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Quasi ∗-algebras and generalized inductive limits of
C∗-algebras

by

Giorgia Bellomonte and Camillo Trapani (Palermo)

Abstract. A generalized procedure for the construction of the inductive limit of a
family of C∗-algebras is proposed. The outcome is no more a C∗-algebra but, under certain
assumptions, a locally convex quasi ∗-algebra, named a C∗-inductive quasi ∗-algebra. The
properties of positive functionals and representations of C∗-inductive quasi ∗-algebras are
investigated, in close connection with the corresponding properties of positive functionals
and representations of the C∗-algebras that generate the structure. The typical example
of the quasi ∗-algebra of operators acting on a rigged Hilbert space is analyzed in detail.

1. Introduction. The construction of the inductive limit of a system
{Bα, Jβα : α, β ∈ F, β ≥ α} where F is a directed set of indices, Bα a C∗-
algebra and Jβα a ∗-isomorphism of Bα into Bβ is a well-known procedure
whose outcome is a C∗-algebra B (see, e.g., [5, 10]) which contains copies
of the C∗-algebras {Bα : α ∈ F} of the given system. The main reason why
B is a C∗-algebra is that the injective maps Jβα entering the construction
preserve not only the vector space operations, but also the multiplication;
this fact, in turn, implies that the norms are also preserved when passing
from a C∗-algebra Bα to a larger C∗-algebra Bβ. However, situations where
one can easily recognize inside a locally convex space an indexed family of
vector subspaces which can be viewed as the image under some vector space
isomorphism of C∗-algebras abound. This is, for instance, the case of the
space L(D,D×) of all continuous linear maps from D into D×, where D
and D× are the extreme spaces of a rigged Hilbert space (D[t], H,D×[t×]),
if the topology t of D is the graph topology defined by a ∗-algebra M of
unbounded operators (an O∗-algebra, in the terminology of [12, 1]; precise
definitions will be given in Section 2) and t× is the corresponding strong dual
topology. Similarly, certain spaces of distributions contain natural families
of C∗-algebras, typically ∗-algebras of continuous functions on some (locally)
compact set X. Then it is natural to ask whether, by weakening the assump-
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tions on the family of maps {Jβα : α, β ∈ F, β ≥ α} it is possible to recover,
by a generalization of the procedure of inductive limit, more general spaces
and structures. Both the space of operators in a rigged Hilbert space and the
space of distributions can be viewed as locally convex quasi ∗-algebras over
appropriate distinguished ∗-algebras contained in them [1, Ch. 10]. This is
exactly the structure we will get as a result of our approach.

Our starting point will be again the system {Bα, Jβα : α, β ∈ F, β ≥ α}
with the proviso that the maps Jβα are only ∗-isomorphisms of vector spaces,
i.e., they do not necessarily preserve the multiplication; but we will require
a control on their behavior on positive elements (namely, we suppose that
the Jβα’s are Schwarz maps). In Section 3, we will show how this generalized
inductive limit can be constructed.

Other generalizations of the construction of the inductive limit of C∗-
algebras have been considered in the literature: one of them consists in
supposing that the embedding maps Jβα act as ∗-homomorphisms at least
asymptotically, and assuming a boundedness condition on the Jβα’s (see the
review paper by Blackadar and Kirchberg [4] and references therein). The
result of the construction is then also a C∗-algebra.

Our approach goes one step further: what we get at the end of our
construction is an involutive locally convex space A with an underlying C∗-
structure: we will call it a C∗-inductive locally convex space, for short. In
the same section we introduce an order, reflecting that of the C∗-algebras
which generate the structure, and show that positive elements behave simi-
larly to positive elements of a C∗-algebra. Then we consider positive linear
functionals on A and give conditions for the existence of a sort of GNS
∗-representation of A.

Finally we go back to the main question and investigate the possibility of
giving A the structure of a partial ∗-algebra or quasi ∗-algebra in close con-
nection with the family of C∗-algebras {Bα : α ∈ F}. This is indeed possible,
but it depends on a family {wα : α ∈ F} which weighs the multiplication.
This ambiguous behavior is not surprising since the same ambiguity arises
for multiplication of operators in rigged Hilbert spaces and for multiplication
of distributions.

Section 4 is devoted to examining, in the light of the results of the pre-
ceding section, the problem of existence of a GNS construction for a general
quasi ∗-algebra (A,A0), starting from a linear functional which is positive
on A0. The representations constructed in this section take values in the
quasi ∗-algebra of operators acting on a rigged Hilbert space. In particular,
the role of an admissibility condition (called (Q3)) for these functionals is
discussed. Finally, in Section 5, we describe in full detail some examples:
the main one is that of the quasi ∗-algebra of operators in a rigged Hilbert
space, which has been, in a sense, the starting point of this paper. The last
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examples show that C∗-algebras of functions may give rise, by inductive
limit, either to a locally convex ∗-algebra of functions or to a locally convex
quasi ∗-algebra of distributions.

2. Notation and preliminaries. For general aspects of the theory of
partial ∗-algebras and of their representations, we refer to the monograph [1].
For the convenience of the reader, however, we repeat here the essential
definitions.

A partial ∗-algebra A is a complex vector space with conjugate linear
involution ∗ and a distributive partial multiplication ·, defined on a subset
Γ ⊂ A×A, with the property that (x, y) ∈ Γ if, and only if, (y∗, x∗) ∈ Γ and
(x ·y)∗ = y∗ ·x∗. From now on, we will write simply xy instead of x ·y when-
ever (x, y) ∈ Γ . For every y ∈ A, the set of left (resp. right) multipliers of y is
denoted by L(y) (resp. R(y)), i.e., L(y) = {x ∈ A : (x, y) ∈ Γ} (resp. R(y) =
{x ∈ A : (y, x) ∈ Γ}). We denote by LA (resp.RA) the space of universal left
(resp. right) multipliers of A. In general, a partial ∗-algebra is not associative.

The unit of a partial ∗-algebra A, if any, is an element e ∈ A such that
e = e∗, e ∈ RA ∩ LA and xe = ex = x for every x ∈ A.

Let H be a complex Hilbert space and D a dense subspace of H. We
denote by L†(D,H) the set of all (closable) linear operators X such that
D(X) = D and D(X∗) ⊇ D. The map X 7→ X† = X∗�D defines an involu-
tion on L†(D,H), which can be made into a partial ∗-algebra with respect
to weak multiplication [1]; however, this fact will not be used in this paper.

Let L†(D) be the subspace of L†(D,H) consisting of all its elements
which, together with their adjoints, leave the domain D invariant. Then
L†(D) is a ∗-algebra with respect to the usual operations. A ∗-subalgebra M
of L†(D) is called an O∗-algebra.

Let M be an O∗-algebra. The graph topology tM onD is the locally convex
topology defined by the family {‖ · ‖, ‖ · ‖X : X ∈M} of seminorms, where
‖ξ‖X = ‖Xξ‖, ξ ∈ D. The topology tM is finer than the norm topology,
unless M consists of bounded operators only. If the locally convex space
D[tM] is complete, then M is said to be closed. More generally, we denote
by D̃(M) the completion of the locally convex space D[tM] and put

X̃ := X�D̃(M) and M̃ := {X̃ : X ∈M}.

Then M̃ is a closed O∗-algebra on D̃(M) which is called the closure of M,
since it is the smallest closed extension of M. By L†(D) we denote the set
of tM-continuous elements of L†(D).

If A0 is a ∗-algebra, a ∗-homomorphism π : A0 → L†(Dπ), where Dπ
is a dense domain in Hilbert space Hπ, is called a ∗-representation of A0.
A ∗-representation is called closed if the O∗-algebra π(A0) is closed. The
graph topology tπ(A0) will be briefly denoted by tπ.



168 C. Bellomonte and C. Trapani

Let A be a complex vector space and A0 a ∗-algebra contained in A. We
say that (A,A0) is a quasi ∗-algebra if

(i) the left multiplication ax and the right multiplication xa of an ele-
ment a of A and an element x of A0 which extend the multiplication
of A0 are always defined and bilinear;

(ii) x1(x2a) = (x1x2)a and x1(ax2) = (x1a)x2, for each x1, x2 ∈ A0 and
a ∈ A;

(iii) an involution ∗ which extends the involution of A0 is defined in A
with the property (ax)∗ = x∗a∗ and (xa)∗ = a∗x∗ for each x ∈ A0

and a ∈ A.

Of course, every quasi ∗-algebra is a partial ∗-algebra.
Let D be a dense linear subspace of a Hilbert space H and t a locally

convex topology on D, finer than the topology induced by the Hilbert norm.
Then the space D× of all continuous conjugate linear functionals on D[t],
i.e., the conjugate dual of D[t], is a vector space and contains H, in the
sense that H can be identified with a subspace of D× (to avoid confusion,
we denote by B(·, ·) the bilinear form that puts D and D× in duality; the
identifications made imply that B(h, ξ) = 〈h | ξ〉 for h ∈ H and ξ ∈ D).
The space D× will always be considered as endowed with the strong dual
topology t× = β(D×,D). The Hilbert space H is dense in D×[t×].

We get in this way a Gel’fand triplet or rigged Hilbert space (RHS)

D[t] ↪→ H ↪→ D×[t×],

where ↪→ denotes a continuous embedding with dense range.
Let L(D,D×) denote the vector space of all continuous linear maps from

D[t] into D×[t×]. In L(D,D×) an involution X 7→ X† can be introduced by
the equality

B(Xξ, η) = B(X†η, ξ), ∀ξ, η ∈ D.

Hence L(D,D×) is a ∗-invariant vector space.
To every X∈L(D,D×) there corresponds a separately continuous sesqui-

linear form θX on D ×D defined by

θX(ξ, η) = B(Xξ, η), ξ, η ∈ D.

The space of all jointly continuous sesquilinear forms on D × D will be
denoted by B(D,D). We denote by LB(D,D×) the subspace of all X ∈
L(D,D×) such that θX ∈ B(D,D). By [1, Prop. 10.2.4], (LB(D,D×),L†(D))
is a quasi *-algebra.

In what follows we will use extensively the notion of joint topological limit
(a generalized inductive limit) of a directed contractive family of Hilbert
spaces. We give the definitions below, referring to [3] for more details.
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Let {Hα : α ∈ F} be a family of Hilbert spaces indexed by a set F upward
directed by ≤ (we denote by 〈· | ·〉α and ‖·‖α, respectively, the inner product
and the norm of Hα). Suppose that, for every α, β ∈ F with β ≥ α, there
exists a linear map Uβα : Hα → Hβ with the properties

(i) Uβα is injective;
(ii) ‖Uβαξα‖β ≤ ‖ξα‖α for all ξα ∈ Hα;

(iii) Uαα = Iα, the identity of Hα;
(iv) Uγα = UγβUβα if α ≤ β ≤ γ.

The family {Hα, Uβα : α, β ∈ F, β ≥ α} is called a directed contractive
system of Hilbert spaces.

If {Hα, Uβα : α, β ∈ F, β ≥ α} is a directed contractive system of Hilbert
spaces, the following statements hold:

(d1) There exists a conjugate dual pair (D×,D) and, for every α ∈ F,
a pair of injective linear maps (Πα, Θα), where Πα : D → Hα and
Θα : Hα → D×, both with dense range, such that

(I1) Πα = VαβΠβ if α ≤ β (where Vαβ = U∗βα);
(I2) Θα = ΘβUβα if α ≤ β;
(I3) D× =

⋃
α∈FΘα(Hα);

(I4) if ξ ∈ D and η ∈ D× with η = Θαηα for some α ∈ F and
ηα ∈ Hα, then

B(η, ξ) = B(Θαηα, ξ) = 〈Παξ | ηα〉α,
independently of α such that η ∈ Θα(Hα).

(d2) The pair (D×,D) occurring in (d1) is uniquely determined by the
conditions given in (d1), in the following sense: if (D×1 ,D1) is an-
other conjugate dual pair for which there exists, for every α ∈ F, a
pair (∆α, Γα), with ∆α : D1 → Hα and Γα : Hα → D×1 , such that
the statements corresponding to (I1)–(I4) are satisfied, then there
exists an injective linear map T : D× → D×1 such that Γα = TΘα
and ∆α = ΠαT

× for every α ∈ F, where T× : D1 → D denotes the
adjoint map of T .

The conjugate dual pair (D×,D) described above is called the joint topo-
logical limit of the directed contractive system {Hα, Uβα : α, β ∈ F, β ≥ α}
of Hilbert spaces. The spaces D× and D are, respectively, the inductive limit
and the projective limit of the family {Hα : α ∈ F}.

Let (D,D×) be the joint topological limit of a directed contractive family
{Hα, Uβα : α, β ∈ F, β ≥ α} of Hilbert spaces. We denote (1) by LB(D,D×)

(1) We notice that LB(D,D×) = LB(D,D×) when D and D× are the extreme spaces
of a RHS.
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the space of all linear maps X : D → D× for which there exist γ ∈ F and
C > 0 such that

(2.1) |B(Xη, ξ)| ≤ C‖ξγ‖γ‖ηγ‖γ , ∀ξ = (ξα), η = (ηα) ∈ D.
Assume that, for each α ∈ F, an operator Xα ∈ B(Hα) (the C∗-algebra

of bounded operators in Hα) is given and that there exists α ∈ F for which
Xβ = UβαXαVαβ whenever α ≤ α ≤ β. Then [3] there exists a unique linear
map X ∈ LB(D,D×) such that X(ξγ) = ΘβXβΠβ(ξγ) whenever β ≥ α. The
map X is called the inductive limit of the operators Xα and denoted by
X = lim−→Xα.

3. Vector spaces with underlying C∗-inductive structure. We
will consider here a class of locally convex vector spaces which can be ob-
tained, in a certain sense, as the inductive limit of a family of C∗-algebras.

3.1. Definitions and basic facts. Let A be a vector space over C. Let
F be an upward directed set of indices and assume that, for every α ∈ F,
there is a Banach space Aα ⊂ A such that:

(I.1) Aα ⊆ Aβ if α ≤ β;
(I.2) A =

⋃
α∈F Aα;

(I.3) for each α ∈ F, there exists a C∗-algebra Bα (with unit eα and
norm ‖ · ‖α) and a norm-preserving isomorphism of vector spaces
Φα : Bα → Aα;

(I.4) xα ∈ B+
α ⇒ xβ = (Φ−1

β Φα)(xα) ∈ B+
β , for all α, β ∈ F with β ≥ α.

We put Jβα = Φ−1
β Φα if α, β ∈ F, β ≥ α.

If x ∈ A, there exist α ∈ F such that x ∈ Aα and (a unique) xβ ∈ Bβ

such that x = Φβ(xβ) for all β ≥ α. Then we put

Jβα(xα) := xβ if α ≤ β.
Remark 3.1. By (I.4), Jβα preserves positivity, i.e., Jβα(xα) ≥ 0 if

xα ∈ B+
α . From this, it follows easily that Jβα also preserves involution, i.e.,

Jβα(x∗α) = (Jβα(xα))∗.

The family {Bα, Jβα : β ≥ α} is a directed system of C∗-algebras, in the
sense that:

(J.1) for every α, β ∈ F with β ≥ α, Jβα : Bα → Bβ is a linear and
injective map; Jαα is the identity of Bα;

(J.2) for every α, β ∈ F with α ≤ β, Φα = ΦβJβα;
(J.3) JγβJβα = Jγα if α ≤ β ≤ γ.

We assume that, in addition, the Jβα’s are Schwarz maps (see, e.g., [9]), i.e.,

(sch) Jβα(xα)∗Jβα(xα) ≤ Jβα(x∗αxα) for all xα ∈ Bα, α ≤ β.
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For every α, β ∈ F with α ≤ β, Jβα is continuous [9], and moreover

‖Jβα(xα)‖β ≤ ‖xα‖α, ∀xα ∈ Bα.

Remark 3.2. We notice that Jβα is not, in general, a ∗-homomorphism
of C∗-algebras, since it might not preserve multiplication.

The fact that the Jβα’s preserve the involution allows us to define an
involution in A. Let x ∈ A. Then x ∈ Aα for some α ∈ F, i.e., x = Φα(xα)
for a unique xα ∈ Bα. Put x∗ := Φα(x∗α). Then if β ≥ α, we have

Φ−1
β (x∗) = Φ−1

β (Φα(x∗α)) = Jβα(x∗α) = (Jβα(xα))∗ = x∗β.

It is easily seen that the map x 7→ x∗ is an involution in A. Moreover, by
the definition itself, it follows that every map Φα preserves involution, i.e.,
Φα(x∗α) = (Φα(xα))∗ for all xα ∈ Bα, α ∈ F.

Definition 3.3. A locally convex vector space A with involution ∗ is
called a C∗-inductive locally convex space if

(i) there exists a family {{Bα, Φα} : α ∈ F}, where F is a directed set
and, for every α ∈ F, Bα is a C∗-algebra and Φα is a linear injective
map of Bα into A, satisfying the above conditions (I.1)–(I.4) and
(sch), with Aα = Φα(Bα), α ∈ F;

(ii) A is endowed with the locally convex inductive topology τind gener-
ated by the family {{Bα, Φα} : α ∈ F}.

For brevity the family {{Bα, Φα} : α ∈ F} will be called the defining
system of A. We notice that the involution is automatically continuous in
A[τind].

In the following subsections we will study some properties of the struc-
ture introduced above. Even if not mentioned explicitly, throughout Sec-
tion 3 we will always denote by A a C∗-inductive locally convex space.

3.2. Positive elements

Definition 3.4. An element x ∈ A is called positive if there exists γ ∈ F
such that Φ−1

α (x) ∈ B+
α for all α ≥ γ. We denote by A+ the set of all positive

elements of A.

Lemma 3.5. The following statements hold.

(i) Every positive element x ∈ A is hermitian, i.e., x ∈ Ah := {y ∈ A :
y∗ = y}.

(ii) A+ is a nonempty convex pointed cone.
(iii) If α ∈ F and xα ∈ B+

α , then Φα(xα) is positive.

Proposition 3.6. Every hermitian element x = x∗ is the difference of
two positive elements, i.e. there exist x+, x− ∈ A+ such that x = x+ − x−.
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Proof. Let x ∈ Ah. Then there exists α ∈ F such that x ∈ Aα. Hence
Φ−1
α (x) ∈ Bα and Φ−1

α (x) = Φ−1
α (x)∗. Being a hermitian element of a C∗-

algebra, Φ−1
α (x) can be decomposed into the difference of two positive ele-

ments. Thus, there exist y+
α , y

−
α ∈ B+

α , with y+
α y
−
α = y−α y

+
α = 0, such that

Φ−1
α (x) = y+

α − y−α , from which it follows that x = Φα(y+
α )− Φα(y−α ).

Define x+ = Φβ(y+
β ), x− = Φβ(y−β ) for β ≥ α, and x+ = x− = 0, β � α.

Then, by Lemma 3.5(iii), x+ and x− are positive.

Remark 3.7. In every C∗-algebra C, the decomposition of z ∈ Ch as
z = z+ − z−, with z+, z− ∈ C+ and z+z− = z−z+ = 0 (orthogonal decom-
position), is unique and has the property

(3.1) ‖z‖ = max{‖z+‖, ‖z−‖}.
In our case, the same statement is true for every representative of a hermitian
element x in the sense that, for every α ∈ F such that x ∈ Aα, Φ−1

α (x) decom-
poses as Φ−1

α (x) = x+
α−x−α with x+

α , x
−
α ∈ B+

α , x+
αx
−
α = x−αx

+
α = 0, and hence

obeying (3.1). Thus, x = Φα(x+
α )−Φα(x−α ), but Φα(x+

α ), Φα(x−α ) are positive
but not necessarily orthogonal; so the uniqueness of decomposition fails.

3.3. Linear functionals. Let ω be a linear functional on A. Then, for
every α ∈ F, ω ◦ Φα is a linear functional on Bα.

Definition 3.8. A linear functional ω : A→C is called positive (ω≥0)
if ω(x) ≥ 0 for every x ∈ A+.

Proposition 3.9. Let ω be a linear functional on A. The following state-
ments are equivalent.

(i) ω is positive on A.
(ii) ω ◦ Φα ≥ 0 on Bα for every α ∈ F.

(iii) ω is continuous on A[τind] and ‖ω ◦ Φα‖ = (ω ◦ Φα)(eα) for every
α ∈ F.

Proof. (i)⇒(ii): Assume that ω ≥ 0 and let xα ∈ B+
α . Put x = Φα(xα);

then x = Φβ(Jβα(xα)) for all β ≥ α and Jβα(xα) = xβ ∈ B+
β , since Jβα

preserves positivity. This implies that x ∈ A+; indeed, Φ−1
γ (Φβ(xβ)) = xγ ∈

B+
γ for all γ ≥ β. In conclusion, (ω ◦ Φα)(xα) = ω(x) ≥ 0 for all α ∈ F.

(ii)⇒(i): Assume ω ◦ Φα ≥ 0 for all α ∈ F, and let x ∈ A+. Then
there exists γ ∈ F such that Φ−1

α (x) ∈ B+
α for all α ≥ γ. Thus, ω(x) =

(ω ◦ Φα)(Φ−1
α (x)) ≥ 0 for all α ≥ γ, i.e. ω ≥ 0.

(iii)⇔(ii): This equivalence follows from well-known properties of induc-
tive limits and from elementary properties of C∗-algebras.

For each α ∈ F, let ωα be a positive linear functional on Bα. Assume
that

(3.2) ωβ(Jβα(xα)) = ωα(xα), ∀xα ∈ Bα, β ≥ α.
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If x ∈ Aα, then x = Φα(xα), xα ∈ Bα. We define

ω̃α(x) := ωα(Φ−1
α (x)) = ωα(xα).

If β ≥ α, we have

ω̃β(x) = ωβ(Φ−1
β (x)) = ωβ(Φ−1

β Φα(xα)) = ωβ(Jβα(xα))

= ωα(xα) = ωα(Φ−1
α (x)) = ω̃α(x).

Thus, we can define a linear functional ω on A by putting

ω(x) = ω̃α(x), x ∈ Aα.

The functional ω is called the inductive limit of the ωα’s : ω = lim−→ωα. It is
easily seen that ω is a positive linear functional on A and ωα = ω ◦ Φα for
every α ∈ F.

Proposition 3.10. A linear functional ω on A is positive if, and only
if, it is the inductive limit of a family {ωα}, where each ωα is a positive
linear functional on Bα.

Proof. Let ω be positive on A. Then, by Proposition 3.9, ωα := ω ◦ Φα
is positive on Bα. We have, for every xα ∈ Bα and for β ≥ α,

ωβ(Jβα(xα)) = (ω ◦ Φβ)(Φ−1
β ◦ Φα(xα)) = (ω ◦ Φα)(xα) = ωα(xα).

Hence (3.2) is satisfied and lim−→ωα is well defined. Let us denote it by ω′. It
remains to prove that ω′ = ω.

Let x ∈ A. Then x = Φα(xα), xα ∈ Bα. By the definition of ω′ we have

ω′(x) = ωα(xα) = ω(x).

3.4. Inductive limit of representations

Proposition 3.11. Let {Hα, Uβα : α, β ∈ F, β ≥ α} be a directed con-
tractive system of Hilbert spaces and denote by (D,D×) the joint topological
limit of this system. Let A be the C∗-inductive locally convex space defined
by the system {{Bα, Φα} : α ∈ F} as in Definition 3.3. For each α ∈ F, let
πα be a ∗-representation of Bα in Hα and assume that

(3.3) πβ(Jβα(xα)) = Uβαπα(xα)U∗βα, ∀xα ∈ Bα, β ≥ α.
Then there exists a unique linear map π : A→ LB(D,D×), preserving invo-
lution, such that

π(Φα(xα)) = Θαπα(xα)Πα, ∀xα ∈ Bα,

where Θα is the embedding of Hα into D× and Πα is the embedding of D
into Hα.

Proof. Let x ∈ A. Then Φ−1
α (x) ∈ Bα for some α ∈ F. The equality (3.3)

implies that

πβ(Φ−1
β (x)) = Uβαπα(Φ−1

α (x))U∗βα, β ≥ α.
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Indeed, we have

Uβαπα(Φ−1
α (x))U∗βα = πβ(JβαΦ−1

α (x)) = πβ((Φ−1
β Φα)(Φ−1

α (x)))

= πβ(Φ−1
β (x)).

Hence lim−→πα(Φ−1
α (x)) is well-defined. Thus, we put

(3.4) π(x) := lim−→πα(Φ−1
α (x)), x ∈ Aα ⊂ A.

Then π satisfies the requirements. We shorten (3.4) by writing π = lim−→πα.
The uniqueness follows from the corresponding uniqueness of the inductive
limit of operators.

Theorem 3.12. Let A be a C∗-inductive locally convex space and let
{{Bα, Φα} : α ∈ F} be the corresponding defining system. Let ω = lim−→ωα
(ωα = ω ◦ Φα) be a positive linear functional on A such that

(A) if α ∈ F and ωβ(Jβα(x∗α)Jβα(xα)) = 0 for some β ≥ α and xα ∈ Bα,
then ωα(x∗αxα) = 0.

Let {πα,Hα, ξα} be the GNS construction for Bα defined by ωα. Then:

(i) for every α, β ∈ F with α ≤ β, there exists a contractive injective
linear map Uβα such that {Hα, Uβα : α, β ∈ F, β ≥ α} is a directed
contractive system of Hilbert spaces;

(ii) if (D,D×) is the joint topological limit generated by the directed
contractive system of Hilbert spaces in (i), there exists a unique
linear map π : A→ LB(D,D×), preserving involution, such that

π(Φα(xα)) = Θαπα(xα)Πα, ∀xα ∈ Bα,

where Θα is the embedding of Hα into D× and Πα is the embedding
of D into Hα, i.e. π = lim−→πα;

(iii) the inductive limit of the ωα’s is ∗-representable, i.e., for every
x ∈ A there exists ξ ∈ D such that

ω(x) = B(π(x)ξ, ξ),

where B(·, ·) is the form that puts D× and D in conjugate duality.

Proof. (i): Making use of (sch), we have

‖πβ(Jβα(xα))ξβ‖2β = 〈πβ(Jβα(xα))ξβ |πβ(Jβα(xα))ξβ〉β
= 〈πβ(Jβα(x∗α)Jβα(xα))ξβ | ξβ〉β = ωβ(Jβα(x∗α)Jβα(xα))
≤ ωβ(Jβα(x∗αxα)) = ωα(x∗αxα) = 〈πα(x∗αxα)ξα | ξα〉α
= ‖πα(xα)ξα‖2α.

Hence, if we put

Uβαπα(xα)ξα := πβ(Jβα(xα))ξβ, xα ∈ Bα,
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the above inequality implies that Uβα is a well-defined linear map from the
dense subspace {πα(xα)ξα : xα ∈ Bα} of Hα into Hβ satisfying

(3.5) ‖Uβαπα(xα)ξα‖β ≤ ‖πα(xα)ξα‖α, ∀xα ∈ Bα,

thus it extends to a contraction of Hα into Hβ which we denote by the same
symbol. Every map Uβα, β ≥ α, is injective. Indeed, suppose Uβαπα(xα)ξα
= 0. Then

ωβ(Jβα(x∗α)Jβα(xα)) = ‖Uβαπα(xα)ξα‖2β = 0.

Hence, by (A), ‖πα(xα)ξα‖2 = ωα(x∗αxα) = 0. Moreover, Uαα = Iα is the
identity of Hα and, if α ≤ β ≤ γ, by the cyclicity of ξα and by

UγβUβαπα(xα)ξα = Uγβπβ(Jβα(xα))ξβ = πγ(JγβJβα(xα))ξγ
= Uγαπα(xα)ξα,

the equality holds all over Hα.
(ii): Let U∗βα : Hβ → Hα be the adjoint of Uβα. Then, using the equality

ωα(xα) = ωβ(Jβα(xα)) for every xα ∈ Bα, we have

〈πα(xα)ξα | ξα〉α = 〈πβ(Jβα(xα))ξβ | ξβ〉β = 〈Uβαπα(xα)ξα | ξβ〉β
= 〈πα(xα)ξα |U∗βαξβ〉α.

The density of {πα(xα)ξα : xα ∈ Bα} implies that U∗βαξβ = ξα. Hence (3.3)
holds true and we can apply Proposition 3.11 to the representations πα’s,
proving the statement.

(iii): If x ∈ A, then there exists α ∈ F such that x ∈ Aα for all α ≥ α;
now, if β ≥ α ≥ α then

ω(x) = ωα(Φ−1
α (x)) = 〈πα(Φ−1

α (x))ξα | ξα〉α = 〈πβ(Jβα(Φ−1
α (x)))ξβ | ξβ〉β

= 〈Uβαπα(Φ−1
α (x))U∗βαξβ | ξβ〉β = 〈πα(Φ−1

α (x))U∗βαξβ |U∗βαξβ〉α
= 〈πα(Φ−1

α (x))U∗βαΠβξ |U∗βαΠβξ〉α = 〈πα(Φ−1
α (x))Παξ |Παξ〉α

= B(Θαπα(Φ−1
α (x))Παξ, ξ) = B(π(x)ξ, ξ).

The uniqueness of π follows once more from Proposition 3.11.

Remark 3.13. In the statement of Theorem 3.12 there is a seeming
ambiguity: the GNS representation πα of Bα, constructed from ωα, is in
fact determined only up to unitary equivalence. It is not difficult to realize,
however, that changing the πα’s to unitarily equivalent representations gives
essentially the same global representation π.

3.5. Sufficient families of positive linear functionals

Theorem 3.14. Let A be a C∗-inductive locally convex space and let
{{Bα, Φα} : α ∈ F} be the corresponding defining system. Assume that

(i) if xα ∈ Bα and Jβα(xα) ≥ 0 for all β ≥ α, then xα ≥ 0;
(ii) eβ ∈ Jβα(Bα) for all α, β ∈ F with β ≥ α.
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Then, for every y ∈ A+, y 6= 0, there exists a positive linear functional ω
on A such that ω(y) > 0.

Proof. Let y ∈ A+, y 6= 0. Then there exists α ∈ F such that y = Φα(xα)
for a unique positive element xα of Bα. Clearly, xα 6= 0 and xα = w∗αwα
for some wα ∈ Bα. Therefore, there exists a positive linear functional ωα
on Bα, with ωα(eα) = 1, such that ωα(xα) = ‖wα‖2α > 0.

Let β ≥ α and Mβ := Jβα(Bα). Then Mβ is a subspace of Bβ, stable
under the involution and containing the unit eβ. We define, for yβ ∈ Mβ,
ωβ(yβ) := ωα(xα), where xα is the unique element of Bα such that yβ =
Jβα(xα). By (i), ωβ is positive on Mβ. Thus, it is bounded: |ωβ(yβ)| ≤
ωβ(eβ)‖yβ‖β for every yβ ∈Mβ [5, Th. 4.3.2]. By the Hahn–Banach theorem,
ωβ has an extension, denoted by the same symbol, to Bβ, which is continuous
and has norm equal to ωβ(eβ). Hence, it is positive on Bβ. We also define
ωγ ≡ 0 if γ < α. By the definition itself, {ωα : α ∈ F} satisfies (3.2). Hence
it defines, by taking the inductive limit, a positive linear functional ω on A.
One has ω(y) = ωα(xα) > 0.

Remark 3.15. Under the assumptions of Theorem 3.14, the previous
proof shows also that, if fα is a positive linear functional on Bα, then there
exists a positive linear functional f on A such that fα = f ◦ Φα for every
α ∈ F.

Theorem 3.14 shows that the set of positive linear functionals on a C∗-
inductive locally convex space is, at least under certain circumstances, suf-
ficiently large to separate the points of the cone of positive elements. So we
expect the existence of a faithful representation of A in this case.

Let F be a family of representable positive linear functionals on A,
by which we mean that, for each ω ∈ F , its components {ωα} satisfy
the condition (A) of Theorem 3.12. For every ω ∈ F , we denote by πω
the linear map of A into LB(Dω,D×ω ) constructed in Theorem 3.12. Every
space Dω is built up from a directed contractive system of Hilbert spaces
{Hωα, Uωβα : α, β ∈ F, β ≥ α}. For each fixed α ∈ F, we can construct the
direct sum of the corresponding spaces:

HFα =
⊕
ω∈F
Hωα =

{
⊕ξωα : ξωα ∈ Hωα,

∑
ω

‖ξωα‖2 <∞
}
.

If β ≥ α, the map

UFβα := ⊕Uωβα, where (⊕Uωβα)(⊕ξωα) = ⊕(Uωβαξ
ω
α),

defines a contraction of HFα into HFβ , and {HFα , UFβα : α, β ∈ F, β ≥ α}
is a directed contractive system of Hilbert spaces. Hence, it defines a joint
topological limit denoted by (D(πF )×,D(πF )).
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For every α ∈ F we define πFα to be the ordinary direct sum of the family
of ∗-representations πωα . It is easily seen that

(3.6) πFβ (Jβα(xα)) = UFβαπ
F
α (xα)(UFβα)

∗
, ∀xα ∈ Bα, β ≥ α.

Then by Proposition 3.11, the inductive limit πF = lim−→πFα is well-defined.

Proposition 3.16. Let A be a C∗-inductive locally convex space and
{{Bα, Φα} : α ∈ F} the corresponding defining system. Assume that the
conditions (i) and (ii) of Theorem 3.14 are satisfied and that every positive
linear functional on A fulfills condition (A). Then there exists a representa-
tion π of A such that π(y) > 0 for every y ∈ A+ \ {0}.

Proof. Let us consider the ∗-representation πF constructed above, with
F the family of all positive linear functionals on A. By Theorem 3.14, for
every y ∈ A+, there exists a positive linear functional ω such that ω(y) > 0.
Put, as before, ωα = ω ◦Φα. Then ωα(Φ−1

α (y)) > 0. This in turn implies that
πFα (y) > 0 and so πF (y) > 0.

Remark 3.17. It is clear that all the assumptions of Theorem 3.14 and
condition (A) too are satisfied if Jβα is, for β ≥ α, a ∗-isomorphism or,
in particular, the identity of Bα into Bβ (of course, this means that Bα

is a true subspace of Bβ). This case is not necessarily trivial, as shown in
Example 5.5.

Remark 3.18. The condition (sch), which has played an important role
in our construction, is certainly satisfied if every Jβα is completely posi-
tive and ‖Jβα(eα)‖β ≤ 1 [9, Proposition 9.9.4]. Hence, it is natural to ask
what changes in the previous construction if these stronger assumptions are
satisfied. For instance, one may conjecture that the space which comes out
from our set-up has a richer structure, e.g. is a Banach space. Example 5.5
(where Jβα is the identity map from a certain C∗-algebra Bα into another
Bβ, with Bα ⊆ Bβ) shows that this is not the case: strengthening in this
way the assumptions does not essentially modify the final structure that
one obtains. Nevertheless, the hypothesis of complete positivity of the Jβα’s
is intermediate between (sch) and the Jβα’s being ∗-homomorphisms, and
thus, certainly, it deserves a deeper analysis, which we hope to undertake in
the future.

3.6. An algebraic structure for A. In some cases, as we shall see, it
is possible to define a partial multiplication in A. This can be introduced by
means of a family w = {wα}, wα ∈ Bα. The outcome is the structure of a
partial ∗-algebra, depending, clearly, on the chosen family w.

Let w = {wα} be a family of elements such that wα ∈ B+
α and Jβα(wα) =

wβ for all α, β ∈ F with β ≥ α.
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Let x, y ∈ A. There exists α ∈ F such that x, y ∈ Aα. This implies that
also x, y ∈ Aβ for all β ≥ α. For every β ≥ α, there exist xβ, yβ ∈ Bβ such
that x = Φβ(xβ) and y = Φβ(yβ). Put zβ = xβwβyβ ∈ Bβ. Let z(β) ∈ Aβ, for
all β ≥ α, be such that z(β) = Φβ(zβ) = Φβ(Φ−1

β (x)wβ Φ−1
β (y)). If β′ > β,

then z(β′) = Φβ′(zβ′) ∈ Aβ′ but in general Φβ′(zβ′) 6= Φβ(zβ). Hence, we can
multiply two elements x, y ∈ A if there exists γ ∈ F such that z(β) = z(β′)
for all β, β′ ≥ γ.

Definition 3.19. In A, partial multiplication x · y of x, y ∈ A is defined
by the conditions:

∃γ ∈ F : Φβ(Φ−1
β (x)wβΦ−1

β (y)) = Φβ′(Φ−1
β′ (x)wβ′Φ−1

β′ (y)), ∀β, β′ ≥ γ,

x · y = Φβ(Φ−1
β (x)wβΦ−1

β (y)), β ≥ γ.
Proposition 3.20. A is a partial ∗-algebra with respect to the usual

operations and the above defined multiplication.

Proof. Let x, y ∈ A; we want to prove that if x · y is well defined, so also
is y∗ · x∗ and (x · y)∗ = y∗ · x∗. From x · y ∈ A, using the fact that every Φα
preserves involution, it follows that (x · y)∗ ∈ A and there exists γ ∈ F such
that, for every α ≥ γ,

(x · y)∗ = (Φα(Φ−1
α (x)wαΦ−1

α (y)))∗ = Φα((Φ−1
α (x)wαΦ−1

α (y))∗)
= Φα(Φ−1

α (y∗)wαΦ−1
α (x∗)) = y∗ · x∗.

It remains to prove that, if x · y and x · z are well-defined then, for every
λ, µ ∈ C, x · (λy + µz) is well-defined too. From the assumptions, there
exists γ1 ∈ F such that for all α ≥ γ1, x · y = Φα(Φ−1

α (x)wαΦ−1
α (y)). Since

x · z is also well-defined, there exists γ2 ∈ F such that for all β ≥ γ2,
x · z = Φβ(Φ−1

β (x)wβΦ−1
β (z)). If γ ≥ γ1, γ2, then for all α ≥ γ,

λΦα(Φ−1
α (x)wα Φ−1

α (y)) + µΦα(Φ−1
α (x)wα Φ−1

α (z))

= Φα(Φ−1
α (x)wα Φ−1

α (λy)) + Φα(Φ−1
α (x)wα Φ−1

α (µz))

= Φα(Φ−1
α (x)wα (Φ−1

α (λy) + Φ−1
α (µz)))

= Φα(Φ−1
α (x)wα Φ−1

α (λy + µz)) = x · (λy + µz).

Proposition 3.21. The spaces RA(w) and LA(w) of the universal right,
respectively, left multipliers (2) of A are algebras. Hence, A

(w)
0 := LA(w) ∩

RA(w) is a ∗-algebra.

Proof. Let y, z ∈ RA(w); then y · z is well-defined. To prove that y · z ∈
RA(w), consider any x ∈ A. Since x · y is well-defined, there exists γ1 ∈ F
such that for all δ, δ′ ≥ γ1, Φδ(Φ−1

δ (x)wδΦ−1
δ (y)) = Φδ′(Φ−1

δ′ (x)wδ′Φ−1
δ′ (y))

(2) The symbol (w) is a reminder of the dependence of the spaces of multipliers on
w = {wα}; we omit a similar reminder for the multiplication itself, to lighten notation.
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and x · y = Φδ(Φ−1
δ (x)wδΦ−1

δ (y)). Now (x · y) · z is well-defined too, so there
exists γ2 ∈ F such that for all σ, σ′ ≥ γ2 we have Φσ(Φ−1

σ (x · y)wσΦ−1
σ (z)) =

Φσ′(Φ−1
σ′ (x · y)wσ′Φ−1

σ′ (z)) and (x · y) · z = Φσ(Φ−1
σ (x · y)wσΦ−1

σ (z)). If now
τ ≥ γ1, γ2 then

(x · y) · z = Φτ (Φ−1
τ (x · y)wτΦ−1

τ (z)) = Φτ (Φ−1
τ (x)wτΦ−1

τ (y)wτΦ−1
τ (z)).

By associativity of Aτ , for all λ, λ′ ≥ τ we can write

Φλ(Φ−1
λ (x)wλ(Φ−1

λ (y)wλΦ−1
λ (z))) = Φλ′(Φ−1

λ′ (x)wλ′ (Φ−1
λ′ (y)wλ′Φ−1

λ′ (z))).

Hence x ·(y ·z) is well-defined, so we conclude that y ·z ∈ RA. The statement
for LA(w) follows by observing that LA(w) = (RA(w))∗.

Corollary 3.22. The following statements hold.

(i) (A,A(w)
0 ) is a quasi ∗-algebra.

(ii) If A is endowed with τind, then the maps x 7→ x∗, x 7→ a·x, x 7→ x·b,
a, b ∈ A

(w)
0 , are continuous.

Proof. (i): Because of Proposition 3.20 and the fact A
(w)
0 is a ∗-algebra,

we need only prove the module associativity. But this is done by computa-
tions analogous to those in the proof of Lemma 3.21.

(ii): The continuity of the involution follows immediately from the def-
inition. Let now a ∈ A

(w)
0 and x ∈ A. Then, there exists α ∈ F such that

a, x ∈ Aα. Hence, for β ≥ α, a · x = Φβ(Φ−1
β (a)wβΦ−1

β (x)) and

‖a · x‖(β) = ‖Φβ(Φ−1
β (a)wβΦ−1

β (x))‖(β) = ‖Φ−1
β (a)wβΦ−1

β (x)‖β
≤ ‖Φ−1

β (a)‖β‖wβ‖β‖Φ−1
β (x)‖β = ‖wβ‖β‖a‖(β)‖x‖(β).

Thus x 7→ a · x maps Aβ continuously into itself for sufficiently large β ∈ F.
This implies the continuity with respect to the inductive topology [11, II,
6.3]. The proof for the right multiplication is similar.

Proposition 3.23. The quasi ∗-algebra (A,A(w)
0 ) has a unit e if, and

only if, every element wα of the family {wα} defining the multiplication is
invertible and

(3.7) Jβα(w−1
α ) = w−1

β , ∀α, β ∈ F, β ≥ α.

In this case, e = Φα(w−1
α ), independently of α ∈ F.

Proof. Assume that (3.7) holds. If we put e := Φα(w−1
α ), we also have,

for β ≥ α, Φβ(w−1
β ) = Φβ(Jβα(w−1

α )) = Φα(w−1
α ) = e. Thus, for every x ∈ A,

x · e = Φβ(Φ−1
β (x)wβΦ−1

β (e)) = Φβ(Φ−1(x)) = x, β ≥ α.

Similarly, e · x = x. Hence, e ∈ A
(w)
0 and it is the unit of (A,A(w)

0 ).
Conversely, assume that (A,A(w)

0 ) has a unit e. Then e = Φα(wα) for
some α ∈ F and wα ∈ Bα. Put wβ = Jβα(wα) for β ≥ α. If x ∈ A, then for
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sufficiently large β, we have x = Φβ(xβ), xβ ∈ Bβ, and

x = x · e = Φβ(Φ−1
β (x)wβΦ−1

β (e)).

This implies that

xβ = Φ−1
β (x)wβΦ−1

β (e) = xβwβΦ
−1
β (e).

Analogously, we can prove that

xβ = Φ−1
β (e)wβxβ.

Since xβ is an arbitrary element of Bβ, we conclude that Φ−1
β (e) = w−1

β .
This, in turn, implies that Jγβ(w−1

β ) = w−1
γ for all γ ≥ β.

Proposition 3.24. The following statements hold.

(i) If a ∈ A and a∗ · a is well-defined, then a∗ · a ∈ A+. In particular,
a∗ · a ∈ A+ for every a ∈ A

(w)
0 .

(ii) If x ∈ A+ and a ∈ A
(w)
0 , then a∗ · x · a ∈ A+.

Proof. (i): If the element a∗ · a is well-defined, there exists γ ∈ F such
that, for all β, β′ ≥ γ,

Φβ(Φ−1
β (a∗)wβΦ−1

β (a)) = Φβ′(Φ−1
β′ (a∗)wβ′Φ−1

β′ (a)),

a∗ · a = Φβ(Φ−1
β (a∗)wβΦ−1

β (a)).

The positivity of a∗ · a follows from

Φ−1
β (a∗ · a) = Φ−1

β (a∗)wβΦ−1
β (a) = Φ−1

β (a)∗wβΦ−1
β (a) ∈ B+

β , ∀β ≥ γ.

(ii): Let x ∈ A+; then there exists γ ∈ F such that Φ−1
α (x) ∈ B+

α for all
α ≥ γ. The product a∗ · x · a is well-defined; hence, there exists γ′ ∈ F such
that, for all δ ≥ γ′,

a∗ · x · a = Φδ(Φ−1
δ (a∗)wδΦ−1

δ (x)wδΦ−1
δ (a)).

If σ ≥ γ, γ′, then (taking into account the associativity of Bσ)

Φ−1
σ (a∗ · x · a) = Φ−1

σ Φσ(Φ−1
σ (a∗)wσΦ−1

σ (x)wσΦ−1
σ (a))

= Φ−1
σ (a∗)wσΦ−1

σ (x)wσΦ−1
σ (a) ∈ B+

σ .

It is then clear that a∗ · x · a ∈ A+.

By Propositions 3.9 and 3.24, it is easy to prove the following corollary.

Corollary 3.25. Let ω ≥ 0, a ∈ A
(w)
0 and define ωa : A → C by

ωa(x) := ω(a∗ · x · a). Then ωa ≥ 0.

Remark 3.26. The fact that several different multiplications can be
defined in a C∗-inductive locally convex space, depending on the choice of
the family w = {wα}, deserves a comment. The reader may suspect there
is something artificial in our construction. Why not choose, for instance,
wα = eα, the unit of Bα? This is certainly a possible choice. But, in some
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examples, the corresponding spaces of multipliers become too small to make
the partial multiplication of any use. A certain ambiguity in the definition of
partial multiplication occurs, on the other hand, in familiar examples, like
spaces of distributions or in spaces of operators acting in the rigged Hilbert
space (D,H,D×) considered in Example 5.1. In the latter case, introducing
partial multiplication is really a touchy business, because of the (sometimes
dramatic) pathologies pointed out by Kürsten and collaborators [6, 7, 8]. An
unambiguous definition of multiplication can only be given by fixing suitably
chosen families of interspaces [14] between D and D× (see, also, [1, 2]). In
conclusion, the definition of multiplication through the family w = {wα}
corresponds on one hand to this known ambiguity, and on the other hand
yields a certain flexibility.

4. Quasi ∗-algebras with C∗-inductive structure. Let now (A,A0)
be a given quasi ∗-algebra and assume that A is a C∗-inductive locally convex
space whose involution coincides with the involution of (A,A0).

Definition 4.1. A quasi ∗-algebra (A,A0) is called a C∗-inductive quasi
∗-algebra if A is a C∗-inductive locally convex space with respect to a di-
rected system of C∗-algebras {Bα, Jβα : β ≥ α} and the following conditions
hold:

(i) all maps x ∈ A 7→ xa ∈ A, x ∈ A 7→ bx ∈ A, a, b ∈ A0, are continuous
with respect to τind;

(ii) a∗a, a∗xa ∈ A+ for every a ∈ A0 and x ∈ A+.

Remark 4.2. If there exists w = {wα} such that A0 ⊂ A
(w)
0 and ab = a·b

for every a, b ∈ A0, then, as shown in Section 3.6, conditions (i) and (ii) are
automatically satisfied.

Proposition 4.3. Let (A,A0) be a C∗-inductive quasi ∗-algebra and ω
be a positive linear functional on A. Then:

(i) ω(a∗a) ≥ 0 for every a ∈ A0;
(ii) for every a ∈ A0, the linear functional ωa defined by

ωa(x) = ω(a∗xa), x ∈ A,

is also positive;
(iii) ω(b∗xa) = ω(a∗x∗b) for all a, b ∈ A0 and x ∈ A;
(iv) if x ∈ Aα, there exists y ∈ A+

α := Aα ∩ A+, depending only on α,
such that

(4.1) |ω(b∗xa)| ≤ ‖x‖αω(a∗ya)1/2ω(b∗yb)1/2, ∀a, b ∈ A0.

Proof. (i) and (ii) follow immediately from the definition of positivity
and from (ii) of Definition 4.1. As for (iii), it is enough to consider the
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equality

ω(b∗xa) =
1
4

3∑
k=0

ikω((a+ ikb)∗x(a+ ikb)).

To prove (iv) we begin by showing that, for every x ∈ A, there exists
β ∈ F such that x ∈ Aβ and

(4.2) |ω(a∗xa)| ≤ ‖x‖(β)ω(a∗Φβ(eβ)a), a ∈ A0.

Indeed, if x ∈ Aβ, then x = Φβ(xβ) for some xβ ∈ Bβ. Hence, for every
a ∈ A0,

|(ωa ◦ Φβ)(xβ)| = |(ωa ◦ Φβ)(Φ−1
β (x))|

≤ ((ωa ◦ Φβ)(eβ))‖Φ−1
β (x)‖β = ωa(Φβ(eβ))‖x‖(β).

On the other hand, (ωa ◦ Φβ)(Φ−1
β (x)) = ωa(x) = ω(a∗xa). Hence

|ω(a∗xa)| ≤ ‖x‖(β)ωa(Φβ(eβ)) = ‖x‖(β)ω(a∗Φβ(eβ)a), ∀a ∈ A0.

Now, let x ∈ A+ and a, b ∈ A0. Define Ωx
ω(a, b) := ω(b∗xa). Then it is

easily checked that Ωx
ω is a positive sesquilinear form on A0 × A0.

Hence, for fixed x ∈ A+, the Cauchy–Schwarz inequality holds:

|Ωx
ω(a, b)| ≤ Ωx

ω(a, a)1/2Ωx
ω(b, b)1/2, ∀a, b ∈ A0.

Then using (4.2), for a suitable β ∈ F, we get

|ω(b∗xa)| ≤ ω(a∗xa)1/2ω(b∗xb)1/2(4.3)

≤ ‖x‖(β)ω(a∗Φβ(eβ)a)1/2ω(b∗Φβ(eβ)b)1/2.

Now we turn to the general case. If x ∈ A, then x can be decomposed as
x = u+ iv = u+−u−+ iv+− iv− with u+, u−, v+, v− ∈ A+, by Proposition
3.6. If x ∈ Aβ, then also u+, u−, v+, v− ∈ A+

β . Then using (4.3), we get

|ω(b∗xa)| ≤ |ω(b∗u+a)|+ |ω(b∗u−a)|+ |ω(b∗v+a)|+ |ω(b∗v+a)|
≤ 2‖u‖(β)ω(a∗Φβ(eβ)a)1/2 ω(b∗Φβ(eβ)b)1/2

+ 2‖v‖(β)ω(a∗Φβ(eβ)a)1/2 ω(b∗Φβ(eβ)b)1/2

≤ 4‖x‖(β)ω(a∗Φβ(eβ)a)1/2ω(b∗Φβ(eβ)b)1/2.

Finally, taking y = 4Φβ(eβ) ∈ A+
β , we get the desired inequality (4.1).

As we have seen, every positive linear functional over a C∗-inductive
quasi ∗-algebra satisfies the conditions (i)–(iv) of Proposition 4.3. It is then
natural to ask whether these conditions are sufficient in order to get a GNS-
construction of a general quasi ∗-algebra (A,A0) taking its values in some
space LB(D,D×).

Before going forth, we need an explicit definition of ∗-representation of
a quasi ∗-algebra in RHS.
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Definition 4.4. Let (A,A0) be a quasi ∗-algebra with identity e, and
Dπ a dense domain in a certain Hilbert space Hπ endowed with the graph
topology tM defined by an O∗-algebra M ⊂ L†(Dπ). A linear map π from A
into LB(Dπ,D×π ) such that:

(i) π(a∗) = π(a)† for all a ∈ A,
(ii) if a ∈ A, x ∈ A0, then π(ax) = π(a)π(x),
(iii) π(A0) ⊂ L†(Dπ),

is called a ∗-representation of A in the RHS (Dπ[tM],Hπ,D×π [t×M]).

The following lemma, which allows one to extend a ∗-representation de-
fined on a domain D to its completion, can be easily proved.

Lemma 4.5. Let D be endowed with the graph topology tM defined by an
O∗-algebra M on D and let X ∈ LB(D,D×). Let D̃[tM] denote the completion
of D with respect to the topology tM. Then X has a unique extension X̃ such
that X̃ ∈ LB(D̃,D×).

Let (A,A0) be a quasi ∗-algebra with unit e, and ω a linear functional
on A. Assume that ω satisfies the following conditions:

(Q1) ω(a∗a) ≥ 0 for every a ∈ A0;
(Q2) ω(b∗x∗a) = ω(a∗xb) for every x ∈ A and a, b ∈ A0;
(Q3) for all x ∈ A, there exist γx > 0 and c ∈ A0 such that

|ω(a∗x∗b)|2 ≤ γxω(a∗c∗ca)ω(b∗c∗cb), ∀a, b ∈ A0.

Then, starting from ω0 := ω�A0 one can define a closed strongly cyclic ∗-
representation π0

ω, with strongly cyclic vector ξω, defined on a domain Dπω .
The space Dπω can be endowed with several topologies finer than that in-
duced by the Hilbert norm. Each of them can be used to construct a RHS
having Dπω as the smaller space. In [1] it was proved that if we endow Dπω
with t†, the graph topology generated by L†(Dπω), and ω is a linear func-
tional on A satisfying (Q1)–(Q3), then there exists a ∗-representation πω of
(A,A0) into the corresponding space LB(Dπω ,D×πω) which reduces to π0

ω on
A0 (πω was called the ∗-representation canonically associated with π0

ω).

Definition 4.6. Let (A,A0) be a quasi ∗-algebra and π0 a ∗-representa-
tion of A0, with domain Dπ0 . We say that π0 is extensible to A if there
exists a ∗-representation π in the RHS (Dπ0 [tπ0 ],Hπ0 ,D×

π0 [t×
π0 ]) such that

π�A0 = π0.

Proposition 4.7. Let (A,A0) be a quasi ∗-algebra with unit e and ω a
linear functional on A satisfying (Q1) and (Q2). Let π0

ω denote the closed
GNS-representation of A0. Then π0

ω is extensible to A if and only if ω sat-
isfies (Q3).
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Proof. Assume that (Q3) is satisfied. The following argument modifies
that given in [1] only in some points. For this reason we skip all details.

As is known, the GNS representation of A0 acts on the pre-Hilbert space
A0/Nω, with Nω = {a ∈ A0 : ω(a∗a) = 0}, as

π0
ω(b)λω(a) = λω(ba), a, b ∈ A0,

where λω(a) = a+Nω for a ∈ A0, and then it is extended to the completion

Dω := λ̃ω(A0)[tπ0
ω
] (the extension is denoted by the same symbol). The

vector ηω := λω(e) is strongly cyclic for π0
ω.

If x ∈ A, the linear functional xω on Dω defined by

xω(λω(a)) = ω(x∗a), a ∈ A0,

is continuous, since, by (Q3), there exist γx > 0 and c ∈ A0 such that

|xω(λω(a))| = |ω(x∗a)| ≤ γxω(c∗c)1/2 ω(a∗c∗ca)1/2 = γ′x‖π0
ω(c)λω(a)‖.

Hence, there exists a unique ξω(x) ∈ D×ω , the conjugate dual of Dω[tπ0
ω
],

such that
xω(λω(a)) = 〈λω(a) | ξω(x)〉, ∀a ∈ A0.

Thus for every x ∈ A, πω(x)λω(a) := ξω(xa), a ∈ A0, is well-defined and
maps λω(A0) into D×ω . By Lemma 4.5, πω(x) extends to Dω. The fact that
πω is a ∗-representation is easily checked.

Finally, consider the sesquilinear form θπω(x) associated to πω(x), x ∈ A:

|θπω(x)(λω(a), λω(b))| = 〈πω(x)λω(a) |λω(b)〉 = |ω(b∗xa)|

≤ γx ω(b∗c∗cb)1/2ω(a∗c∗ca)1/2

= γx‖π0
ω(c)λω(b)‖ ‖π0

ω(c)λω(a)‖, ∀a, b ∈ A0.

This means that θπω(x) is jointly continuous in Dω[tπ0
ω
]. Hence πω(x) ∈

LB(Dω,D×ω ).
Vice versa, assume that π0

ω is extensible to A; then for every x ∈ A,
πω(x) ∈ LB(Dω,D×ω ), where Dω is endowed with tπ0

ω
. Hence, there exist

γx > 0 and c ∈ A0 such that for every a, b ∈ A0,

|ω(b∗xa)| = |θπω(x)(λω(a), λω(b))| ≤ γx‖π0
ω(c)λω(b)‖ ‖π0

ω(c)λω(a)‖

= γxω(b∗c∗cb)1/2ω(a∗c∗ca)1/2, ∀a, b ∈ A0.

Example 4.8. Assume that the topology t on a domain D, in a Hilbert
space H, makes (L(D,D×),L†(D)) a quasi ∗-algebra. For every fixed ξ ∈ D,
the linear functional ωξ on L(D,D×) defined by

ωξ(X) = 〈Xξ | ξ〉, X ∈ L(D,D×),

satisfies the conditions (i)–(iii) of Proposition 4.3. As for (iv), we get the
stronger condition (Q3). Indeed, by the definition itself, for every X ∈
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LB(D,D×), there exist γX > 0 and A ∈ L†(D) such that

|ωξ(X)| = |〈Xξ | ξ〉| ≤ γX‖Aξ‖2,
or in other terms

|ωξ(X)| ≤ γXωξ(A†A),

which, in turn, implies

|ωξ(C†XB)| ≤ γXωξ(B†A†AB)ωξ(C†A†AC), ∀B,C ∈ L†(D).

Remark 4.9. The conditions (Q1)–(Q3) given above look very close to
the conditions (L1)–(L3) used in [13]. The two groups of assumptions differ
essentially in the third condition (i.e., (L3) and (Q3)). The first one implies
that the corresponding representation lives in Hilbert space, giving rise to
ordinary closable operators, while (Q3) forces the operators to go beyond
Hilbert space.

5. Examples. In this section we collect some examples that illustrate
the ideas developed so far.

5.1. Sesquilinear forms and operators. We will now show that cer-
tain spaces of sesquilinear forms or spaces of operators acting on a RHS (see
[1, 12] for details) provide examples of C∗-inductive locally convex spaces
or C∗-inductive quasi ∗-algebras.

Example 5.1. Let D be a dense domain in a Hilbert spaceH. The graph
topology t†, defined by L†(D), is also generated by the system of seminorms
{‖ · ‖A}A∈L†(D), where

‖ξ‖A =
√
‖ξ‖2 + ‖Aξ‖2 = ‖(I +A∗A)1/2ξ‖, ξ ∈ D.

The completion of D[‖ · ‖A] is a Hilbert space denoted by HA.
For A,B ∈ L†(D), we write A � B if ‖Aξ‖ ≤ ‖Bξ‖ for every ξ ∈ D.

If A � B, we define, as in (I1) of Section 2, a linear map VAB from HB
into HA in the following way. If ξ ∈ HB, there exists a sequence {ξn} of
elements of D which converges to ξ with respect to ‖ · ‖B. This implies that
{ξn} is Cauchy with respect to ‖ · ‖A, and therefore it converges to ξ′ ∈ HA.
Clearly, ξ′ = ξ and so HB ⊆ HA. Thus VAB is nothing but the identity IAB
of HB into HA. One has ‖IABξ‖A ≤ ‖ξ‖B for every ξ ∈ HB. We denote by
UBA : HA → HB, the adjoint map of IAB, i.e. UBA = I∗AB. One also has
‖UBAη‖B ≤ ‖η‖A for every η ∈ HA.

Let, as before, B(D,D) denote the vector space of all jointly continuous
sesquilinear forms on D × D, i.e. θ ∈ B(D,D) if, and only if, there exists
c > 0 and A ∈ L†(D) such that

(5.1) |θ(ξ, η)| ≤ c‖ξ‖A‖η‖A, ∀ξ, η ∈ D.
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The involution θ 7→ θ∗ in B(D,D) is defined by

θ∗(ξ, η) = θ(η, ξ), ξ, η ∈ D.
The subspace BA(D,D) of B(D,D) consisting of all θ ∈ B(D,D) such

that (5.1) holds, for a fixed A ∈ L†(D), is stable under involution.
Then, if θ ∈ BA(D,D), θ extends to HA (we use the same symbol for

this extension) and it is a bounded sesquilinear form on HA. Hence, there
exists a unique operator Xθ

A ∈ B(HA) such that

θ(ξ, η) = 〈Xθ
Aξ | η〉A, ∀ξ, η ∈ HA.

Conversely, if XA ∈ B(HA), then the sesquilinear form θXA defined by

θXA(ξ, η) = 〈XAξ | η〉A, ξ, η ∈ D,
satisfies (5.1). Thus the map

ΦA : XA ∈ B(HA) 7→ θXA ∈ BA(D,D)

defines a ∗-isomorphism of vector spaces with involution.
If B � A, then

|θXA(ξ, η)| = |〈XAξ | η〉A| ≤ ‖XA‖A,A‖ξ‖A‖η‖A ≤ ‖XA‖A,A‖ξ‖B‖η‖B,
where ‖ · ‖A,A denotes the operator norm in B(HA). Hence, there exists a
unique XB ∈ B(HB) such that

〈XAξ | η〉A = 〈XBξ | η〉B, ∀ξ, η ∈ D.
So it is natural to define

JBA(XA) = XB, ∀XA ∈ B(HA).

It is easily seen that JBA = Φ−1
B ΦA. A more explicit expression of JBA is

obtained as follows. Let ξ, η ∈ D ⊂ HB. Then

〈JBA(XA)ξ | η〉B = 〈XAξ | η〉A = 〈XAIABξ | IABη〉A = 〈UBAXAIABξ | η〉B.
The density of D in HB implies that JBA(XA)ξ = UBAXAIABξ and that
this equality extends to HB. Hence,

(5.2) JBA(XA) = UBAXAIAB, ∀XA ∈ B(HA), B � A.
It is readily checked that

JBA(XA) = (I +B∗B)−1(I +A∗A)XA, XA ∈ B(HA).
Now we prove that (sch) is satisfied. Let XA ∈ B(HA) and ξB ∈ HB;

put ξA = IABξB for A � B. Then, using (5.2),
〈JBA(X∗A)JBA(XA)ξB | ξB〉B = 〈JBA(XA)ξB | JBA(XA)ξB〉B

= ‖UBAXAIABξB‖2B
≤ ‖XAIABξB‖2A = 〈XAξA |XAξA〉A
= 〈X∗AXAξA | ξA〉A = 〈JBA(X∗AXA)ξB | ξB〉B.

Hence, B(D,D) is a C∗-inductive locally convex space.
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Example 5.2. We denote by LB(D,D×) the space of all linear maps X
from D into D× such that the sesquilinear form on D ×D defined by

(5.3) θX(ξ, η) = 〈Xξ | η〉, ξ, η ∈ D,
is jointly continuous in D[t†]; i.e., X ∈ LB(D,D×) if, and only if, there exist
γX > 0 and A ∈ L†(D) such that

(5.4) |θX(ξ, η)| = |〈Xξ | η〉| ≤ γX‖ξ‖A‖η‖A, ∀ξ, η ∈ D.
Then LB(D,D×) ⊂ L(D,D×), the space of all continuous linear maps from
D[t†] into D×[t×† ]. Clearly, if X ∈ LB(D,D×), then θX ∈ B(D,D).

Conversely, if θ ∈ B(D,D), there exists a unique X ∈ LB(D,D×) such
that θ = θX . The operator X† ∈ LB(D,D×) corresponding to θ∗ is the
adjoint map of X, since

〈Xξ | η〉 = 〈X†η | ξ〉, ∀ξ, η ∈ D.
Thus, the map

I : X ∈ LB(D,D×) 7→ θX ∈ B(D,D)

is an isomorphism of vector spaces preserving involution.
Let LAB(D,D×) = I−1BA(D,D). Clearly LAB(D,D×) is a subspace of

LB(D,D×) and a Banach space, with norm

‖X‖A := sup
‖ξ‖A,‖η‖A≤1

|θX(ξ, η)|.

If A � B, then LAB(D,D×) ⊂ LBB (D,D×) and ‖·‖B ≤ ‖·‖A on LAB(D,D×).
The space LB(D,D×) endowed with the inductive topology τind defined

by the family of subspaces {LAB(D,D×) : A ∈ L†(D)} is a bornological
Hausdorff space [12, Section 1.2.III].

In conclusion,

XA ∈ B(HA)↔ θXA ∈ BA(D,D)↔ X ∈ LAB(D,D×)

are isometric ∗-isomorphic Banach spaces (we recall that the multiplication
of B(HA) is not preserved) and LB(D,D×) is a C∗-inductive locally convex
space, isomorphic to B(D,D).

There is, however, something more. Indeed, the pair (LB(D,D×),L†(D))
is a quasi ∗-algebra, the products of X ∈ LB(D,D×) and A ∈ L†(D) being
defined by

(XA)ξ = X(Aξ) and (AX)ξ = Â(Xξ), ξ ∈ D,
where Â denotes the extension of A to D× defined by

〈Âξ′ | η〉 = 〈ξ′ |A†η〉, ξ′ ∈ D×, η ∈ D.
The conditions of Definition 4.1 are satisfied by taking, as usual,

LB(D,D×)+ = {X ∈ LB(D,D×) : 〈Xξ | ξ〉 ≥ 0, ∀ξ ∈ D}.
Hence, (LB(D,D×),L†(D)) is a C∗-inductive quasi ∗-algebra.
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Example 5.3. We will show here how to choose a family {WA ∈ B(HA) :
A ∈ L†(D)} so that the partial multiplication defined in LB(D,D×) by the
method of Section 3.6 would reproduce the quasi ∗-algebra structure of the
previous example.

Let A ∈ L†(D). Then (I +A∗A)−1 ∈ B(HA), as a simple consequence of
the closed graph theorem, and ‖(I + A∗A)−1‖A,A ≤ 1. Moreover, for every
ξ, η ∈ D,

〈(I +A∗A)−1ξ | η〉A = 〈(I +A∗A)1/2(I +A∗A)−1ξ | (I +A∗A)1/2η〉
= 〈ξ | η〉.

We choose W = {WA : A ∈ L†(D)} with WA = (I + A∗A)−1. We prove
that with this choice, L†(D) ⊂ RLB(D,D×)(W )∩LLB(D,D×)(W ). Indeed, if
Y ∈ L†(D), then Y ∈ LAB(D,D×) for someA ∈ L†(D), and the operator YA ∈
B(HA) corresponding to Y satisfies YA�D = (I+A†A)Y . If X ∈ LB(D,D×),
then X ∈ LSB(D,D×) for sufficiently large S ∈ L†(D). Therefore, for every
ξ ∈ D,

XTWTYT ξ = XT (I + T ∗T )−1(I + T †T )Y ξ = XTY ξ, T � S,
with XT = Φ−1

T (X).
This implies that X · Y is well-defined and (X · Y )T = XTY . Hence

〈(X · Y )T ξ | η〉T = 〈XTY ξ | η〉T = 〈XY ξ | η〉.
In order to prove that also Y ·X is well defined we take into account that
YA is also equal to the operator Ŷ (I +A∗A) where Ŷ denotes the extension
of Y to D× defined in Example 5.2. Thus we have

YTWTXT ξ = Ŷ (I + T ∗T )(I + T ∗T )−1XT ξ = Ŷ XT ξ.

Hence, for every ξ, η ∈ D,

〈(Y ·X)T ξ | η〉T = 〈Ŷ XT ξ | η〉T = 〈XT ξ |Y †η〉T = 〈Xξ |Y †η〉,
which proves the statement.

Finally, we notice that if I is the identity map from D into D×, then
I = {W−1

A : A ∈ L†(D)}, as expected from Proposition 3.23.

5.2. Functions and distributions

Example 5.4. Let (X,Σ) be a measurable space and M(X,Σ) the set
of positive measures on (X,Σ). If µ, ν ∈M(X,Σ), a natural order is defined
by

µ � ν ⇔ µ(E) ≤ ν(E), ∀E ∈ Σ.
This order makes M(X,Σ) a directed set.

To fix notation, if µ ∈ M(X,Σ) and f is a measurable function, we
denote by ‖f‖µ∞ the L∞-norm with respect to µ and, as usual, we put
L∞(X,µ) = {f measurable: ‖f‖µ∞ < ∞}. As it is well-known, L∞(X,µ) is
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a C∗-algebra. If µ � ν, then ‖f‖ν∞ ≤ ‖f‖
µ
∞, hence L∞(X,µ) ⊂ L∞(X, ν).

If L∞(X,M(X,Σ)) denotes the set union of the spaces {L∞(X,µ) : µ ∈
M(X,Σ)}, then the corresponding map Φµ is the identity and so are all the
Jνµ’s, ν � µ. Therefore, L∞(X,M(X,Σ)) is a ∗-algebra and, when endowed
with the topology τind, a C∗-inductive locally convex space. If X = R and
Σ is the σ-algebra of Borel sets, then L∞(X,M(X,Σ)) coincides with the
∗-algebra of all Borel measurable functions.

Example 5.5. Let us take as index set the family K of all compact
subsets of the real line, ordered by inclusion. For K ∈ K, put

B(K) = {g ∈ L1
loc(R) : g(x) = f(x)χK(x), f ∈ L∞loc(R)}.

Then B(K) is a C∗-algebra under the norm ‖g‖ = ‖fχK‖∞. It is easily seen
that if K ⊆ K ′, then B(K) ⊂ B(K ′). Let, as usual, D(R) denote the space
of test functions and D′(R) the space of distributions. We define

ΦK : g ∈ B(K) 7→ Tg ∈ D′(R),

where Tg denotes the regular distribution defined by

Tg(ϕ) =
�

R
g(x)ϕ(x) dx, ϕ ∈ D(R).

It is clear from the definition that ΦK does not preserve multiplication. The
embedding JK′K of B(K) into B(K ′) is, in this case, the identity map. The
algebraic inductive limit A of the system {{B(K), ΦK} : K ∈ K} is the set
of distributions T having at least one regular restriction TK to a compact
set K which is defined by a function g ∈ B(K). This space is quite large:
it contains, in fact, all distributions with compact support. When endowed
with the topology τind, A is a C∗-inductive locally convex space.
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