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Estimates for oscillatory singular integrals on Hardy spaces
by

HussAIN AL-QASSEM (Doha), LESLIE CHENG (Bryn Mawr, PA)
and Y1BIAO PAN (Pittsburgh, PA)

Abstract. For any n € N, we obtain a bound for oscillatory singular integral op-
erators with polynomial phases on the Hardy space Hl(R"). Our estimate, expressed in
terms of the coefficients of the phase polynomial, establishes the H' boundedness of such
operators in all dimensions when the degree of the phase polynomial is greater than one. It
also subsumes a uniform boundedness result of Hu and Pan (1992) for phase polynomials
which do not contain any linear terms. Furthermore, the bound is shown to be valid on
weighted Hardy spaces as well if the weights belong to the Muckenhoupt class Aj;.

1. Introduction. Let n € N. Consider the following oscillatory singular
integral operator:

(1) Tp: frrpv. | POVK (e —y)f(y)dy,
Rn

where P is a polynomial in n variables with real coefficients and K is a
Calderén—Zygmund kernel (see Definition 2.3). Because the focus of our
investigation is on the H! — H! boundedness, operators studied in this
paper are of convolution type.

The operators given in (1) are known to be bounded on LP spaces
(1 < p < ) and of weak type (1,1), thanks to the work of Ricci—Stein [5]
and Chanillo-Christ [1]. Additionally, the LP — L? and L' — L%*° bounds
obtained in [5] and [I] are dependent on the degree of the phase polynomial
only, and not on its coefficients.

On the other hand, the picture for the corresponding H' — H' problem
has not been as clear. First of all, when P is a polynomial of degree one,
the operator Tp is generally not bounded on H!(R") (see [4], [3]). Yet, the
following are known to be true:
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THEOREM 1.1.

(i) Let K be a Calderén-Zygmund convolution kernel on R", and P
a polynomial in n variables with real coefficients with VP(0) = 0.
Then Tp is bounded on H'(R™). Moreover, the following uniform
boundedness holds for each m € N:

(2) sup{[| 7P| g1 (rr)—m1 (Rr) : VP(0) = 0 and deg(P) < m} < oo.

(ii) Ifn=1, K(z) = 1/x, and P is a real polynomial of a single variable
with deg(P) > 2, then Tp is bounded on H'(R).

Theorem 1.1(i) was proved in [4]. Theorem 1.1(ii), in which the condition
P’(0) = 0 is not imposed, is a consequence of [3, Theorem 1.2] which deals
with the class of rational phase functions of a single variable. By comments
preceding Theorem 1.1, it is obvious that the bound on || Tp|| g1(r)— g1 (r) in
(i) cannot be independent of the coefficients of P.

In light of (i) and (ii), one is naturally led to the following question: for
n > 1, is Tp always bounded on H(R") if deg(P) > 27

In the theorem below we provide an estimate which not only answers the
above question in the affirmative, but also reveals the difference between the
roles played by linear and nonlinear terms of the phase polynomial.

THEOREM 1.2. Let n € N, m = 2 and P(z) = < |qj<m @at® be a
polynomial of degree m in R™ with real coefficients. Let K be a Calderdn—
Zygmund kernel and Tp be given as in (1). Then there exists a positive
constant C such that

S laa)
(3) ququl(Rn)sc(u lol=1

ot )i

2 2<al<m

for all f € H'(R™). The constant C may depend on n, m and K, but is
independent of the coefficients {as} of P.

REMARKS. (a) When VP(0) = 0, we have a,, = 0 for all |a| = 1. In this
case, (3) recovers the result in [4].

(b) In general, (3) shows that even when VP(0) # 0, it is possible to
control || Tp||gi_ 1 as long as the coefficients of the first order terms in
P(x) are not too large relative to those of the higher order terms.

(c) It is not known whether the bound

Z|a\:1 |aa| _ Z1g|a\§m |ao M1
Docial<m aalI 30010 1<m laal V1]

in (3) is the best possible. A logarithmic lower bound will be established at
the end of the paper.

1+
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2. Weighted Hardy spaces. Theorem 1.2 admits an extension to the
setting of weighted Hardy spaces with A; weights. We will present it after
recalling some definitions.

For x € R" and r > 0, let B(z,r) ={y € R" : |y —z| < r}, and |B(x,r)|
denotes the Euclidean volume of B(x,r). For a weight function w, we let

w(B(z,r) = | wly)dy.
B(z,r)

DEFINITION 2.1. A locally integrable function w : R™ — [0, c0) is said to
be in the Muckenhoupt weight class A1(R™) if there exists a constant C' > 0
such that

(4) !

5 L) dy < Cuta)

B

for all balls B and a.e. x € B. The smallest constant C' in (4) is called the
A1 constant of w.

Let ¢ be a function in the Schwartz space S(R") with {5, ¢(z) dzr = 1.
For each f € L (R") and z € R", we let

Myf(x) = Sup [(f * ¢s) ()]

where ¢g(x) = s7"p(x/s).

DEFINITION 2.2. For a nonegative, locally integrable function w on R,
we define the weighted Hardy space HL(R™) by

HL(R™) = {f € L (R") : | My /|1y, < o0}
and we set || flly ey = Mo 1y, = Sgn Mo (@) () .

DEFINITION 2.3. A C! function K : R"\ {0} — C is called a Calderén—
Zygmund kernel if the following are true:

(i) There exists a C' > 0 such that
(5) |K(z)| + |z| VK (x)] < Clz|™™ for all z € R"\ {0}.
(ii) For all b > a > 0,
(6) | K(@)dz=o0.
a<|z|<b
We are now ready to state the weighted version of Theorem 1.2.
THEOREM 2.1. Letn € N, m > 2, w € A;(R") and

P(z) = Z apr”

0<|a|<m
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be a polynomial of degree m in R™ with real coefficients. Let K be a Calde-
ron—-Zygmund kernel and Tp be as in (1). Then there exists a positive con-
stant C' such that

Z|a\:1 ’aOé|

D el < o1+ o ) Il

for all f € HL(R™). The constant C may depend on n, m, K and the A;
constant of w, but is independent of the coefficients {aq} of P.

Zzga\gm |aa

3. Proof of Theorem 2.1. We shall let C' denote a constant whose
value may change from line to line. The constant may depend on the dimen-
sion n, the degree of the phase polynomial, the A; bound of a given weight,
but is independent of the coefficients of the phase polynomial.

LEMMA 3.1. Let m > 2 and P(z) = 3 < |qj<m @ax® be a polynomial of
degree m in R™ with real coefficients. For j € N, define the operator Sp; by

(8) (Spif)(@) = X ey (l2]) | P f(y) dy.
B(0,1)
Then, for 2 < p < oo, there ezists a Cp, = C(n,m,p) >0 such that
j(2n—1)
(9) Gl Lp(Rr) = Lp(RR) < Cp2] 22171 (Z | a|) 2p<m V.

laj=m
Proof. Let B be a multi-index such that || = m and |ag| = max{|a.]| :
|a| = m}. By [4, Lemma 4.3], we have

(10) ISPl 2Ry 2(R) < C27"2(Jag|27(m~1)~am=D.
From n N !
m+n—
>
sl = (") (X o)
we obtain )
(11) 1Pl L2®n)—r2Rn) < CQj(Q"_l)/4< Z |aa|) ey

|a|=m
Now @ follows by interpolation between and
| )—reo®n) < [B(0,1)]. =

Let w € A1(R™). Recall that a measurable function g on R” is called an
H! atom if there exist ¢ € R™ and r > 0 such that

(12) supp(g) € B(¢, ),
1

(13) HgHoo < mv

(14) | 9()dy =o0.

Rn
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LEMMA 3.2. Let P, K be as in Theorem 2.1, w € A1(R"™), and g(-) be a
function which satisfies f. Then there exist C,60 > 0 such that

—0
(15) | 1T9()w(z)de < 0(1 + ( Yy |aa|rhm_1> )
(B(¢,h))° laj=m
for all h > 2r. The constants C' and 8 may depend on n, m, K and the Ay
constant of w, but are independent of {an}, ¢, r and h.

Proof. By a result in [2], there exists a 6 € (0,1) such that w'*® €
A1(R™). Both ¢ and the A; constant of wt? depend on the A; constant

of w only. Let
0

T 20 +0)(m—1)

Let h > 2r and write

| Tg(@)w(w)de = I + I,
(B

L= | ‘ [ P dy’]K(x — O)|w(z) dz
(B(GR)® BEr)
L= | ‘ | e PE(E (e —y) - K(z = ¢)g(y) dy|w(z) da.
(B(C.)* BCr)
When z € (B((,h))¢ and y € B((,r), by we have

C
K@)~ K- 0 < 0L
Thus,
CT’B(Cy r)| w(z) da Cr]B g, , w(z) dz
I < 2125 11 < #
CT!B <7 >! o~ | B(C 2w (B(¢, 7))
¢r )z:2 23rn+1’BC7«)‘ <CZ::22 7<C

In order to treat the term I, we let Q(z) = P(rx) and g(y) = g(¢ + ry).
Let [ = [logy(h/r)]. By Holder’s inequality and Lemma 3.1, we have

L < Ci ( | | §Peg(y) dy

j=l " 2ir<le—¢|<2itr B(Cr)

(1(a)) "+ 7dr) 53
x ( | iz — C|n(1+6)>

20r<|a—(|<20+ 1y

146

5
5 1+6
dac)
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. 1
n(1426) . w(B(¢,r)|B(¢, 2 ) |1+
<Cr 1% (||SQ:jg||L(1+5)/5(R"))( ( ((QJ)’F))|”|(B(C 7,‘)| )|

Jj=
n(1+25)

-0
< Cr 143 ( |a|r™ )

laf=m

jé6(2n—1

) . n
20 (w(B(Gr) ()T
Xgm <<,r>>< (@) )
gcr*mG( 3 \aa]>_6i2_2<ffr6>
jal=m j=1
< mg( Z \aa]> (h/r)” :C( Z ]aa|rhm*1)_9
loe|=m |oe|=m.

This completes the proof of Lemma 3.2. u

LEMMA 3.3. Let P, K be as in Theorem 2.1, w € A1(R"), and g(-) be
an HY atom which satisfies 7. Then there exists C > 0 such that

> lal=1 laal )

|ag |/l

(16) | 1Tg(x)|w(x) de < 0(1 +

R» ZQﬁ\odgm

The constant C may depend on n, m, K and the Ay constant of w, but is
independent of {as}, ¢, r and h.

Proof. We shall prove by induction on m = deg(P).
When m = 2, there are two cases:

. ~1/2 - ~1/2
BH)o<r< (2 3 |aa\) () > (2 3 ]aa|)
|a|=2 |a|=2
CASE (i). By the uniform L2 boundedness of Tp, we have
(17) | |Tg(x)lw(@)dr < | Tyl @) (w(B(S, 2r))) "/
B(¢,2r)
w<B<<,2r>>>1/2 /2
<Ol ——=1— <2MEC.
- < w(B(¢,r)) B

It should be pointed out that the condition deg(P) = 2 was not used in
establishing (17). All one needs is that deg(P) is bounded.

Let h = (3|42 laa|r)~! and [ = [logy(h/r)]. Then h > 2r. By Lemma
3.2, we have
(18) | ITg(@)|w(z)dz < C.
(B(¢;h))e
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On the other hand, we have

(19) | | ‘Zaaxy =Y e - ()] dy L@

- |z —¢|"
2r<|z—C|<h ly—¢|<r |al=1 lor|=1

g(zyaa\r)( [ e w) B¢, )]

lal=1 2r<|z—¢|<h |:Z: o C’TL w(B(Cv T))

w(B(¢,2'r))| B¢, 7)|
< ((};1 ’Ga|7"> Pt (er)nw(B(C,T))

Similarly,

(20) | | ‘Z ao(2=y)* =Y aalz — {)*|lg(y)| dy w(z) d

= - |z —¢|
2r<|z—C|<h ly—¢|<r |a]=2 o] =2

S(Z\aa]r)< 3 Jﬁ%ﬁﬂ) B(G7)

|a|=2 2r<|z—(|<h U)(B(C,T))

! .
w(B(¢, 27 r ))\B
= ( 2 ‘““’T) 2 (27r)"—1w(B(C, <C ) laalrh.
=1 =
Observe that

| Img@)|w(x)de < I + I,
B(¢,)\B(C,2r)
where
L= ‘ | ePEg(y) dy||K (z — ) |w(z) da,
2r<|z—C|<h [y—C|<r
I = S ‘ S otPa—y) (K(z —y) — K(z — ¢))g(y) dy|w(x) dx.

2r<fz—(|<h |y—Cl<r

By the treatment used for I3 in the proof of Lemma 3.2, we obtain

L <C.
By (14),
I = S ‘ S (€ PE=0) _ (PO g(y) dy“ K(z — O)w(x) dz

2r<|z—(I<h ly—¢I<r

T D S D SR =

n
2r<fe—C|<h [y—¢|<r 1<|al<2 1<[al<2 o=
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< | | > aale-9= Y aalz -0

2r<|z—(|<h Jy—¢|<r |ol=1 lo=1
+ > =)= Y aala -
2r<|z—(|<h |y—(|<r |a]=2 Jo|=2

Now, by and , we have
(21) | | Tg(z)|w(x)de < I) + I

B(¢,h)\B((,2r)
h
< In( — « e’
<C+Cr n(r> ||Zl |aq| +C|22\a |rh

Z|o¢\:l |aa| 1/2 L
= CZ\a|=2 lan /1] <|§::2 aa ) T1n<r>

Dal=tlaal [/r\Y2 (h
< _ _
- C+CZ\a|=2!aaW'a' [(h) ln<r>}

Z\a|:1 |a04‘ >

>laf=2 laa /1o

By combining , and , we see that holds in this case.
CAsE (ii). By Lemma 3.2 and 72 > (2 > lal=2 laa|) ™, we get

(22) S |Tg(x)|w(x)de < C’(l + (Z 2|aa|r2) 9) <C.
(B(¢.2r))° =2

By (17) and (22), we see that also holds in this case. This concludes
the verification of for deg(P) = 2.

Suppose that m > 3 and that holds for all polynomials P which
satisfy 2 < deg(P) <m — 1.

Now we shall prove that holds for any polynomial P(x)= Z| al<m @aT®
with Z‘M:m lan| # 0. Let d = max{2r, (r szm lag )~/ (=D}, Then

w(z) dr
|z ="
w(z) dx
z = ¢

l9(y)| dy

l9(y)| dy

§C’<1+

| 1Tpg(@)lw(z)de < Jy + Jo + Js,

Rn
where
J= | |Trg(@)|wz)de, Jo= | | Tpg(z)|w(z) dz,
B(¢,2r) B(¢,d)\B(¢,2r)
Js= | |Trg(a)|w(z)de.

(B(¢,d))¢
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By and Lemma 3.2, we have

(23) Ji4Js <O+ C( 3 \aa|rdm_1)79 <C.

|af=m

Thus, our remaining task is to establish

_1laa
2y = C<1 S o ’1/ |)'
2 o<|a|<m |aal/1®
Since Jo = 0 when d = 2r, from this point on we may assume that
—1/(m-1)
(25) d= (7« 3 \aa|) > 2r,
|a|=m

Let s = T(Zm:m \aa|)1/m. It is easy to see that s = (r/d)(m_l)/m < 1.
To prove , we shall consider the following two cases separately:

(a) Z ‘aa|1/\a| > Z |aa’1/|a\;

2<|al<m—1 la|=m
(b) 2 |aa|1/|a\ < Z |aa|1/\a|.
2<|ar|<m—1 |a|=m

CasE (a). In this case, let &(z) =3_,<p—1 @az®. Then 2 < deg(®) <
m — 1. Thus -

al= aa|
@) | el < (1 S )
R > _2<|a|<m—1 |Gal
2\04:1 |l
< 2C<1 + )
Z2g\a|gm ‘aa’1/|a|

Therefore, by ,
B< | ITeg@hu(@)de
B(C,d)\B(¢,2r)
o Tegle) - e Bt O g (a)u(a) do
B(¢,d)\B(¢2r)
Z\a|:l |a06| >
Z2§|a|§m |aq[*/1o]

a rle — ™ 1 "w(z) de M
+Co;m‘ a|(2r<|xSC<d oo () d >w(B(C,7“))

§C<1—|—
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Z|o¢|—1 |aa|
< C<1 + — + |aa\rdm1>
2 a<]al<m |aq| /1o Z

laj=m

§c<1+ 2laj=1 |aal )

22<|al<m |ag|!/1]
Thus, holds in this case.
CASE (b). In this case we have, for all 2 < |a| < m,

1/m
jaa|/1 < Y gl < C( > |a6\) :
|Bl=m |B]l=m
By applying we obtain
(27) |ag|rd =t < C(r/d)t—lelim < ¢

for all 2 < |a] < m. Let

W(x,y, C) = Z aoe(l' - C)a + Z aoz($ - y)a‘

2<]al<m o] <1
By , , , and an argument similar to the proof of , we have
d
J<C+ | ‘ | " vg(y) dyHU(x)dz
T —
2r<|z—(¢|<d [y—¢|<r
<C+ S ‘ S (eP(x—y) _ eid’/(m,y,C))g(y) dy‘ |w(i€)£1‘52
z‘ [e—
2r<|z—(|<d ly—(I<r
R O
2r<]z—(l<d ly—=¢|<r T=¢
o o w(x) dz

<or | Y alen - a0 latldy 20

2r<]z—¢l<d |y—{|<r 2<|al<m 2<a|<m

o o w(z)dx
L T T D D D DR TRk M0 e
2r<jz—(|<d |y—¢|<r |al=1 |or|=1
d
<C+C Z lag|rd ™=t + Cr ln() Z |al
2<|a|<m " la|=1

2 jaj=1laal 1 > jal=1 |0l
<c+ - [sln<)] §C<1+ = )
(Z|o¢‘:m |aa|)1/m $ 22§|a|§m |aa|1/|a‘

The proof of Lemma 3.3 is now complete. =

Proof of Theorem 2.1. Let f € HL(R™). Then by the atomic decom-
position for H} (R™) (see [6]), there exist H. atoms {g;}52, and complex
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numbers {¢;}72; such that

f= chgj and Z‘Cﬂ < Ol fll g @n)-

Jj=1 j=1
By Lemma 3.3, we have

o0
ITp fllzs ey < D lesl 1Trg;lpy n)
j=1

Z|a\—1 |aa| >
§C<1+ - ) &
> 2<lal<m laal/1 ; ’
Z|a|:1 |a01’

22§|a|§m ’aa‘l/‘al

For 1 < j < n, let R; denote the jth Riesz transform on R". By results
in [6] and [7], each R; is bounded on H}(R™) and

<o+ Y F g ey

£l £y ey = 1|l 2y mny + Z 125 f Ly mny-
j=1
Thus,

ITe Ay ey < C(ITPF g ooy + 3 IRTr oy ) )

(
(

ITe g ey + D ITP RS sy em)
j=1

C

IN
Q

Za:l ‘aa| 3
(1+ “ )(”fHH;(Rn) +Z”ij”Hi<R"))
=1

> a<|al<m |aq|/1o]
2jaj=1 @l

Da<lal<m |aal /1

< c(l N )Hqu,}u(Rn). .

4. An example. By considering a class of polynomials on R', below
we shall show that any proposed substitute for the bound

Zl§|a|:m |aq['/1°

g [/1e]

Z2§|0¢|§m

in Theorem 2.1 (or Theorem 1.2) cannot be smaller than

> 1<lal=m |aa’1/|a>

> o<lal<m laal/1

Clog<1+
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Let K(x) = 1/z. For A > 2, let P\(z) = z+2/)\%. Then we have a; = 1,
ag = 1A% and |a;|/|ag|"? = \.

Let g(-) be an H!' atom such that supp(g) C [-1,1], |lgllcc < 1, and
g(1) # 0. Then

A
I Tpgllgr > | T gl > S Tp, g(x)| dx
2
At ; ; :
{1 iPr(@—y) _ gile—y)  giz—y)
= S [lp“cy)< —>+6 © + 2 ]g(y)dydm
5 T—y T T T
A Al
dx 1 1
> e W dy| — — - = dyd
_§ ¢’ _S 9(y) dy é_ﬂl Ty oWy da

Al r— 2
1 gty dy e
2-1

> (InA —1n2)|g(1)] - > CnN) gl m,

for A sufficiently large.
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