolution semigroup of
probability distributions onX. For µ ∈M1(X) denote by µ̂ its characteristic
function,

µ̂(y) =
\
X

(x, y) dµ(x).
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A distribution µ ∈ M1(X) is called Gaussian ([9, Ch. IV]) if its character-
istic function can be represented in the form

µ̂(y) = (x, y) exp{−ϕ(y)}, y ∈ Y,

where x ∈ X and ϕ is a continuous nonnegative function on Y satisfying
the equation

ϕ(u+ v) + ϕ(u− v) = 2[ϕ(u) + ϕ(v)], u, v ∈ Y.

Let Aut(X) be the set of topological automorphisms of X, and let ξ1, . . . , ξn,
n ≥ 2, be independent random variables with values in X and distribu-
tions µj. Consider the linear forms L1 = α1ξ1 + · · ·+αnξn and L2 = β1ξ1 +
· · · + βnξn, where αj , βj ∈ Aut(X) satisfy the condition βiα

−1
i ± βjα

−1
j ∈

Aut(X) for all i 6= j. Let us formulate the following general problem.

Problem 1. Describe locally compact Abelian separable metric groups
X for which the symmetry of the conditional distribution of L2 = β1ξ1 +
· · ·+ βnξn given L1 = α1ξ1 + · · ·+αnξn implies that all distributions µj are
either Gaussian or belong to a class of distributions that can be considered
as a natural analogue of the class of Gaussian distributions.

Problem 1 was solved in the class of finite Abelian groups ([3]) and in
the class of all locally compact Abelian separable metric groups under the
additional assumption that the characteristic functions of the distributions
µj do not vanish ([4]). The aim of the article is to give the solution of
Problem 1 in the class of countable discrete Abelian groups. We will also
study some similar problems.

We shall first fix some notation. If G is a subgroup of X, then denote
by A(Y,G) = {y ∈ Y : (x, y) = 1 for all x ∈ G} its annihilator. For
α ∈ Aut(X) we define the conjugate automorphism α̃ ∈ Aut(Y ) by the
formula (x, α̃y) = (αx, y) for all x ∈ X, y ∈ Y . Denote by I the identity
automorphism of a group. Let f2 : X → X be the homomorphism f2x = 2x
and put X(2) = Ker f2, X

(2) = Im f2. Denote by T the circle group (the
one-dimensional torus) and by Z the group of integers. If A and B are
subsets of Y , denote by A + B = {y ∈ Y : y = u+ v, u ∈ A, v ∈ B} their
arithmetic sum. Let ψ be an arbitrary function on Y and let h ∈ Y . Denote
by ∆h the finite difference operator

∆hψ(y) = ψ(y + h) − ψ(y), y ∈ Y.

A continuous function ψ on Y is called a polynomial if for some nonnegative
integer m,

∆m+1
h ψ(y) = 0 for all y, h ∈ Y .

If ξ is a random variable with values in X and with distribution µ, then
µ̂(y) = E[(ξ, y)]. For µ ∈ M1(X) we define µ ∈ M1(X) by µ(E) = µ(−E)
for all Borel sets E ⊂ X. Observe that µ̂(y) = µ̂(y). Denote by Ex the
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degenerate distribution concentrated at a point x ∈ X, and by σ(µ) the
support of µ ∈ M1(X). Let I(X) be the set of idempotent distributions
onX, i.e. the set of shifts of the Haar distributionsmK of compact subgroups
K of X. Note that

m̂K(y) =

{
1, y ∈ A(Y,K),

0, y /∈ A(Y,K).

Observe that the Gaussian distributions on a discrete Abelian group X are
degenerate, and the class I(X) can be regarded as a natural analogue of the
class of Gaussian distributions for discrete Abelian groups. We remark that
if H is a closed subgroup of Y and µ̂(y) = 1 for y ∈ H, then µ̂ is H-invariant,
i.e. µ̂(y + h) = µ̂(y) for all y ∈ Y , h ∈ H, and σ(µ) ⊂ A(X,H). We will use
the well-known facts concerning the structure of locally compact Abelian
groups and the duality theory (see [5]). We now formulate the main result
of the article.

Theorem 1. Let X be a countable discrete Abelian group. Assume that

α1, α2, β1, β2 ∈ Aut(X) satisfy β1α
−1
1 ± β2α

−1
2 ∈ Aut(X). Let ξ1, ξ2 be

independent random variables with values in X and distributions µ1, µ2.
The symmetry of the conditional distribution of L2 = β1ξ1 + β2ξ2 given

L1 = α1ξ1 + α2ξ2 implies that µ1, µ2 ∈ I(X) if and only if X(2) = {0}, i.e.

the group X contains no elements of order two.

First we study the case when X is a discrete torsion-free Abelian group.

2. The Heyde theorem for discrete torsion-free Abelian groups.

We will prove the group analogue of the Heyde theorem for discrete torsion-
free Abelian groups and use this result to prove Theorem 1. We need some
lemmas.

Lemma 1 ([4]). Let X be a locally compact Abelian separable metric

group. Let ξ1, . . . , ξn, n ≥ 2, be independent random variables with values

in X and distributions µj. Assume that αj , βj ∈ Aut(X). The conditional

distribution of L2 = β1ξ1 + · · · + βnξn given L1 = α1ξ1 + · · · + αnξn is

symmetric if and only if

(1)
n∏

j=1

µ̂j(α̃ju+ β̃jv) =
n∏

j=1

µ̂j(α̃ju− β̃jv), u, v ∈ Y.

Lemma 2 ([1], see also [2, Appendix 1]). Let Y be a compact Abelian

group and ψ(y) be a polynomial on Y . Then ψ(y) = const.

Lemma 3 ([8, Ch. 6, §1]). Let F (t), t ∈ R
k, be a characteristic function,

and let Φ(t), t ∈ R
k, be the restriction to R

k of an entire function Φ(z),
z ∈ C

k. Assume that

(2) F (t) = Φ(t), t ∈ U,
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where U is a neighbourhood of zero in R
k. Then F (t) can be extended onto

C
k as an entire function and (2) holds for all R

k.

We can now prove the main result of this section.

Proposition 1. Let X be a countable discrete torsion-free Abelian

group. Assume that αj , βj ∈ Aut(X) satisfy βiα
−1
i ± βjα

−1
j ∈ Aut(X)

for all i 6= j. Let ξ1, . . . , ξn, n ≥ 2, be independent random variables with

values in X and distributions µj. If the conditional distribution of L2 =
β1ξ1 + · · ·+βnξn given L1 = α1ξ1 + · · ·+αnξn is symmetric, then all µj are

degenerate distributions.

Proof. By Lemma 1, the symmetry of the conditional distribution of L2

given L1 implies that the characteristic functions µ̂j satisfy (1). We note
that Y = X∗ is a connected compact Abelian group. Passing to the random
variables ξ′j = αjξj we can assume without loss of generality that L1 =
ξ1+· · ·+ξn and L2 = δ1ξ1+· · ·+δnξn, where the automorphisms δj ∈ Aut(X)
satisfy δi± δj ∈ Aut(X) for all i 6= j. Then equation (1) is transformed into

(3)

n∏

j=1

µ̂j(u+ δ̃jv) =

n∏

j=1

µ̂j(u− δ̃jv), u, v ∈ Y,

where δ̃i ± δ̃j ∈ Aut(Y ) for all i 6= j. It is clear that the characteristic
functions of the distributions νj = µj ∗µj also satisfy (3). Set fj(y) = ν̂j(y),

εj = δ̃j and rewrite equation (3) using the new notation:
n∏

j=1

fj(u+ εjv) =
n∏

j=1

fj(u− εjv), u, v ∈ Y.

We will prove that fj(y) = 1 for all y ∈ Y and j. It is obvious that fj(y) =
|µ̂j(y)|

2 ≥ 0. Choose a neighbourhood U of zero in Y such that fj(y) > 0
for all y ∈ U and j. Set ψj(y) = − ln fj(y), y ∈ U . Take a symmetric
neighbourhood U1 of zero in Y such that U1 +εj(U1) ⊂ U , j = 1, . . . , n. The
functions ψj satisfy

n∑

j=1

ψj(u+ εjv) =
n∑

j=1

ψj(u− εjv), u, v ∈ U1.

In order to solve this equation we apply the finite difference method. We
restrict ourselves to the case n = 2. Let V be a symmetric neighbourhood
of zero in Y such that

8∑

j=1

λj(V ) ⊂ U

for any λj ∈ {I, ε1, ε2}. Then

(4) ψ1(u+ ε1v) + ψ2(u+ ε2v) − ψ1(u− ε1v) − ψ2(u− ε2v) = 0, u, v ∈ V.
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Let k1 ∈ V . Put h1 = ε2k1 and hence h1 − ε2k1 = 0. Give u and v in (4)
the increments h1 and k1 respectively. Subtracting (4) from the resulting
equation we find

(5) ∆l11ψ1(u+ ε1v) +∆l12ψ2(u+ ε2v) −∆l13ψ1(u− ε1v) = 0, u, v ∈ V,

where l11 = (ε2 + ε1)k1, l12 = 2ε2k1, l13 = (ε2 − ε1)k1. Let k2 ∈ V . Put
h2 = ε1k2 and hence h2 − ε1k2 = 0. Give u and v in (5) the increments h2

and k2 respectively. Subtracting (5) from the resulting equation we arrive
at

(6) ∆l21∆l11ψ1(u+ ε1v) +∆l22∆l12ψ2(u+ ε2v) = 0, u, v ∈ V,

where l21 = 2ε1k2, l22 = (ε1 +ε2)k2. Let k3 ∈ V . Put h3 = −ε2k3 and hence
h3 + ε2k3 = 0. Give u and v in (6) the increments h3 and k3 respectively.
Subtracting (6) from the resulting equation we find

(7) ∆l31∆l21∆l11ψ1(u+ ε1v) = 0, u, v ∈ V,

where l31 = (ε1 − ε2)k3. Substituting v = 0 in (7) we infer that

(8) ∆l31∆l21∆l11ψ1(u) = 0, u ∈ V.

Since Y is a connected Abelian group, we have Y (2) = Y . Hence, f2 : Y → Y
is an open homomorphism. The condition ε1±ε2 ∈ Aut(Y ), the expressions
for l11, l21, l31 and equation (8) imply that there is a neighbourhood W of
zero in Y such that

(9) ∆3
hψ1(y) = 0, h, y ∈W.

Since Y is a connected compact Abelian group, this implies that there exists
a compact subgroup H ⊂W such that Y/H ≈ T

k ([5, §24.7]). Consider the
restriction of equation (9) to H. As by Lemma 2, all polynomials on a
compact Abelian group are constants and ψ1(0) = 0, we have ψ1(y) = 0,
y ∈ H. Hence, f1(y) = 1, y ∈ H. It follows that f1(y + h) = f1(y), y ∈ Y ,
h ∈ H. Let p1 : Y → Y/H be the natural homomorphism, and p2 : Y/H →
T
k be the above mentioned isomorphism. Consider the composition p =

p2p1 : Y → T
k. Since p is an open homomorphism, p(W ) is a neighbourhood

of zero in T
k. Denote elements of T

k by t = (t1, . . . , tk), where −π ≤ tj
< π. The group operation in T

k is coordinatewise addition modulo 2π. The
function f1 induces a positive definite function f̃1 on T

k by the formula
f̃1(t) = f1(y), t = py. By the Bochner theorem, there is a distribution

λ1 ∈ M1(Zk) such that λ̂1(t) = f̃1(t), t ∈ T
k. Moreover it follows from (9)

that in the neighbourhood p(W ) of zero in T
k we have the representation

(10) f̃1(t) = e−ψ̃1(t), t ∈ p(W ),

where ψ̃1(t) = ψ1(y), t = py. It is clear that ψ̃1(t) is an ordinary polynomial
of k variables. Since Z

k ⊂ R
k, we can consider λ1 as a distribution on R

k
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with support in Z
k, i.e. we can assume that the function f̃1(t) is defined

on R
k and is 2π-periodic in each variable. Note that the right hand side of

(10) can be extended to C
k as an entire function. By Lemma 3, the same

holds for the left-hand side of (10), and (10) holds for any t ∈ R
k. Since the

polynomial ψ̃1(t) is 2π-periodic in each variable, we infer that ψ̃1(t) = 0,

t ∈ R
k. This implies that f̃1(t) = 1, t ∈ R

k, and hence f1(y) = 1, y ∈ Y . We
proved that ν1 is a degenerate distribution, so that the same is true for µ1.
Reasoning similarly we prove that µ2 is also a degenerate distribution. The
proof for arbitrary n uses the same scheme. Proposition 1 is proved.

It is well known that any locally compact Abelian group is topologically
isomorphic to a group of the form R

m ×G, where m ≥ 0 and G contains a
compact open subgroup. Proposition 1 implies the following statement.

Corollary 1. Assume that a locally compact Abelian separable metric

group X is of the form X = R
m×G, where m ≥ 0 and the group G contains a

compact open subgroup. Assume that αj , βj ∈ Aut(X). Let ξ1, . . . , ξn, n ≥ 2,
be independent random variables with values in X and distributions µj. If

the conditional distribution of L2 = β1ξ1+ · · ·+βnξn given L1 = α1ξ1+ · · ·+
αnξn is symmetric, then for some shifts ξ′j of the random variables ξj the

conditional distribution of L′

2 = β1ξ
′

1+· · ·+βnξ
′

n given L′

1 = α1ξ
′

1+· · ·+αnξ
′

n

is symmetric and σ(µ′j) ⊂ R
m ×G0 for all j, where µ′j is the distribution of

ξ′j and the subgroup G0 consists of all compact elements of G.

Proof. Put Y = X∗ and denote by CY the connected component of
zero in Y . By the structure theorem for connected locally compact Abelian
groups, CY = M×L, where M ≈ R

m, and L is a connected compact Abelian
group. By Lemma 1, the symmetry of the conditional distribution of L2 given
L1 is equivalent to equation (1). It is easily seen that c(L) = L for any c ∈
Aut(Y ). Hence, we can restrict equation (1) to the subgroup L. Since L is a
connected compact Abelian separable metric group, it is the character group
of a countable discrete torsion-free Abelian group. Proposition 1 implies that
the restrictions of the characteristic functions µ̂j to L are characters of the
subgroup L. Extending them to characters of Y we find that there are xj ∈ X
such that

(11) µ̂j(y) = (xj , y), y ∈ L, j = 1, . . . , n.

Substitute (11) into (1) and consider the resulting equation on L. We infer
that

2
n∑

j=1

βjxj ∈ A(X,L) = R
m ×G0.

It follows from L(2) = L that
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x0 =
n∑

j=1

βjxj ∈ R
m ×G0.

It is obvious that δ(Rm ×G0) = R
m ×G0 for any δ ∈ Aut(X). So β−1

1 x0 ∈
R
m ×G0. Put x′1 = x1 − β−1

1 x0, x
′

j = xj , j = 2, . . . , n. Then

(12) µ̂j(y) = (x′j , y), y ∈ L, j = 1, . . . , n.

Moreover,

(13)

n∑

j=1

βjx
′

j = 0.

Put µ′j = E
−x′

j
∗ µj . Equality (13) implies that the characteristic functions

µ̂′j(y) = (−x′j , y)µ̂j(y) satisfy (1). By Lemma 1, if ξ′j are independent ran-

dom variables with values in X and distributions µ′j , then the conditional
distribution of L′

2 = β1ξ
′

1 + · · · + βnξ
′

n given L′

1 = α1ξ
′

1 + · · · + αnξ
′

n is
symmetric. It follows from (12) that

µ̂′j(y) = 1, y ∈ L, j = 1, . . . , n.

Hence, σ(µ′j) ⊂ A(X,L) = Rm ×G0. Corollary 1 is proved.

Remark 1. Corollary 1 implies the following statement (with the same
notation). If the conditional distribution of L2 = β1ξ1 + · · · + βnξn given
L1 = α1ξ1+· · ·+αnξn is symmetric, then studying the possible distributions
µj one can suppose without loss of generality that G = G0, i.e. the group G
itself consists of compact elements.

3. Proof of Theorem 1. To prove Theorem 1 we need some lemmas.

Lemma 4 ([3]). Let X be a finite Abelian group with X(2) = {0}. Assume

that α1, α2, β1, β2 ∈ Aut(X) satisfy β1α
−1
1 ± β2α

−1
2 ∈ Aut(X). Let ξ1, ξ2 be

independent random variables with values in X and distributions µ1, µ2.
Then the symmetry of the conditional distribution of L2 = β1ξ1 +β2ξ2 given

L1 = α1ξ1 + α2ξ2 implies that µ1, µ2 ∈ I(X).

Lemma 5. Let X be a locally compact Abelian group, K a compact sub-

group of X, L = A(Y,K), and α ∈ Aut(X). Then the following statements

are equivalent :

(i) α(K) ⊃ K;
(ii) if α̃y ∈ L, then y ∈ L.

Corollary 2. Under the conditions of Lemma 5 the following state-

ments are equivalent :

(i) α(K) = K;
(ii) α̃(L) = L.
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The proofs of Lemma 5 and Corollary 2 are standard and we omit them.

Lemma 6. Let X be a countable discrete torsion Abelian group such that

X(2) = {0}. Assume that αj , βj ∈ Aut(X) satisfy βiα
−1
i ± βjα

−1
j ∈ Aut(X)

for all i 6= j. Let ξ1, . . . , ξn, n ≥ 2, be independent random variables with

values in X and distributions µj such that µ̂j(y) ≥ 0. If the conditional

distribution of L2 = β1ξ1 + · · · + βnξn given L1 = α1ξ1 + · · · + αnξn is

symmetric, then σ(µj) ⊂ F for all j, where F is a finite subgroup of X.

Proof. Set Y = X∗ and note that Y is a totally disconnected com-

pact Abelian group. The compactness of Y implies that Y (2) = Y (2). Since

X(2) = {0}, we have Y (2) = Y (2) = Y, and hence f2 : Y → Y is an open
homomorphism. Put fj(y) = µ̂j(y). We restrict ourselves to the case n = 2.
Reasoning as in the proof of Proposition 1 we come to equation (9) for the
function ψ1(y) = − ln f1(y) in a neighbourhood W of zero in Y . Since Y is a
totally disconnected compact group, there is an open subgroup H of Y such
that H ⊂W ([5, §24.6]). Since H is an open subgroup, it is also closed and
hence compact. By Lemma 2, ψ1(y) = 0 on H. This implies that f1(y) = 1
for y ∈ H. Thus, σ(µ1) ⊂ A(X,H) = F1. Since H is an open subgroup
its annihilator F1 is compact, and as X is discrete, F1 is finite. For µ2 we
reason similarly. Denote by F the subgroup of X generated by F1 and F2.
Lemma 6 is proved.

Lemma 7. Let X be a locally compact Abelian separable metric group,
and let ξ1, ξ2 be independent random variables with values in X and distri-

butions µ1 = mK1
, µ2 = mK2

, where K1, K2 are finite subgroups of X. If

f2, δ, I ± δ ∈ Aut(X), then the symmetry of the conditional distribution of

L2 = ξ1 + δξ2 given L1 = ξ1 + ξ2 implies that K1 = K2 = K and δ(K) = K.

Proof. Set Y = X∗, f(y) = m̂K1
(y), g(y) = m̂K2

(y), ε = δ̃, a = I − ε,
b = I + ε, c = ab−1. Then c = γ̃, where γ = (I + δ)−1(I − δ). By Lemma 1,
the symmetry of the conditional distribution of L2 given L1 implies that the
characteristic functions f(y) and g(y) satisfy equation (1), which takes the
form

(14) f(u+ v)g(u+ εv) = f(u− v)g(u− εv), u, v ∈ Y.

Substituting v = −u in (14) we obtain

g(au) = f(2u)g(bu), u ∈ Y.

This implies that

(15) g(cy) = f(2b−1y)g(y), y ∈ Y.

Put Hj = A(Y,Kj), j = 1, 2. It follows from (15) that if cy ∈ H2, then
y ∈ H2. By Lemma 5, this implies that γ(K2) ⊃ K2. Since K2 is finite,

(16) γ(K2) = K2.
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We observe that I + γ = 2(I + δ)−1, I − γ = 2δ(I + δ)−1. Inasmuch as
f2 ∈ Aut(X), we have I ± γ ∈ Aut(X) and δ = (I − γ)(I + γ)−1. It follows
from (16) that δ(K2) = K2, and by Corollary 2, ε(H2) = H2. Consider the
restriction of equation (14) to the subgroup H2. We have

f(u+ v) = f(u− v), u, v ∈ H2.

Hence,

(17) f(2y) = 1, y ∈ H2.

Since f2 ∈ Aut(X) and K2 is a finite group, we conclude that (K2)
(2) = K2,

and by Corollary 2, (H2)
(2) = H2. It follows from (17) that f(y) = 1 for

y ∈ H2, and hence H2 ⊂ H1. Reasoning similarly we deduce that (14)
implies ε(H1) = H1 and

g(2εy) = 1, y ∈ H1,

so that H1 ⊂ H2. Thus, H1 = H2 = H, K1 = K2 = K. Since ε(H) = H, by
Corollary 2, δ(K) = K. Lemma 7 is proved.

Now we can prove Theorem 1.

Proof of Theorem 1. Set Y = X∗. The necessity of the condition X(2)

= {0} follows from the fact that if ξj are arbitrary independent random
variables with values in X(2) and αj , βj ∈ Aut(X), then the conditional
distribution of L2 = β1ξ1 + · · · + βnξn given L1 = α1ξ1 + · · · + αnξn is
symmetric (see in more detail [3, Remark 1]). Let us prove the sufficiency.

Considering the new independent random variables ξ′1 = α1ξ1, ξ
′

2 = α2ξ2,
we can assume from the beginning that L1 = ξ1+ξ2, L2 = δ1ξ1+δ2ξ2, where
δ1, δ2, δ1 ± δ2 ∈ Aut(X). By Lemma 1, the symmetry of the conditional
distribution of L2 given L1 implies that the characteristic functions µ̂j satisfy
equation (3) which takes the form

(18) µ̂1(u+ δ̃1v)µ̂2(u+ δ̃2v) = µ̂1(u− δ̃1v)µ̂2(u− δ̃2v), u, v ∈ Y.

Put νj = µj ∗ µj , j = 1, 2. Then ν̂j(y) = |µ̂j(y)|
2 ≥ 0. Set f(y) = ν̂1(y),

g(y) = ν̂2(y), δ = δ−1
1 δ2, ε = δ̃. In this notation equation (18) is transformed

into (14). We will prove Theorem 1 if we verify that the functions f(y) and
g(y) take on the values 0 and 1 only.

By Remark 1, we can suppose from the beginning that X is a torsion
group. Put L = {y ∈ Y : f(y) = 1}, H = {y ∈ Y : g(y) = 1}, K = A(X,L),
G = A(X,H). By Lemma 6, σ(νj) ⊂ F, j = 1, 2, where F is a finite subgroup
of X. It is obvious that K and G must also be finite subgroups because
K,G ⊂ F . It follows from (14) that

(19) fn(u+ v)gn(u+ εv) = fn(u− v)gn(u− εv), u, v ∈ Y,
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for any natural n. It is clear that the limits

lim
n→∞

fn(y) = m̂K(y), lim
n→∞

gn(y) = m̂G(y)

exist. Letting n → ∞ in (19) we see that the functions f̂(y) = m̂K(y) and
ĝ(y) = m̂G(y) also satisfy (14). Since X is a torsion group and X(2) = {0},
we have f2 ∈ Aut(X) and so we can apply Lemma 7. We obtain K = G,
L = H and δ(K) = K. By Corollary 2,

(20) ε(L) = L.

This implies that the homomorphism induced by ε on Y/L is an automor-
phism. Moreover, it follows from L = H that f(y) = g(y) = 1 for y ∈ L.
Hence, f and g are L-invariant. Therefore (14) induces an equation on Y/L.
Since Y/L ≈ K∗ and K is a finite subgroup with K(2) = {0}, we can apply
Lemma 4 to complete the proof of Theorem 1.

We add to Theorem 1 the following statement.

Proposition 2. Let X be a locally compact Abelian separable metric

group, and let ξ1, ξ2 be independent random variables with values in X and

distributions µ1 = µ2 = mK , where K is a compact subgroup of X. Assume

that δ, I±δ ∈ Aut(X). Set γ = (I+δ)−1(I−δ). Then the following statements

are equivalent :

(i) the conditional distribution of L2 = ξ1 + δξ2 given L1 = ξ1 + ξ2 is

symmetric;
(ii) γ(K) ⊃ K.

Proof. Set ε = δ̃, a = I−ε, b = I+ε, c = ab−1. Then c = γ̃. Assume that
(i) holds. Put L = A(Y,K), f(y) = m̂K(y). By Lemma 1, f satisfies (1),
which takes the form

(21) f(u+ v)f(u+ εv) = f(u− v)f(u− εv), u, v ∈ Y.

Substituting v = −u we find

f(au) = f(2u)f(bu), u ∈ Y.

Hence,

(22) f(cy) = f(2b−1y)f(y), y ∈ Y.

Since

f(y) =

{
1, y ∈ L,

0, y /∈ L,

equation (22) implies that if cy ∈ L, then y ∈ L. Now Lemma 5 yields (ii).
Conversely, assume that (ii) holds. We will verify that f satisfies (21),

which, by Lemma 1, proves (i). Note that by Lemma 5, (ii) is equivalent to
the statement: if cy ∈ L, then y ∈ L. Suppose that for some u, v ∈ Y the
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left-hand side of (21) is equal to 1. Then

(23) u+ v, u+ εv ∈ L.

This implies that av ∈ L. Inasmuch as av = cbv, we have cbv ∈ L, and hence

(24) bv = (I + ε)v ∈ L.

It follows from (23) and (24) that u− v, u− εv ∈ L, i.e. the right-hand side
of (21) is 1. We verify similarly that if the right-hand side of (21) is 1, then
the same is true for the left-hand side. Proposition 2 is proved.

Remark 2. It follows from the proof of Theorem 1 that if X is a
countable discrete Abelian group such that X(2) = {0}, Y = X∗ and
ε, I ± ε ∈ Aut(Y ), then all solutions of (14) in the class of characteristic
functions are of the form

f(y) = (x1, y)m̂K(y), g(y) = (x2, y)m̂K(y),

where x1, x2 ∈ X and K is a finite subgroup of X with δ(K) = K, δ = ε̃.

Remark 3. Let X be a countable discrete Abelian group. Assume that
αj , βj ∈ Aut(X) satisfy βiα

−1
i ±βjα

−1
j ∈ Aut(X) for all i 6= j. Let ξ1, . . . , ξn,

n ≥ 2, be independent random variables with values in X and distributions
µj with non-vanishing characteristic functions. If the conditional distribu-
tion of L2 = β1ξ1 + · · · + βnξn given L1 = α1ξ1 + · · · + αnξn is symmetric,
then σ(µ′j) ⊂ X(2) for all j, for some shifts µ′j of the distributions µj .

We shall restrict ourselves to the proof for the case n = 2. Clearly we
can assume that L1 = ξ1 + ξ2, L2 = ξ1 + δξ2, where δ, I ± δ ∈ Aut(X).
Put νj = µj ∗ µj , j = 1, 2. It is easily seen that our statement will be
proved if we verify that σ(νj) ⊂ X(2). We note that ν̂j(y) > 0 for all Y . Put
f(y) = ν̂1(y), g(y) = ν̂2(y). Reasoning as in the proof of Proposition 1 we
arrive at equation (8) for the function ψ1(y) = − ln ν̂1(y) for all u, v ∈ Y . It
follows that ψ1 satisfies (9) on the subgroup Y (2). Since Y (2) is compact, by
Lemma 2, ψ1(y) = 0 for y ∈ Y (2). This implies that σ(ν1) ⊂ A(X,Y (2)) =
X(2). Reasoning similarly we prove that σ(ν2) ⊂ X(2).

4. Heyde theorem for X = R×G, where G is a countable discrete

Abelian group with G(2) = {0}. We will use Theorem 1 to prove the
following statement.

Theorem 2. Let X = R × G, where G is a countable discrete Abelian

group such that G(2) = {0}. Assume that α1, α2, β1, β2 ∈ Aut(X) satisfy

β1α
−1
1 ± β2α

−1
2 ∈ Aut(X). Let ξ1, ξ2 be independent random variables with

values in X and distributions µ1, µ2. If the conditional distribution of L2 =
β1ξ1 + β2ξ2 given L1 = α1ξ1 + α2ξ2 is symmetric, then µj = λj ∗ πj, where

λj are Gaussian distributions on R, and πj ∈ I(X), j = 1, 2.
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To prove Theorem 2 we need the following

Lemma 8 ([3]). The conclusion of Theorem 2 is true when G is a finite

Abelian group.

Proof of Theorem 2. We have Y = X∗ ≈ R × H, where H = G∗. To
simplify notation we assume that Y = R ×H. Reasoning as in the proof of
Theorem 1 we reduce the proof to the case when L1 = ξ1 + ξ2, L2 = ξ1 + δξ2
and δ, I ± δ ∈ Aut(X). We need to solve equation (14), where f(y) = µ̂1(y),

g(y) = µ̂2(y), ε = δ̃. By Remark 1 we can assume that G is a torsion group.
This implies thatH is a totally disconnected compact Abelian group. Denote
elements of Y by (s, h), s ∈ R, h ∈ H. It is obvious that if d ∈ Aut(Y ), then
d(R) = R and d(H) = H. We will retain notation d for the restrictions of
d to R and to H. For this reason we write d(s, h) = (ds, dh), (s, h) ∈ Y . In
this notation equation (14) takes the form

(25) f(s+ s′, h+ h′)g(s+ εs′, h+ εh′)

= f(s− s′, h− h′)g(s− εs′, h− εh′), (s, h), (s′, h′) ∈ Y.

Substituting s = s′ = 0 in (25) we come to the equation

(26) f(0, h+ h′)g(0, h+ εh′) = f(0, h− h′)g(0, h− εh′), h, h′ ∈ H.

It follows from Remark 2 that all solutions of (26) are of the form

(27) f(0, h) = (g1, h)m̂K(h), g(0, h) = (g2, h)m̂K(h), h ∈ H,

where K is a finite subgroup of G, g1, g2 ∈ G and δ(K) = K. Put B =
A(H,K). Substitute (27) into (26) and consider the resulting equation on B.
We obtain

(28) 2(g1 + δg2) ∈ K.

Since K is a finite group and G(2) = {0}, this implies that

(29) g1 + δg2 ∈ K.

Put µ′1 = Eδg2∗µ1, µ
′

2 = E−g2∗µ2. It follows from (29) that the characteristic
functions µ̃′1(s, h) and µ̃′2(s, h) satisfy (25). Note that

µ̃′1(0, h) = µ̃′2(0, h) =

{
1, h ∈ B,

0, h /∈ B.

It follows that the characteristic functions µ̃′1(s, h) and µ̃′2(s, h) are B-
invariant. Hence, σ(µj) ⊂ A(X,B) = R × K. Since δ(R × K) = R × K,
we can apply Lemma 8 and complete the proof of Theorem 2.

Remark 4. The assertion of Theorem 2 is also valid for the group X =
R
m×G, where m > 1, and G is a countable discrete Abelian group such that

G(2) = {0}. To prove this we reason as in the proof of Theorem 2 and reduce
the proof to the case when G is a finite group. The proof in [3] for the case
of G finite is based on Theorem A. This proof remains valid when m > 1,
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but instead of Theorem A we need the following statement: Let X = R
m,

where m > 1. Assume that αj , βj ∈ Aut(X) satisfy βiα
−1
i ±βjα

−1
j ∈ Aut(X)

for all i 6= j. Let ξ1, . . . , ξn, n ≥ 2, be independent random variables with
values in X and distributions µj. If the conditional distribution of L2 =
β1ξ1 + · · · + βnξn given L1 = α1ξ1 + · · · + αnξn is symmetric, then all µj
are Gaussian. To prove this, we reason as in the proof of Proposition 1. We
retain the same notation and restrict ourselves to the case n = 2. We arrive
at equation (9) in a neighbourhood W of zero in Y = R

m. Hence, ψ1(s) is
an ordinary polynomial in W . By Lemma 3, the representation

f1(s) = e−ψ1(s), s ∈W,

can be extended from W to R
m. Standard arguments involving the Marcin-

kiewicz theorem ([8, Ch. 1, §5]) and the Cramer theorem on decomposition
of a Gaussian distribution in R

m show that µ1 is Gaussian. For µ2 we reason
similarly.
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