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The single-point spectrum operators
satisfying Ritt’s resolvent condition

by

Yu. Lyubich (Haifa)

Abstract. It is shown that an operator with the properties mentioned in the title
does exist in the space Lp(0, 1), 1 ≤ p ≤ ∞. The maximal sector for the extended resolvent
condition can be prescribed a priori jointly with the corresponding order of the exponential
growth of the resolvent in the complementary sector.

Let us recall that Ritt’s condition for the resolvent R(λ;T ) = (T −λI)−1

of a bounded linear operator T in a complex Banach space X is

(1) ‖R(λ;T )‖ ≤ C

|λ− 1| , |λ| > 1,

where C is a constant, C ≥ 1. Condition (1) originated in the context of
ergodic theory a long time ago [10]. It seems that only the short note [11]
was devoted to this topic within the next 40 years. Recently the operators
satisfying (1) attracted a new interest due to O. Nevanlinna who showed in
[8] that any sectorial extension of (1),

(2) ‖R(λ;T )‖ ≤ C(δ)
|λ− 1| , λ ∈ Sδ,

where

Sδ = {λ : λ 6= 1, |arg(λ− 1)| ≤ π − δ}, 0 ≤ δ < π/2,

implies the power boundedness of T .
It was proven in [6] and [7] independently that the original Ritt condition

implies the sectorial extension (2) where, according to [6], δ > arccos q and
C(δ) = (q− cos δ)−1 with q = C−1. In view of this result let us consider the
maximal sector

(3) S(θ1, θ2) = {λ : λ 6= 1, θ1 < arg(λ− 1) < θ2}
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such that

(4) sup |λ− 1| · ‖R(λ;T )‖ <∞, λ ∈ S(θ1 + ε, θ2 − ε)
for all ε, 0 < ε < 1

2θ, θ = θ2 − θ1. In (3) the “arg” means the relevant
continuous branch.

We call the size θ of the maximal sector S(θ1, θ2) the resolvent angle
size of the operator T . Obviously, θ ≥ π by (1) but, eventually, θ > π as
aforesaid.

The resolvent R(λ;T ) under consideration does exist on the open sector
S(θ1, θ2) and outside the open unit disk with adjoint point λ = 1. Accord-
ingly, the spectrum σ(T ) is contained in the intersection of the complemen-
tary closed sector and the open unit disk together with λ = 1. Conversely,
with such a localization of the spectrum, the sectorial version (4) of Ritt’s
condition implies (1). (See [6] for a precise spectral localization provided
by (1).) In particular, the point λ = 1 may belong to σ(T ) (and the oppo-
site case is not interesting). Moreover, it may happen that σ(T ) = {1} or,
equivalently, T = I + V where σ(V ) = {0}, i.e. V is quasinilpotent,

(5) lim
n→∞

n
√
‖V n‖ = 0.

The operator T = I (respectively, V = 0) is the only case such that
|λ− 1| · ‖Rλ(T )‖ is bounded on the whole punctured plane C \ {1}.

It was noted in [9] that it is still unknown whether there exists a quasi-
nilpotent operator V 6= 0 such that T = I + V satisfies (1) (the question of
J. Zemánek [12]). In the present paper we construct a series of such operators
corresponding to a natural scale of convergence rates in (5).

For any quasinilpotent operator V its Fredholm resolvent Φ(ζ;V ) = (I−
ζV )−1 is an entire function,

(6) Φ(ζ;V ) =
∞∑

n=0

ζnV n, ζ ∈ C.

The order of its exponential growth can be called the order of the operator V.
We denote it by ω(V ). By definition, either

(7) ω(V ) = inf{ω : log ‖Φ(ζ;V )‖ = O(|ζ|ω + 1)}
or ω(V ) =∞ if the set in (7) is empty. By the Liouville theorem, ω(V ) ≥ 0.

As in the case of scalar entire functions [5, Section 1.3],

(8) ω(V ) = lim
n→∞

logn

|log n
√
‖V n‖|

(with the agreement 1/0 =∞, 1/∞ = 0).
It is easy to reformulate the sectorial version of Ritt’s condition in terms

of Φ(ζ;V ). Indeed, if T = I + V then (λ − 1)R(λ;T ) = −Φ(ζ;V ), ζ =
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(λ− 1)−1. After the last transformation the sector S(θ1, θ2) turns into

S0(−θ2,−θ1) = {ζ : ζ 6= 0, −θ2 < arg ζ < −θ1},
a sector of the same angle size θ = θ2− θ1. The condition (4) takes the form

(9) sup ‖Φ(ζ;V )‖ <∞, ζ ∈ S0(−θ2 + ε,−θ1 − ε),
for all ε with 0 < ε < 1

2θ. In this context one can forget T and deal only
with V and with θ = θ(V ), the resolvent angle size of the operator V . The
constraint θ(V ) > π can be omitted.

It immediately follows from the Phragmén–Lindelöf principle and Liou-
ville theorem that if ω(V ) is finite and ω(V )(2π − θ(V )) < π then V = 0.
In other words, we have the following

Proposition. If V 6= 0 then

(10) ω(V )(2π − θ(V )) ≥ π.
In particular, the inequality (10) shows that if θ(V ) > π then ω(V ) > 1.

Therefore ω(V ) > 1 under Ritt’s condition for T = I+V , V quasinilpotent,
V 6= 0.

Theorem. Let 0 ≤ γ < 2. In any space X = Lp(0, 1), 1 ≤ p ≤ ∞, there
exists a quasinilpotent operator Vγ such that

(11) ω(Vγ) = 1/γ, θ(Vγ) = π(2− γ).

Thus, we see that the equality in (10) can be realized with any finite
value ω(V ) > 1/2 and also with ω(V ) =∞, θ(V ) = 2π.

As a consequence, in any Lp(0, 1) there exists a bounded linear operator
T 6= I satisfying Ritt’s condition and such that σ(T ) = {1}. A fortiori , such
an operator exists in any infinite-dimensional Hilbert space.

Proof of Theorem. For simplicity we restrict ourselves to the case p = 1.
The case p =∞ is similar (even simpler). For 1 < p <∞, only the standard
Hölder inequality technique should be added to the proof.

Let us consider the Riemann–Liouville integral of any fractional order
α > 0,

(12) (Jαf)(t) =
1

Γ (α)

t�

0

(t− s)α−1f(s) ds.

(Γ is the Euler gamma function.) By the Fubini theorem the integral (12)
is well defined for f ∈ L1(0, 1), belongs to the same space and

(13) ‖Jαf‖ ≤ 1
Γ (α+ 1)

‖f‖,
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so that Jα is a bounded linear operator in L1(0, 1). Combining (13) with
the easily calculated value of ‖Jαf‖ for f(t) ≡ 1 we get

(14)
1

Γ (α+ 2)
≤ ‖Jα‖ ≤ 1

Γ (α+ 1)
.

The family {Jα} is a semigroup,

(15) JαJβ = Jα+β,

which follows from the equality
t�

u

(t− s)α−1(s− u)β−1 ds = (t− u)α+β−1B(α, β),

where B is the beta function,

B(α, β) =
1�

0

vα−1(1− v)β−1 dv =
Γ (α)Γ (β)
Γ (α+ β)

.

For 0 < γ < 2 we set

(16) Vγ = −Jγ .
It follows from (15), (14) and the Stirling formula that

(17) n
√
‖V nγ ‖ = n

√
‖Jγn‖ ∼ (e/γ)γn−γ

asymptotically as n → ∞. Thus, Vγ is quasinilpotent and ω(Vγ) = γ−1

according to (8). It remains to prove the second equality from (11). To
this end we have to consider the Fredholm resolvent Φ(ζ;Vγ). By (6), (16)
and (15),

Φ(ζ;Vγ) =
∞∑

n=0

(−1)nζnJγn = I − ζ
∞∑

n=0

(−ζ)nJγn+γ .

Hence, Φ(ζ;Vγ) is the Volterra integral operator,

(18) (Φ(ζ;Vγ)f)(t) = f(t)− ζ
t�

0

Kγ(t− s; ζ)f(s) ds,

with the difference kernel defined by

(19) Kγ(u; ζ) = uγ−1Eγ,γ(−ζuγ), 0 < u ≤ 1,

where

(20) Eγ,γ(z) =
∞∑

n=0

zn

Γ (γn+ γ)
, z ∈ C.
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The entire function (20) is a member of the two-parameter family

(21) Eα,β(z) =
∞∑

n=0

zn

Γ (αn+ β)
(α, β > 0),

which was introduced and initially investigated by Mittag-Leffler and Wiman
at the very beginning of the 20th century. It is known (see [2, Section 18.1]
or [3, p. 134]) that Eα,β(z) admits the uniform asymptotic expansion

(22) Eα,β(z) ∼ −
∞∑

k=1

1
Γ (β − αk)

· 1
zk

as |z| → ∞ in any sector |arg(−z)| ≤ π(1 − α/2) − ε, ε > 0, 0 < α < 2.
For β = α the first term in (22) vanishes (Γ (0) =∞), so that in the above
mentioned sector

(23) |Eα,α(z)| ≤ aα(ε)
|z|2 + 1

, aα(ε) = const > 0.

It follows from (18), (19) and (23) that

‖Φ(ζ;Vγ)‖ ≤ 1 + aγ(ε)
1�

0

|ζ|uγ−1 du

(|ζ|uγ)2 + 1
(24)

= 1 + aγ(ε)γ−1
|ζ|�

0

dv

v2 + 1
< 1 +

π

2
aγ(ε)γ−1

in the sector |arg ζ| ≤ π(1− γ/2)− ε. Thus, θ(Vγ) ≥ π(2− γ). On the other
hand, θ(Vγ) ≤ π(2− γ) by (10) and the equality ω(Vγ) = γ−1. As a result,
θ(Vγ) = π(2− γ).

Now let us consider the case γ = 0 where the previous construction (16)
disappears. However, we prove that the operator

(25) V0f = −
∞�

0

(Jαf) dα

is such that ω(V0) =∞, θ(V0) = 2π.
First of all, note that the vector-valued function α 7→ Jαf is continuous

since

‖Γ (α)Jαf − Γ (β)Jβf‖ ≤ ‖f‖
1�

0

|uα−1 − uβ−1| du.

For this reason the linear operator V0 is well defined and bounded in L1(0, 1),

(26) ‖V0‖ ≤
∞�

0

dα

Γ (α+ 1)

(see (13)).
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It is easy to check by induction on n ∈ N that

V n0 f =
(−1)n

(n− 1)!

∞�

0

αn−1(Jαf) dα.

Hence,

1
(n− 1)!

∞�

0

αn−1 dα

Γ (α+ 2)
≤ ‖V n0 ‖ ≤

1
(n− 1)!

∞�

0

αn−1 dα

Γ (α+ 1)
,

similarly to (14). By the Stirling formula

(27) cn

(∞�

1

ehn(α) dα

α5/2

)1/n

≤ n

e
n
√
‖V n0 ‖ ≤ Cn

(∞�

1

ehn(α) dα

α3/2

)1/n

where hn(α) = (n− α) logα+ α, and both cn and Cn tend to 1 as n→∞.
The unique root αn of the equation α logα = n brings hn(α) to the

absolute maximum which is

Mn = hn(αn) = [α(log2 α− logα+ 1)]α=αn .

The upper bound (27) yields
n

e
n
√
‖V n0 ‖ ≤ C ′neMn/n

where C ′n = Cn
n
√

2→ 1 while

Mn

n
=

Mn

αn logαn
= logαn − 1 + (logαn)−1 = log

(
n

e logn

)
+ o(1)

since αn ∼ n/logn, n→∞. Thus,

(28) n
√
‖V n0 ‖ ≤

C ′′n
logn

where C ′′n → 1.
In the lower bound (27) one can restrict the interval of integration to

[αn, αn + 1]. Since hn(αn + 1) = Mn + o(n), we get

(29) n
√
‖V n0 ‖ ≥

c′n
logn

where c′n → 1. The bounds (28) and (29) result in

(30) n
√
‖V n0 ‖ ∼

1
logn

.

Hence, ω(V0) =∞ by (8). It remains to prove that θ(V0) = 2π.
The Fredholm resolvent of V0 is the Volterra integral operator

(31) (Φ(ζ;V0)f)(t) = f(t)− ζ
t�

0

Q(t− s; ζ)f(s) ds
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where

(32) Q(u; ζ) =
∞�

0

uα−1e−ζα dα
Γ (α)

, 0 < u ≤ 1, ζ ∈ C.

By (31) it is sufficient to show that

(33) sup
ζ
|ζ|

1�

0

|Q(u, ζ)| du <∞

in any sector |arg ζ| ≤ π−ε, 0 < ε < π. For definiteness, let 0 ≤ arg ζ ≤ π−ε.
Consider the ray R(ϕ) = {α ∈ C : argα = ϕ} with ϕ = 1

2 (π − ε)− arg ζ, so
that |ϕ| ≤ 1

2 (π − ε).
The path of integration in (32) can be changed to R(ϕ) because of the

rapid growth of the gamma function in the complex plane but outside of any
sectorial neighborhood of the negative axis. (Actually, the Stirling formula
remains in force in such a domain, see [1, Section 1.18]). Thus,

Q(u; ζ) =
�

R(ϕ)

uα−1e−ζα dα
Γ (α)

with α = %eiϕ, % ≥ 0. Note that

Re(ζα) = %|ζ| cos(ϕ+ arg ζ) = %|ζ| sin(ε/2).

Hence,
1�

0

|Q(u; ζ)| du ≤
∞�

0

u% cosϕ−1e−%|ζ| sin(ε/2) d%

|Γ (%eiϕ)| .

Since cosϕ ≥ sin(ε/2), we get

(34) |ζ|
1�

0

|Q(u; ζ)| du ≤ |ζ|
∞�

0

e−%|ζ| sin(ε/2) d%

% sin(ε/2)|Γ (%eiϕ)| .

By substitution %|ζ| sin(ε/2) = τ the inequality (34) takes the form

(35) |ζ|
1�

0

|Q(u; ζ)| du ≤ 1
sin2(ε/2)

∞�

0

e−τ dτ
|Γ (ξτ + 1)|

where ξ = eiϕ(|ζ| sin(ε/2))−1. Now (33) follows from (35) since Re ξ ≥
|ζ|−1 > 0 and the function 1/Γ (z) is bounded in the half-plane Re z > 1.

Remark 1. The same operators Vγ , 0 ≤ γ < 2, serve for all Lp(0, 1),
1 ≤ p ≤ ∞. By the way, all of them are compact. The resulting estimates
in (17), (24), (30) and (33) remain in force for all of p.

Remark 2. Part of information we have used can also be found in [4,
Section 23.16]. In [3] a well developed theory of Mittag-Leffler type functions
and their applications is presented.



142 Yu. Lyubich

References
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