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An alternative polynomial Daugavet property

by

Elisa R. Santos (Uberlândia)

Abstract. We introduce a weaker version of the polynomial Daugavet property:
a Banach space X has the alternative polynomial Daugavet property (APDP) if every
weakly compact polynomial P : X → X satisfies

max
ω∈T

‖Id + ωP‖ = 1 + ‖P‖.

We study the stability of the APDP by c0-, `∞- and `1-sums of Banach spaces. As a
consequence, we obtain examples of Banach spaces with the APDP, namely L∞(µ,X)
and C(K,X), where X has the APDP.

1. Introduction. Let X and Y be Banach spaces over K, where K is R
or C. By BX we denote the closed unit ball and by SX the unit sphere
of X. If k ∈ N, then a mapping P : X → Y is said to be a k-homogeneous
polynomial if there exists a k-linear mapping A : Xk → Y such that P (x) =
A(x, . . . , x) for every x ∈ X. We denote by P(kX,Y ) the vector space of
all continuous k-homogeneous polynomials from X into Y . For convenience
we denote by P(0X,Y ) the vector space of all constant mappings from X
into Y . A mapping P : X → Y is said to be a polynomial if it is a finite sum
of homogeneous polynomials. We denote by P(X,Y ) the vector space of all
continuous polynomials from X into Y . It is a normed space for the norm

‖P‖ = sup
x∈BX

‖P (x)‖.

Each P(kX,Y ) is a Banach space for the norm induced from P(X,Y ). When
Y = K we write P(kX) and P(X) instead of P(kX,K) and P(X,K), re-
spectively. Finally we denote by `∞(BX , X) the Banach space of all bounded
functions from BX into Y , with the supremum norm.

This paper is devoted to the study of the so-called Daugavet equation
and alternative Daugavet equation for polynomials. In 1963, I. K. Dauga-
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vet [4] proved that every compact linear operator T on C[0, 1] satisfies

‖Id + T‖ = 1 + ‖T‖,
a norm equality which has become known as the Daugavet equation. Sev-
eral authors have shown that various classes of linear operators on differ-
ent Banach spaces satisfy the Daugavet equation: we mention C. Foiaş and
I. Singer [6], for weakly compact linear operators on C[0, 1]; G. Ya. Loza-
novskĭı [10], for compact linear operators on L1[0, 1]; H. Kamowitz [8], for
compact linear operators on C(K), where K is a compact Hausdorff space
without isolated points; J. R. Holub [7], for weakly compact linear operators
on L1(µ), where µ is an atomless σ-finite measure; and T. Oikhberg [14], for
weakly compact linear operators on a non-atomic C∗-algebra. We say that a
Banach space X has the Daugavet property (DP) if every rank-one operator
on X satisfies the Daugavet equation. This is the case of the Banach spaces
C(K) when K is a compact Hausdorff space without isolated points, and
L1(µ) when µ is an atomless σ-finite measure.

Also a weaker version of the Daugavet equation has been studied by
several authors. In 1970, J. Duncan et al. [5] showed that, if T is a bounded
linear operator on C(K), where K is a compact Hausdorff space, or if T is
a bounded linear operator on L1(µ), where µ is a σ-finite measure, then T
satisfies the equation

max
ω∈T
‖Id + ωT‖ = 1 + ‖T‖,

known as the alternative Daugavet equation. We say that a Banach space X
has the alternative Daugavet property (ADP) if every rank-one operator on
X satisfies the alternative Daugavet equation.

In 2007 the study of the Daugavet equation and the alternative Daugavet
equation was extended to bounded functions from the unit ball of a Banach
space into that space [2] and, in particular, to polynomials. Let X denote
a real or complex Banach space. A function Φ ∈ `∞(BX , X) satisfies the
Daugavet equation if

(DE) ‖Id + Φ‖ = 1 + ‖Φ‖,
and Φ ∈ `∞(BX , X) satisfies the alternative Daugavet equation if

(ADE) max
ω∈T
‖Id + ωΦ‖ = 1 + ‖Φ‖.

We say that a Banach space X has the polynomial Daugavet property (PDP)
if every weakly compact polynomial on X satisfies (DE). Analogously, X
has the alternative polynomial Daugavet property (APDP) if every weakly
compact polynomial on X satisfies (ADE).

Given a compact Hausdorff space K, we denote by C(K,X) (resp.
Cw(K,X)) the Banach space of all continuous functions (resp. weakly con-
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tinuous functions) from K into X, and by Cw∗(K,X
∗) the Banach space

of all weakly∗ continuous functions from K into X∗. For a locally compact
Hausdorff space L, we denote by C0(L,X) the Banach space of all continuous
functions from L into X vanishing at infinity. Finally, for a completely regu-
lar space Ω, we write Cb(Ω,X) for the Banach space of all bounded continu-
ous functions from Ω into X. Also, given a σ-finite measure space (Ω,Σ, µ),
we denote by L∞(µ,X) the Banach space of all (equivalence classes of) es-
sentially bounded Bochner-measurable functions from Ω into X with the
essential supremum norm, and by L1(µ,X) the Banach space of all (equiva-
lence classes of) Bochner-integrable functions from Ω into X with the norm

‖f‖ =
�

Ω

‖f(t)‖ dµ.

The main examples of Banach spaces having the PDP are: Cb(Ω,X)
when the completely regular space Ω is perfect, L∞(µ,X) and L1(µ,X)
when the measure µ is atomless, Cw(K,X) and Cw∗(K,X

∗) when the com-
pact space K is perfect. We refer the reader to [2, 3, 11] for more information
and background.

Let us remark that the PDP and APDP may be characterized in terms
of scalar-valued polynomials. We state these results here for completeness.

Lemma 1.1 ([2, Corollary 2.2]). Let X be a Banach space. The following
are equivalent:

(i) For every p ∈ P(X) with ‖p‖ = 1, every x0 ∈ SX , and every ε > 0,
there exist ω ∈ T and y ∈ BX such that

Reωp(y) > 1− ε and ‖x0 + ωy‖ > 2− ε.
(ii) Every weakly compact P ∈ P(X,X) satisfies (DE), i.e., X has the

PDP.

Lemma 1.2 ([2, Corollary 1.2]). Let X be a Banach space. The following
are equivalent:

(i) For every p ∈ P(X) with ‖p‖ = 1, every x0 ∈ SX , and every ε > 0,
there exist ω1, ω2 ∈ T and y ∈ BX such that

Reω1p(y) > 1− ε and ‖x0 + ω2y‖ > 2− ε.
(ii) Every weakly compact P ∈ P(X,X) satisfies (ADE), i.e., X has the

APDP.

Moreover, the (DE) and (ADE) are related to numerical ranges. To ex-
plain this, let us give some definitions. For a Banach space X, we write

Π(X) = {(x, x∗) ∈ X ×X∗ : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}.
Given a bounded function Φ : SX → X, the numerical range of Φ is

V (Φ) = {x∗(Φ(x)) : (x, x∗) ∈ Π(X)},
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and the numerical radius of Φ is

υ(Φ) = sup{|λ| : λ ∈ V (Φ)}.
The following characterizations of the (DE) and (ADE) can be stated.

Proposition 1.3 ([2, Proposition 1.3]). Let X be a Banach space and
let Φ : BX → X be a uniformly continuous function. Then:

(a) Φ satisfies (DE) if and only if ‖Φ‖ = sup ReV (Φ);
(b) Φ satisfies (ADE) if and only if ‖Φ‖ = υ(Φ).

The outline of the paper is the following. In Section 2 we study the stabil-
ity of the alternative polynomial Daugavet property by c0-, `∞- and `1-sums.
Given a sequence of Banach spaces (Xj)

∞
j=1, we show that [

⊕∞
j=1Xj ]`∞ (or

[
⊕∞

j=1Xj ]c0) has the APDP if and only if every Xj has the APDP. We also

show that if [
⊕∞

j=1Xj ]`1 has the PDP (resp. the APDP), then every Xj has
the PDP (resp. the APDP). In Section 3 we obtain examples of vector-valued
function spaces that have the alternative polynomial Daugavet property us-
ing the results of Section 2. For a σ-finite measure µ, a compact Hausdorff
space K and a Banach space X, we prove the following assertions: L∞(µ,X)
has the APDP if and only if µ is atomless or X has the APDP; for a complex
Banach space X, C(K,X) has the APDP if and only if K is perfect or X
has the APDP; if L1(µ,X) has the PDP (resp. APDP), then µ is atomless
or X has the PDP (resp. APDP).

2. Stability of the alternative polynomial Daugavet property.
According to M. Mart́ın & T. Oikhberg [12] and Y. S. Choi et al. [3], the
alternative Daugavet property and the polynomial Daugavet property are
stable by c0- and `∞-sums. More precisely, given a sequence (Xj)

∞
j=1 of

Banach spaces, then:

(i) [
⊕∞

j=1Xj ]`∞ (or [
⊕∞

j=1Xj ]c0) has the alternative Daugavet property
if and only if every Xj has the alternative Daugavet property.

(ii) [
⊕∞

j=1Xj ]`∞ (or [
⊕∞

j=1Xj ]c0) has the polynomial Daugavet prop-
erty if and only if every Xj has the polynomial Daugavet property.

The first goal of this section is to show that the alternative polynomial
Daugavet property is also stable by c0- and `∞-sums. The proof of the
following proposition is based on the proof of [3, Proposition 6.7].

Proposition 2.1. Let (Xj)
∞
j=1 be a sequence of Banach spaces. Then

[
⊕∞

j=1Xj ]`∞ or [
⊕∞

j=1Xj ]c0 has the APDP if and only if every Xj has the

APDP.

Proof. Let X = [
⊕∞

j=1Xj ]`∞ . Suppose that X has the APDP and fix

j0 ∈ N. Given a non-null weakly compact polynomial P : Xj0 → Xj0 , define
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the polynomial Q : X → X by

Q((xj)
∞
j=1) = ij0(P (xj0)),

where ij0 is the natural inclusion of Xj0 into X. It is not difficult to see that
Q is weakly compact and ‖Q‖ = ‖P‖. It follows that Q satisfies (ADE).
Then

1 < 1 + ‖P‖ = 1 + ‖Q‖ = max
ω∈T
‖IdX + ωQ‖

= max
ω∈T

{
max

{
sup
‖xj0‖≤1

‖xj0 + ωP (xj0)‖, sup
‖xj‖≤1

{‖xj‖ : j 6= j0}
}}

= max
ω∈T

{
sup
‖xj0‖≤1

‖xj0 + ωP (xj0)‖
}

= max
ω∈T
‖IdXj0

+ ωP‖,

that is, P satisfies (ADE). Thus, Xj0 has the APDP.

Conversely, suppose that every Xj has the APDP. Let p ∈ P(X) with
‖p‖ = 1, y = (yj)

∞
j=1 ∈ SX and 0 < ε < 1. Since ‖y‖ = 1 there exists j0 ∈ N

such that ‖yj0‖ > 1− ε/2. Take z = (zj)
∞
j=1 ∈ BX such that

|p(z)| > 1− ε
1− ε/2

,

and define the polynomial q ∈ P(Xj0) by

q(xj0) = p(z + ij0(xj0 − zj0)).

It follows that

1 = ‖p‖ ≥ ‖q‖ ≥ |q(zj0)| = |p(z)| > 1− ε
1− ε/2

·

Since Xj0 has the APDP, we can apply Lemma 1.2 with q/‖q‖, yj0/‖yj0‖
and ε/2 to obtain ω1, ω2 ∈ T and x0j0 ∈ BXj0

such that

Reω1
q

‖q‖
(x0j0) > 1− ε

2
and

∥∥∥∥ yj0
‖yj0‖

+ ω2x
0
j0

∥∥∥∥ > 2− ε

2
.

Hence, defining x0 = z + ij0(x0j0 − zj0) ∈ BX , we have

Reω1p(x0) = Reω1q(x
0
j0) >

(
1− ε

2

)
‖q‖ > 1− ε,

and

‖y + ω2x0‖ ≥ ‖yj0 + ω2x
0
j0‖ ≥

∥∥∥∥ yj0
‖yj0‖

+ ω2x
0
j0

∥∥∥∥− ∥∥∥∥ yj0
‖yj0‖

− yj0
∥∥∥∥

> 2− ε

2
− (1− ‖yj0‖) > 2− ε

2
− ε

2
= 2− ε.
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Therefore, X has the APDP, by Lemma 1.2. The argument for the c0-sum
is the same.

This proposition implies that, for a Banach space X, c0(X) and `∞(X)
have the alternative polynomial Daugavet property if and only if X has the
alternative polynomial Daugavet property.

The alternative Daugavet property is also stable by `1-sums, according
to the following proposition.

Proposition 2.2 ([12, Proposition 3.1]). Let (Xj)
∞
j=1 be a sequence of

Banach spaces. Then [
⊕∞

j=1Xj ]`1 has the alternative Daugavet property if
and only if every Xj has the alternative Daugavet property.

Unfortunately, this proposition cannot be extended to the alternative
polynomial Daugavet property, as we will show later. However, we have the
following result for the polynomial Daugavet property and the alternative
polynomial Daugavet property.

Proposition 2.3. Let (Xj)
∞
j=1 be a sequence of Banach spaces. If

[
⊕∞

j=1Xj ]`1 has the PDP (resp. the APDP), then every Xj has the PDP
(resp. the APDP).

Proof. Let X = [
⊕∞

j=1Xj ]`1 . Suppose that X has the PDP and fix
j0 ∈ N. Given a non-null weakly compact polynomial P : Xj0 → Xj0 , define
the polynomial Q : X → X by

Q((xj)
∞
j=1) = ij0(P (xj0)),

where ij0 is the natural inclusion of Xj0 into X. Clearly Q is a non-null
weakly compact polynomial and ‖Q‖ = ‖P‖. It follows that Q satis-
fies (DE). Then, given ε > 0, there exist (xj)

∞
j=1 ∈ SX and (x∗j )

∞
j=1 ∈ SX∗ =

S[
⊕∞

j=1X
∗
j ]`∞

such that
∑∞

j=1 x
∗
j (xj) = 1 and

‖Q‖ − ε ≤ Re(x∗j )[Q((xj)
∞
j=1)],

by Proposition 1.3. Since
∑∞

j=1 x
∗
j (xj) = 1, (xj)

∞
j=1 ∈ SX and (x∗j )

∞
j=1 ∈ SX∗ ,

we have
∞∑
j=1

x∗j (xj) =
∞∑
j=1

Rex∗j (xj) ≤
∞∑
j=1

|x∗j (xj)| ≤
∞∑
j=1

‖x∗j‖ ‖xj‖ ≤
∞∑
j=1

‖xj‖ = 1.

Thus, Rex∗j0(xj0) = ‖x∗j0‖ ‖xj0‖. Otherwise, we would obtain Rex∗j0(xj0) <
‖x∗j0‖ ‖xj0‖, with would imply the contradiction

∞∑
j=1

Rex∗j (xj) <
∞∑
j=1

‖x∗j‖ ‖xj‖,

because
∑

j 6=j0 Rex∗j (xj) ≤
∑

j 6=j0 ‖x
∗
j‖ ‖xj‖. Since

‖x∗j0‖ ‖xj0‖ = Rex∗j0(xj0) ≤ |x∗j0(xj0)| ≤ ‖x∗j0‖ ‖xj0‖,
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we have x∗j0(xj0) = Rex∗j0(xj0) = ‖x∗j0‖ ‖xj0‖. Write P = P0 +P1 + · · ·+Pn,

where Pk ∈ P(kXj0 , Xj0). Then

‖P‖ − ε = ‖Q‖ − ε ≤ Re(x∗j )[Q((xj)
∞
j=1)] = Rex∗j0(P (xj0))

= Rex∗j0(P0(xj0)) + Rex∗j0(P1(xj0)) + · · ·+ Rex∗j0(Pn(xj0))

≤
Rex∗j0(P0(xj0))

‖x∗j0‖
+

Rex∗j0(P1(xj0))

‖x∗j0‖‖xj0‖
+ · · ·+

Rex∗j0(Pn(xj0))

‖x∗j0‖‖xj0‖
n

= Re
x∗j0
‖x∗j0‖

(
P0

(
xj0
‖xj0‖

))
+ Re

x∗j0
‖x∗j0‖

(
P1

(
xj0
‖xj0‖

))
+ · · ·+ Re

x∗j0
‖x∗j0‖

(
Pn

(
xj0
‖xj0‖

))
= Re

x∗j0
‖x∗j0‖

(
P

(
xj0
‖xj0‖

))
≤ sup ReV (P ),

because ‖x∗j0‖ ≤ 1, ‖xj0‖ ≤ 1 and

x∗j0
‖x∗j0‖

(
xj0
‖xj0‖

)
= 1.

In other words, P satisfies (DE), by Proposition 1.3. Hence, Xj0 has the
PDP.

Now suppose that X has the APDP and fix j0 ∈ N. Given a non-null
weakly compact polynomial P : Xj0 → Xj0 , define Q : X → X by

Q((xj)
∞
j=1) = ij0(P (xj0)),

as in the PDP case. Then Q is a non-null weakly compact polynomial and
‖Q‖ = ‖P‖. Hence Q satisfies (ADE), that is, there exists ω ∈ T such that
ωQ satisfies (DE). By the first part of the proof, we can conclude that ωP
also satisfies (DE). Thus, P satisfies (ADE). Therefore, Xj0 has the APDP.

The proof of the last proposition made use of the ideas of [1, Proposi-
tion 2.8] and [13, Proposition 1].

Remark 2.4. In the case of complex Banach spaces, it is not true that
[
⊕∞

j=1Xj ]`1 has the APDP if every Xj has the APDP. Indeed, C has the

APDP, by [2, Example 2.1.b], while `1(C) does not have the APDP, by
[2, Example 3.12].

3. Spaces with the alternative polynomial Daugavet property.
Characterizations of the alternative Daugavet property and the polynomial
Daugavet property are known for vector-valued essentially bounded func-
tion spaces and for continuous vector-valued function spaces: see [12, The-
orem 3.4] and [3, Corollary 6.9 and Proposition 6.10] for more information.
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We now present a characterization of the alternative polynomial Daugavet
property in these spaces. The proofs of these results are based on the proofs
of [3, Corollary 6.9 and Proposition 6.10] and [13, Remark 6].

Making use of Proposition 2.1 we obtain a characterization of the alter-
native polynomial Daugavet property for vector-valued essentially bounded
function spaces.

Proposition 3.1. Let (Ω,Σ, µ) be a σ-finite measure space and let X be
a Banach space. Then L∞(µ,X) has the APDP if and only if µ is atomless
or X has the APDP.

Proof. By [3, Theorem 6.5], we know that if µ is an atomless σ-finite
measure then L∞(µ,X) has the PDP and, in particular, the APDP. Now,
if µ is a σ-finite measure with an atom, then µ has at most countably many
atoms. Hence, there exist a non-empty countable set J and an atomless
σ-finite measure ν such that

L∞(µ,X) = L∞(ν,X)⊕∞
[⊕
j∈J

X
]
`∞
.

In this case, by Proposition 2.1, L∞(µ,X) has the APDP if and only if X
has the APDP.

We also obtain a characterization of the alternative polynomial Daugavet
property for continuous vector-valued function spaces. To prove this result
we make use of the following lemma.

Lemma 3.2 ([9], Lemma 1). Let K be a compact Hausdorff space and
let X be a Banach space. For every f ∈ Cw(K,X), the set

{t ∈ K : f is norm continuous at t}

is dense in K.

Proposition 3.3. Let X be a complex Banach space, K a compact
Hausdorff space, L a locally compact Hausdorff space and Ω a completely
regular Hausdorff space. The following statements hold:

(a) C(K,X) has the APDP if and only if K is perfect or X has the
APDP.

(b) Cw(K,X) has the APDP if and only if K is perfect or X has the
APDP.

(c) C0(L,X) has the APDP if and only if L is perfect or X has the
APDP.

(d) Cb(Ω,X) has the APDP if and only if Ω is perfect or X has the
APDP.
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Proof. We will only prove statement (b), because the proofs of the others
are analogous. Suppose firstly that Cw(K,X) has the APDP and that K has
an isolated point. Then there exists a Banach space Z such that Cw(K,X) =
X ⊕∞ Z. Hence, by Proposition 2.1 we find that X has the APDP.

Now, suppose that K is perfect. In this case, [3, Theorem 6.5] ensures
that Cw(K,X) has the PDP and, in particular, the APDP.

Finally, suppose that X has the APDP. Given a weakly compact polyno-
mial P ∈ P(Cw(K,X), Cw(K,X)) with ‖P‖ = 1 and ε > 0, by Lemma 3.2
there exist f0 ∈ SCw(K,X) and t0 ∈ K such that f0 is norm continuous at t0
and

(3.1) ‖P (f0)(t0)‖ > 1− ε

2
.

Since P is continuous at f0, there exists δ > 0 such that

(3.2) ‖P (f0)− P (g)‖ < ε

2
if ‖f0 − g‖ < δ.

Moreover, since f0 is norm continuous at t0, we infer that

W = {t ∈ K : ‖f0(t)− f0(t0)‖ ≥ δ}

does not contain t0. Thus, by Urysohn’s lemma, there exists a continuous
function ϕ : K → [0, 1] such that

ϕ(t) =

{
1, t = t0,

0, t ∈W .

Fix x0 ∈ SX such that f0(t0) = ‖f0(t0)‖x0 and define Ψ : C→ Cw(K,X) by

Ψ(z) = (1− ϕ)f0 + ϕx0z.

Then∥∥f0 − Ψ(‖f0(t0)‖)
∥∥ = sup

t∈K

∥∥f0(t)− ((1− ϕ(t))f0(t) + ϕ(t)f0(t0)
)∥∥

= sup
t∈K

ϕ(t)‖f0(t)− f0(t0)‖ < δ,

because ϕ(W ) = {0}. Hence, by (3.2),∥∥P (f0)− P
(
Ψ(‖f0(t0)‖)

)∥∥ < ε

2
,

which implies ∥∥P (f0)(t0)− P
(
Ψ(‖f0(t0)‖)

)
(t0)
∥∥ < ε

2
·

It follows from (3.1) that∥∥P (Ψ(‖f0(t0)‖)
)
(t0)
∥∥ > ‖P (f0)(t0)‖ −

ε

2
> 1− ε.
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Thus, by the Hahn–Banach theorem, we may find x∗0 ∈ SX∗ such that

x∗0
([
P
(
Ψ(‖f0(t0)‖)

)]
(t0)
)
> 1− ε.

Since the function
z 7→ x∗0

(
[P (Ψ(z))](t0)

)
is holomorphic, the maximum modulus theorem ensures the existence of
z0 ∈ T such that

‖P (Ψ(z0))(t0)‖ ≥
∣∣x∗0([P (Ψ(z0))](t0)

)∣∣
≥ x∗0

(
[P (Ψ(‖f0(t0)‖))](t0)

)
> 1− ε.

Now, define x1 = z0x0 ∈ SX , consider x∗1 ∈ SX∗ such that x∗1(x1) = 1, and
define Φ : X → Cw(K,X) by

Φ(x) = x∗1(x)(1− ϕ)f0 + ϕx.

Observe that ‖Φ(x)‖ ≤ 1 for all x ∈ BX and that Φ(x1) = Ψ(z0). Then

‖P (Φ(x1))(t0)‖ > 1− ε.
Finally, define the polynomial Q : X → X by

Q(x) = [P (Φ(x))](t0),

which is weakly compact and satisfies

‖Q‖ = sup
x∈BX

‖Q(x)‖ ≥ ‖Q(x1)‖ = ‖[P (Φ(x1))](t0)‖ > 1− ε.

Since X has the APDP, Q satisfies (ADE). So,

max
ω∈T
‖IdCw(K,X) + ωP‖

≥ max
ω∈T

sup
x∈BX

‖Φ(x) + ωP (Φ(x))‖

≥ max
ω∈T

sup
x∈BX

‖Φ(x)(t0) + ω[P (Φ(x))](t0)‖

= max
ω∈T

sup
x∈BX

‖x∗1(x)(1− ϕ(t0))f0(t0) + ϕ(t0)x+ ωQ(x)‖

= max
ω∈T

sup
x∈BX

‖x+ ωQ(x)‖ = max
ω∈T
‖IdX + ωQ‖

= 1 + ‖Q‖ > 2− ε.
Therefore, Cw(K,X) has the APDP.

For spaces of Bochner integrable functions, only characterizations of the
Daugavet property and the alternative Daugavet property are known. See
[13, Remark 9] and [12, Theorem 3.4] for more information.

As a consequence of Proposition 2.3 we can partially generalize these
characterizations to the polynomial Daugavet property and the alternative
polynomial Daugavet property.
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Proposition 3.4. Let (Ω,Σ, µ) be a σ-finite measure space and let X be
a Banach space. If L1(µ,X) has the PDP (resp. APDP), then µ is atomless
or X has the PDP (resp. APDP).

Proof. Suppose that µ has an atom; then it has at most countably many
atoms. Hence, there exist a non-empty countable set J and an atomless
σ-finite measure ν such that

L1(µ,X) = L1(ν,X)⊕1

[⊕
j∈J

X
]
`1
.

Thus, by Proposition 2.3, if L1(µ,X) has the PDP (resp. APDP), then X
has the PDP (resp. APDP).
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