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New spectral criteria for almost periodic solutions
of evolution equations
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and Jong Son Shin (Tokyo)

Abstract. We present a general spectral decomposition technique for bounded solu-
tions to inhomogeneous linear periodic evolution equations of the form ẋ = A(t)x+f(t) (∗),
with f having precompact range, which is then applied to find new spectral criteria for
the existence of almost periodic solutions with specific spectral properties in the resonant
case where ei sp(f) may intersect the spectrum of the monodromy operator P of (∗) (here
sp(f) denotes the Carleman spectrum of f). We show that if (∗) has a bounded uniformly

continuous mild solution u and σΓ (P )\ei sp(f) is closed, where σΓ (P ) denotes the part
of σ(P ) on the unit circle, then (∗) has a bounded uniformly continuous mild solution w

such that ei sp(w) = ei sp(f). Moreover, w is a “spectral component” of u. This allows us
to solve the general Massera-type problem for almost periodic solutions. Various spectral
criteria for the existence of almost periodic and quasi-periodic mild solutions to (∗) are
given.

1. Introduction. We consider the following linear inhomogeneous in-
tegral equation:

(1) x(t) = U(t, s)x(s) +
t�

s

U(t, ξ)g(ξ) dξ, ∀t ≥ s; t, s ∈ R,

where f is continuous, x(t) ∈ X, X is a Banach space, and (U(t, s))t≥s is
assumed to be a 1-periodic evolutionary process on X (see Definition 2.2
below). In turn, this notion of evolutionary processes arises naturally from
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the well-posed evolution equations

(2)
dx

dt
= A(t)x+ f(t), t ∈ R, x ∈ X,

where A(t) is a linear (in general, unbounded) operator for every fixed t and
is 1-periodic in t (see e.g. [Paz]).

Recently, there is an increasing interest in investigating the asymptotic
behavior of solutions to the well-posed equation (2) by means of (1) (see
e.g. [Na], [Ne]). An interesting problem in the qualitative theory of solutions
to (1) is to find conditions for the existence of (almost) periodic solutions. In
this direction, it is known (see e.g. [Pr], [V-S] for the autonomous case and
[N-M], [M-N-M] and also [B-H-R] for the periodic case) that if the following
nonresonant condition holds:

(3) (σ(P ) ∩ S1) ∩ ei sp(f) = ∅,
where P := U(1, 0), S1 denotes the unit circle of the complex plane, f is
almost periodic, sp(f) is the Carleman spectrum of f whose definition is
given in the next section and ei sp(f) is the closure of the set {eiξ : ξ ∈ sp(f)}
in the usual topology of the complex plane, then there exists an almost
periodic solution xf to (1) which is unique if one requires

ei sp(xf ) ⊂ ei sp(f).

We may ask what happens in the resonant case where condition (3) fails.
In fact, in the particular case where the forcing term f is 1-periodic and the
monodromy operator P is compact this question has been answered under
the additional assumption that there exists a bounded uniformly continuous
solution to (1). Historically, this question goes back to a classical result by
Massera [Ma] saying that in the finite-dimensional case, for (2) to have
a 1-periodic solution it is necessary and sufficient that it has a bounded
solution (see [C-H], [D-M, Thm. 11.20], [S-N], [N-M-M-S] for extensions to
the infinite-dimensional case, and also [F, Example 12.5], [J], [S-Y], [Ya] for
related results and counterexamples for almost periodic equations).

It is the purpose of this paper to give an answer to a general prob-
lem as the one mentioned above (Massera-type problem): Let (1) have a
bounded (uniformly continuous) solution xf with given almost periodic forc-
ing term f . When does (1) have an almost periodic solution w (which may
be different from xf ) such that

ei sp(w) ⊂ ei sp(f) ?

In connection with this problem we note that various conditions have
been found on the bounded solution and the countability of the part σ(P )∩
S1 of the spectrum so that the bounded solution itself is almost periodic, or
more generally, together with f belongs to a given function space F (see e.g.
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[L-Z], [A-B], [R-V], [Ba], . . .). Here we note that this philosophy, in general,
does not apply to the Massera-type problem for almost periodic solutions.
In fact, it is not difficult to give an example in which f is 1-periodic and
a bounded (uniformly continuous) solution to (1) exists, but this bounded
solution itself is not 1-periodic.

Our method is to employ the evolution semigroup (see Definition 2.3 be-
low) associated with (U(t, s))t≥s to study the harmonic analysis of bounded
solutions to (1). As a result we prove a spectral decomposition theorem for
bounded solutions (Theorems 3.3 and 3.5) which seems to be useful in deal-
ing with the above Massera-type problem. In fact, we apply the spectral
decomposition theorem to find new spectral criteria for the existence of al-
most periodic solutions, and consider particular cases to show the usefulness
of this technique. More concretely, even in the case where condition (3) fails
we can still prove the existence of a bounded uniformly continuous solution w
to (1) such that ei sp(w) = ei sp(f) provided that (σ(P )∩S1)\ei sp(f) is closed,
and that (1) has a bounded uniformly continuous solution u (Corollary 4.2).
Since w is a “spectral component” of u, in case u is almost periodic the
Fourier series of w is part of that of u (Corollary 4.3). Corollary 4.4 deals
with a particular autonomous case in which Corollary 4.2 fails to give a
spectral criterion for the existence of quasi-periodic mild solutions.

2. Preliminaries. Throughout the paper we use the following nota-
tions: N,Z,R,C stand for the sets of natural, integer, real, and complex
numbers, respectively; S1 denotes the unit circle in the complex plane C;
X denotes a given complex Banach space. If T is a linear operator on X, then
D(T ) stands for its domain. Given two Banach spaces X,Y we denote by
L(X,Y) the space of all bounded linear operators from X to Y. As usual,
σ(T ), %(T ), R(λ, T ) are the notations for the spectrum, resolvent set and
resolvent of the operator T . The notations BC(R,X),BUC(R,X),AP(X)
stand for the spaces of all X-valued bounded continuous functions, bounded
uniformly continuous functions on R and the subspace of almost periodic (in
Bohr’s sense) functions, respectively. Recall that a function f ∈ BUC(R,X)
is called almost periodic (in Bohr’s sense) if {S(τ)f : τ ∈ R} is relatively
compact in BUC(R,X), where (S(t))t∈R is the group of translations on
BUC(R,X). It is known (see e.g. [L-Z]) that the set of Fourier–Bohr expo-
nents of an almost periodic function f is defined to be the set of all nonzero
real numbers of the form

α = lim
N→∞

1
2N

N�

−N
e−i%tf(t) dt, % ∈ R.

The set of Fourier–Bohr exponents of an almost periodic function f is at
most countable and will be denoted by exp(f).
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We use the notion of the Carleman spectrum of a bounded continuous
function u on the real line, denoted by sp(u), consisting of ξ ∈ R such that
the Fourier–Carleman transform of u,

(4) û(λ) =

{ � ∞
0 e−λtu(t) dt (Reλ > 0),

−
� ∞
0 eλtu(−t) dt (Reλ < 0),

has no holomorphic extension to a neighborhood of iξ (see e.g. [Pr, pp.
19–27]). We refer the reader to [D], [Ka], [Pr], [A-B] for more information
on this notion as well as its relations to other notions of spectrum. Basic
properties of the Carleman spectrum of a function and its relation to the
behavior of the function are listed below for the reader’s convenience.

Proposition 2.1. Let f, gn∈BUC(R,X) be such that limn→∞ ‖gn−f‖
= 0. Then:

(i) sp(f) is closed.
(ii) sp(f(·+ h)) = sp(f).

(iii) If α ∈ C \ {0}, then sp(αf) = sp(f).
(iv) If sp(gn) ⊂ Λ for all n ∈ N, then sp(f) ⊂ Λ.
(v) sp(ψ + f) ⊂ sp(f) ∪ sp(ψ) for all ψ ∈ BC(R,X).
(vi) If u is uniformly continuous, sp(u) is countable and X does not

contain any subspace which is isomorphic to the sequence space c0, then u
is almost periodic.

(vii) If u is uniformly continuous and sp(u) is discrete, then u is almost
periodic.

Proof. For the proof we refer the reader to [Pr, Proposition 0.4, p. 20,
Theorem 0.8, p. 21] and [A-S], [L-Z, Chap. 6].

For simplicity we use the following notation throughout: σ(g) := ei sp(g)

for every bounded uniformly continuous function g, and σΓ (P ) = σ(P )∩S1.
If f is almost periodic, then sp(f) = exp(f).

The following notion will be used throughout the paper:

Definition 2.2. A family (U(t, s))t≥s (t, s ∈ R) of bounded linear op-
erators from a Banach space X to itself is called a 1-periodic strongly con-
tinuous evolutionary process if:

(i) U(t, t) = I for all t ∈ R,
(ii) U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r,
(iii) the map (t, s) 7→ U(t, s)x is continuous for every fixed x ∈ X,
(iv) U(t+ 1, s+ 1) = U(t, s) for all t ≥ s,
(v) ‖U(t, s)‖ < Neω(t−s) for some positive N , ω independent of t ≥ s.
The operator U(1, 0) is called the monodromy operator of the evolution-

ary process (U(t, s))t≥s and denoted by P throughout this paper. Note that
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in this paper the period of evolutionary processes is assumed to be 1 merely
for simplicity.

Definition 2.3. Let (U(t, s))t≥s (t, s ∈ R) be a 1-periodic strongly con-
tinuous evolutionary process and F be a closed subspace of BUC(R,X) such
that for every fixed h > 0 and g ∈ F the map t 7→ U(t, t−h)g(t−h) belongs
to F. Then the semigroup (T h)h≥0 of operators on F, defined by the formula

Thg(t) = U(t, t− h)g(t− h), ∀t ∈ R, h ≥ 0, g ∈ F,

is called the evolution semigroup associated with the process (U(t, s))t≥s.

We refer the reader to the papers [A-M], [N-M], [M-N-M] for more in-
formation on the applications of this notion to the study of the existence
of bounded and almost periodic solutions as well as the references therein
for information on other applications to the study of exponential dichotomy
and stability of solutions to (1).

In the case where the evolution semigroup (T h)h≥0 is strongly continu-
ous on F, [A-M, Thm. 2] yields an explicit formula for the generator A of
(Th)h≥0. In fact, similarly to [N-M, Lemma 2] we have the following:

Lemma 2.4. Let (T h)h≥0 be strongly continuous on F, a closed subspace
of BUC(R,X). Then its generator A is the operator on F with D(A) con-
sisting of all g ∈ F such that g is a solution to (1) for some f ∈ F (in this
case such a function f is unique), and by definition, Ag = −f .

It is not hard to see that in the finite-dimensional case in which
(U(t, s))t≥s is the Cauchy operator associated with the ordinary differen-
tial equation

dx

dt
= A(t)x, x ∈ Rn, t ∈ R,

where A(t) is a continuous n × n-matrix-valued function, the infinitesimal
generator A of the semigroup (T h)h≥0 is nothing but (Ag)(t) = A(t)g(t)−
dg(t)/dt. However, in general, it is not the case. In fact, the operator A is
the closure of the operator A(t)− d/dt in a suitable topology (see [M-N-M]
for the autonomous case and its references for more information).

3. Spectral decomposition. Consider the subspace M⊂ BUC(R,X)
consisting of all functions v ∈ BUC(R,X) such that

(5) ei sp(v) := σ(v) ⊂ S1 ∪ S2,

where S1, S2 ⊂ S1 are disjoint closed subsets of the unit circle. We set
Mv = span{S(t)v : t ∈ R} (the closure of the linear subspace of BUC(R,X)
spanned by {S(t)v : t ∈ R}), where (S(t))t∈R is the translation group on
BUC(R,X), i.e. S(t)v(s) = v(t+ s) for t, s ∈ R.
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Theorem 3.1. Under the above notations and assumptions the function
space M can be split into a direct sum M =M1 ⊕M2 such that v ∈ Mi if
and only if σ(v) ⊂ Si for i = 1, 2.

Proof. Denote by Λi ⊂ BUC(R,X) the set of functions u such that
σ(u) ⊂ Si for i = 1, 2. Then obviously, Λi ⊂ M. Moreover, they are closed
linear subspaces of M, Λ1 ∩ Λ2 = {0}. We want to prove that

M = Λ1 ⊕ Λ2.

To this end, it is sufficient to show that for any element v ∈ M we have
v = v1 + v2, where v1 ∈ Λ1, v2 ∈ Λ2. As is known (see e.g. [A-B])

(6) i sp(v) = σ(DMv),

where DMv is the infinitesimal generator of the translation group (S(t))t∈R
on Mv. Thus, by the Weak Spectral Mapping Theorem (see e.g. [E-Na],
[Na])

(7) σ(S(1)|Mv) = eσ(DMv ) = σ(v) ⊂ S1 ∪ S2.

Hence, there is a spectral projection in Mv,

P 1
v :=

1
2iπ

�

γ

R(λ, S(1)|Mv) dλ,

where γ is a contour enclosing S1 and disjoint from S2 (or in general a union
of finitely many such countours). This implies

(8) σ(S(1)|ImP 1
v
) ⊂ S1, σ(S(1)|KerP 1

v
) ⊂ S2.

Now we show that v = v1 +v2, where v1 := P 1
v v ∈ Λ1 and v−v1 =: v2 ∈ Λ2.

To this end, we will prove

(9) σ(vj) ⊂ Sj , ∀j = 1, 2.

In fact, we show that Mv1 = ImP 1
v . Obviously, in view of the invariance of

ImP 1
v under translations we haveMv1 ⊂ ImP 1

v . We now show the converse.
To this end, let y ∈ ImP 1

v ⊂ Mv. Then, by definition, there is a sequence
{xn}n∈N ⊂ span{S(t)v : t ∈ R} such that y = limn→∞ xn. Hence, xn can be
represented in the form

xn =
N(n)∑

k=1

αk,nS(tk,n)v, αk,n ∈ C, tk,n ∈ R ∀n.

Since y ∈ ImP 1
v ⊂Mv, we have P 1

v y = y. So, since xn ∈ Mv,

(10) y = P 1
v y = lim

n→∞

N(n)∑

k=1

αk,nS(tk,n)P 1
v v = lim

n→∞

N(n)∑

k=1

αk,nS(tk,n)v1.
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This shows that y ∈ Mv1 . Thus, by the Weak Spectral Mapping Theorem
and (8),

ei sp(v1) = σ(S(1)|Mv1
) = σ(S(1)|ImP 1

v
) ⊂ S1.

By definition, v1 ∈ Λ1, and similarly v2 ∈ Λ2. Thus the theorem is proved.

Remark. Below for every v ∈ M we will call the functions vj , j = 1, 2,
as defined in the proof of Theorem 3.1, the spectral components of v. It is
easily seen that if in the proof of Theorem 3.1, v is assumed to be almost
periodic, then so are both vj .

Lemma 3.2. Let u be a bounded uniformly continuous solution to (1).
Then:

(i) We have
(11) σ(u) ⊂ σΓ (P ) ∪ σ(f).

(ii) If furthermore we assume that f has precompact range, then

(12) σ(u) ⊃ σ(f).

Proof. (i) For the proof see [B-H-R, Proposition 3.2].
(ii) Under the assumptions it may be seen that the evolution semi-

group (T h)h≥0 associated with (U(t, s))t≥s is strongly continuous at u ∈
BUC(R,X) (this can be checked directly using (1)), and at f (see [N-M,
Lemma 2]). Hence, by Lemma 2.4,

(13) lim
h→0+

Thu− u
h

= Au = −f.

Hence, to prove (12) it suffices to show that σ(T hu) ⊂ σ(u). In turn, this
inclusion can be shown by using the definition of the spectrum of a function
as in [V, Lemma 4.3], [B-H-R, Lemma 3.6].

Remark. We refer the reader to [L-Z], [Ba], [A-B], . . . for results re-
lated to the inclusion (11). The inclusion (12) seems to be new and yields a
necessary condition for the existence of bounded solutions to (1).

We are now in a position to state the main result of this paper.

Theorem 3.3 (Spectral Decomposition Theorem). Let u be a bounded
uniformly continuous solution to (1). Moreover , let f have precompact range
and the sets σ(f) and σ(P ) ∩ S1 be contained in a disjoint union of closed
subsets S1, . . . , Sk of the unit circle. Then the solution u can be decomposed
into a sum of k spectral components uj , j = 1, . . . , k, such that each uj , j =
1, . . . , k, is a solution to (1) with f = fj , j = 1, . . . , k, respectively , where f =∑k
j=1 fj is the decomposition of f into the sum of spectral components as

described in Theorem 3.1, i.e. u =
∑k
j=1 uj , σ(uj), σ(fj) ⊂ Sj , j = 1, . . . , k,

and uj ∈ BUC(R,X) is a solution to (1) with f := fj for j = 1, . . . , k.
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Proof. Denote by N the subspace of BUC(R,X) consisting of all func-
tions u such that σ(u) ⊂ ⋃kj=1 Sj . Then, by assumptions and Theorem 3.1
there are spectral projections P1, . . . , Pk on N such that:

(i) PjPn = 0 if j 6= n,

(ii)
∑k
j=1 Pj = I,

(iii) if u ∈ N , then σ(Pju) ⊂ Sj for all j = 1, . . . , k.

Note that by Lemma 3.2 for every positive h and j = 1, . . . , k the operator
Th leaves ImPj invariant. Hence, N and ImP1, . . . , ImPk are invariant un-
der the semigroup (T h)h≥0. Consequently, since u is a solution to (1) and f
has precompact range, the evolution semigroup (T h)h≥0 is strongly contin-
uous at u and at f . Using the explicit formula for the generator of (T h)h≥0

as described in Lemma 2.4 we have

Pjf = Pj lim
h→0+

Thu− u
h

= Pj lim
h→0+

k∑

n=1

Pn
Thu− u

h
(14)

= lim
h→0+

ThPju− Pju
h

.

This yields that Pju is a solution to (1) with fj = Pjf .

Remark. If in Theorem 3.3 we assume furthermore that f and u are
both almost periodic, then so are the spectral components uj , j = 1, . . . , k.

Now we focus our attention on the autonomous equations of the form

(15) dx/dt = Ax+ f(t),

where A is the generator of a C0-semigroup (T (t))t≥0, and f ∈ BUC(R,X)
has precompact range. We set σi(A) = {λ ∈ R : iλ ∈ σ(A) ∩ iR}. By mild
solutions of (15) we understand (see [Paz]) solutions to (1) with U(t, s) :=
T (t−s) for all t ≥ s. As shown below, in this case we can refine the spectral
decomposition technique to get stronger assertions whose usefulness will be
shown in the next section where we deal with quasi-periodic solutions. To
this end, we now prove the following lemma.

Lemma 3.4. Let (15) satisfy the above conditions, i.e. A generates a
C0-semigroup and f ∈ BUC(R,X) has precompact range. Moreover , let u
be a bounded uniformly continuous mild solution to (15). Then

sp(u) ⊂ σi(A) ∪ sp(f),(16)

sp(u) ⊃ sp(f).(17)

Proof. For (16) we can use the standard way of computing the Carleman
transform of u as done in [A-B, p. 373]. Then there is no difficulty to get
(16) if one uses the definition of the spectrum of a function.
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To prove (17), note that sp(T hu) ⊂ sp(u) by the definition of T h. Thus,
using the argument of the proof of Lemma 3.2(ii) we have

sp(f) = sp(−f) = sp
(

lim
h→0+

Thu− u
h

)
⊂ sp(u).

The main result for the autonomous case is the following theorem.

Theorem 3.5. Let A generate a C0-semigroup and f ∈ BUC(R,X)
have precompact range. Moreover , let u be a bounded uniformly continuous
mild solution to (15).

(i) If eiσi(A) \ σ(f) is closed , (15) has a bounded uniformly continuous
mild solution w such that σ(w) = σ(f).

(ii) If σi(A) is bounded and σi(A) \ sp(f) is closed , then (15) has a
bounded uniformly continuous mild solution w such that sp(w) = sp(f).

Proof. (i) Apply the proof of Theorem 3.3 together with (16).
(ii) Under the assumptions there exists a continuous function ψ which

belongs to the Schwartz space of all C∞-functions on R with all derivatives
decaying faster than any polynomial such that its Fourier transform ψ̃ has
σi(A) \ sp(f) as its support (which is compact in view of the assumptions).
Hence, every bounded uniformly continuous function g such that sp(g) ⊂
σi(A) ∪ sp(f) can be decomposed into the sum of two spectral components
as follows:

g = g1 + g2 = ψ ∗ g + (g − ψ ∗ g),

where g1 = ψ ∗ g and g2 = g−ψ ∗ g. Moreover, this decomposition is contin-
uous in the following sense: If g(n), n = 1, 2, . . . , is a sequence in BUC(R,X)
with sp(g(n)) ⊂ σi(A) ∪ sp(f) such that limn g

(n) = g in BUC(R,X), then
limn g

(n)
1 = g1 and limn g

(n)
2 = g2. Hence we have in fact proved a version

of Theorem 3.1 which allows us to employ the proof of Theorem 3.3 to
show (ii).

Remarks. (i) In view of the failure of the Spectral Mapping Theorem
for general C0-semigroups the condition in (i) is a little more general than
that formulated in terms of σ(T (1)).

(ii) If we know beforehand that u is almost periodic, then in the state-
ment of Theorem 3.5 we can claim that the spectral component w is almost
periodic.

4. Spectral criteria for almost periodic solutions. This section
will be devoted to some applications of the spectral decomposition theorem
to proving the existence of almost periodic solutions with specific spectral
properties. In particular, we will revisit the classical result by Massera on
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the existence of periodic solutions as well as its extensions. To this end, the
following notion will play a key role.

Definition 4.1. Let σ(f) and σΓ (P ) be defined as above. We say that
the sets σ(f) and σΓ (P ) satisfy the spectral separation condition if the set
σΓ (P ) \ σ(f) is closed.

Corollary 4.2. Let f be almost periodic, and suppose σ(f) and σΓ (P )
satisfy the spectral separation condition. Moreover , assume that σ(f) is
countable and X does not contain any subspace isomorphic to c0. If there
exists a bounded uniformly continuous solution u to (1), then there exists an
almost periodic solution w to (1) such that σ(w) = σ(f).

Proof. We define S1 := σ(f) and S2 := σΓ (P ) \ σ(f). Then, by The-
orem 3.3, there exists a solution w to (1) such that σ(w) ⊂ σ(f). Using
(12) we have σ(w) = σ(f). In particular, by Proposition 2.1(vi), w is almost
periodic.

Remarks. (i) If σ(f) is finite, then by Proposition 2.1(vii) the condition
that X does not contain any subspace isomorphic to c0 can be dropped.

(ii) In the case where σΓ (P ) is countable it is known that with additional
ergodic conditions on u the solution u has “similar spectral properties” to f
(see e.g. [L-Z], [Ba], [A-B], [B-H-R], . . .). However, in many cases it is not
expected that the solution u itself has similar spectral properties to f as in
the Massera-type problem (see [Ma], [C-H], [S-N], [N-M-M-S], . . .).

(iii) In the case where P is compact (or merely σΓ (P ) is finite) the
spectral separation condition is always satisfied. Hence, we have a natural
extension of Massera’s result to almost periodic solutions. In this case see
also Corollary 4.3 below.

(iv) We emphasize that the solution w in the statement of Corollary 4.2 is
a “σ(f)-spectral component” of the bounded solution u. This will be helpful
in finding the Fourier coefficients of w as part of those of u.

(v) In view of the inclusion (12), w may be seen as a “minimal” solution
in some sense.

Corollary 4.3. Let all assumptions of Corollary 4.2 be satisfied. More-
over , let σΓ (P ) be countable. If there exists a bounded uniformly continuous
solution u to (1), then it is almost periodic. Moreover , the following part of
the Fourier series of u:

(18)
∑

bλe
iλt, bλ = lim

T→∞
1

2T

T�

−T
e−iλξu(ξ) dξ,

where eiλ ∈ σ(f), is again the Fourier series of another almost periodic
solution to (1).



Spectral criteria for almost periodic solutions 107

Proof. The assertion that u is almost periodic is standard in view of
(11) (see e.g. [L-Z], [A-B], [Ba]). It may be noted that in case u is almost
periodic, the spectral decomposition can be carried out in the function space
AP(X) instead of the larger space BUC(R,X). Hence, we can decompose
the solution u into the sum of two almost periodic solutions with spectral
properties described in Theorem 3.3. Using the definition of Fourier series of
almost periodic functions we arrive at the next assertion of the corollary.

The following corollary will show the advantage of Theorem 3.5 which
allows us to take into account the structure of sp(f) rather than that of
σ(f). To this end, we introduce the following terminology. A set S of reals is
said to have a finite integer basis if there is a finite subset T ⊂ S such that
any element s ∈ S can be represented in the form s = n1b1 + . . . + nmbm,
where nj ∈ Z, and bj ∈ T for j = 1, . . . ,m. If f is quasi-periodic, i.e.,
of the form f(t) = F (t, . . . , t), t ∈ R, where F (t1, . . . , tn) is an X-valued
continuous function of n variables which is periodic in each variable, and
the set of its Fourier–Bohr exponents is discrete (it coincides with sp(f)
in this case), then the spectrum sp(f) has a finite integer basis (see [L-Z,
p. 48]). Conversely, if f is almost periodic and sp(f) has a finite integer
basis, then f is quasi-periodic. We refer the reader to [L-Z, pp. 42–48] for
more information on the relation between quasi-periodicity, spectrum and
Fourier–Bohr exponents of almost periodic functions.

Corollary 4.4. Let all assumptions of the second assertion of Theo-
rem 3.5 be satisfied. Moreover , assume that X does not contain c0. If sp(f)
has a finite integer basis, then (15) has a quasi-periodic mild solution w with
sp(w) = sp(f).

Proof. Under the assumptions of the corollary the spectrum sp(w) of the
solution w, as described in Theorem 3.5, is in particular countable. Hence w
is almost periodic. Since sp(w) = sp(f), sp(w) has an a finite integer basis.
Thus w is quasi-periodic.

Below we consider some particular cases:

Example 1 (Periodic solutions). If σ(f) = {1} we are actually con-
cerned with the existence of periodic solutions. Hence, Corollary 4.2 extends
the classical result by Massera to a large class of evolution equations which
have 1 as an isolated point of σΓ (P ). Moreover, Corollary 4.3 provides a way
to approximate the periodic solution. (See [N-M-M-S] for the case where the
monodromy operator P is compact.)

Example 2 (Anti-periodic solutions). A (continuous) function f is de-
fined to be anti-periodic if f(t + ω) = −f(t) for all t ∈ R and fixed ω > 0.
Thus, f is 2 − ω-periodic. It is known that the space of anti-periodic func-
tions f with antiperiod ω, which is denoted by AP(ω), is a subspace of
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BUC(R,X) with

sp(f) ⊂
{

2k + 1
ω

: k ∈ Z
}
.

Without loss of generality we can assume that ω = 1. Obviously, σ(f) =
{−1} for all f ∈ AP(ω) (for more information on anti-periodic solutions
see [A-P], [Nak], [O], [V-S]). In this case the spectral separation condition
(Definition 4.1) is nothing but the condition that {−1} is an isolated point of
σΓ (P ). Hence, we have extended Massera’s result to anti-periodic solutions.

Example 3. Let u be a bounded uniformly continuous solution to (1)
with f 2-periodic. Define

F (t) =
f(t)− f(t+ 1)

2
, G(t) =

f(t) + f(t+ 1)
2

, ∀t ∈ R.

Then it is seen that F is 1-anti-periodic and G is 1-periodic. Applying The-
orem 3.3 we see that there exist two solutions to (1), namely the two compo-
nents of u which are 1-anti-periodic and 1-periodic with forcing terms F , G,
respectively. In particular, the sum of these solutions is a 2-periodic solution
of (1) with forcing term f .

Example 4. Let A be a sectorial operator in a Banach space X. As
usual, for α ≥ 0 we use the following notations:

Xα := D(Aα1 ), with the graph norm ‖x‖α := ‖Aα1 x‖, x ∈ Xα,

where A1 = A+aI with a chosen so that Reλ > 0 for all λ ∈ σ(A1) and Aα1
is the fractional power of A1 (see e.g. [He, pp. 24–29]). With these notations
(Xα, ‖ · ‖α) is a Banach space. Suppose that t 7→ B(t) ∈ L(Xα,X) is Hölder
continuous and 1-periodic. Then, as shown in [He, Thm. 7.1.3], the equation

dx

dt
= (−A+B(t))x

generates a 1-periodic strongly continuous evolutionary process (U(t, s))t≥s.
If, furthermore, A has compact resolvent, then the monodromy operator P
of the process is compact. Hence, for every almost periodic function f the
sets σ(f) and σΓ (P ) always satisfy the spectral separation condition. In
[N-M] we have shown that if σΓ (P ) ∩ σ(f) = ∅, then there is a unique
almost periodic solution xf to the inhomogeneous equation

(19)
dx

dt
= (−A+B(t))x+ f(t)

with the property that σ(xf ) ⊂ σ(f). Now suppose that σΓ (P ) ∩ σ(f) 6= ∅.
By Corollary 4.2, if u is any bounded solution (the uniform continuity follows
from the boundedness of such a solution to (19)), then there exists an almost
periodic solution w such that σ(w) = σ(f). We refer the reader to [He]
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and [Paz] for examples from parabolic differential equations which can be
included into the abstract equation (19).

Example 5. Consider the heat equation in materials

(20)
{
vt(t, x) = ∆v(t, x) + f(t, x), t ∈ R, x ∈ Ω,
v(t, x) = 0, t ∈ R, x ∈ ∂Ω,

where Ω ⊂ Rn denotes a bounded domain with smooth boundary ∂Ω. Let
X = L2(Ω), A = ∆ with D(A) = W 2,2(Ω)∩W 1,2

0 (Ω). Then A is selfadjoint
and negative definite (see e.g. [Paz]). Hence σ(A) ⊂ (−∞, 0). In particular
σi(A) = ∅. Now (20) becomes

dv

dt
= Av + f.

We assume further that f(t, x) = a(t)g(x) where a is a bounded uniformly
continuous real function with sp(a) = Z ∪ πZ, g ∈ L2(Ω), g 6= 0. It may be
seen that σ(f) = S1 and sp(f) has a finite integer basis. Hence, Theorem 3.3
does not give any information on the existence of a solution w with specific
spectral properties. However, in this case Theorem 3.5 applies.

Acknowledgements. The paper was written while N.V.M. was being
a fellow of the Japan Society for the Promotion of Science. The generous
support of the Society is gratefully acknowledged. The authors wish to thank
the referee for several remarks concerning the presentation of the paper. The
second author (N.V.M.) would like to dedicate this work to Professor Peter
P. Zabreiko on the occasion of his 60th birthday.

References

[A-P] S. Aizicovici and N. Pavel, Anti-periodic solutions to a class of nonlinear
differential equations in Hilbert space, J. Funct. Anal. 99 (1991), 387–408.

[A-B] W. Arendt and C. J. K. Batty, Almost periodic solutions of first and second
order Cauchy problems, J. Differential Equations 137 (1997), 363–383.

[A-S] W. Arendt and S. Schweiker, Discrete spectrum and almost periodicity , Tai-
wanese J. Math. 3 (1999), 475–490.

[A-M] B. Aulbach and Nguyen Van Minh, Nonlinear semigroups and existence,
stability of semilinear nonautonomous evolution equations, Abstract Appl.
Anal. 1 (1996), 351–380.

[Ba] B. Basit, Harmonic analysis and asymptotic behavior of solutions to the
abstract Cauchy problem, Semigroup Forum 54 (1997), 58–74.

[B-H-R] C. J. K. Batty, W. Hutter and F. Räbiger, Almost periodicity of mild solu-
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