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General Haar systems and greedy approximation

by

Anna Kamont (Sopot)

Abstract. We show that each general Haar system is permutatively equivalent in
Lp([0, 1]), 1 < p < ∞, to a subsequence of the classical (i.e. dyadic) Haar system. As
a consequence, each general Haar system is a greedy basis in Lp([0, 1]), 1 < p < ∞. In
addition, we give an example of a general Haar system whose tensor products are greedy
bases in each Lp([0, 1]d), 1 < p < ∞, d ∈ N. This is in contrast to [11], where it has
been shown that the tensor products of the dyadic Haar system are not greedy bases in
Lp([0, 1]d) for 1 < p < ∞, p 6= 2 and d ≥ 2. We also note that the above-mentioned
general Haar system is not permutatively equivalent to the whole dyadic Haar system in
any Lp([0, 1]), 1 < p <∞, p 6= 2.

1. Introduction. By a general Haar system corresponding to a dense
sequence T = {tn : n ≥ 0} ⊂ [0, 1], we mean a sequence of orthonor-
mal (in L2([0, 1])) functions which are constant on intervals generated by
the points of the sequence T—it is constructed analogously to the classical
dyadic Haar system, but with the sequence T used instead of the sequence
of dyadic points. (For a more detailed description of general Haar functions,
see Section 2.2.)

It has been shown by L. E. Dor and E. Odell [3] (cf. also the monograph
[9]) that there are pairs of general Haar systems which are not equivalent in
any Lp([0, 1]), 1 < p <∞, p 6= 2. They have also asked whether there exist
general Haar systems which are not permutatively equivalent in these spaces.
(Recall that two basic sequences in a Banach space are called permutatively
equivalent if one of them is equivalent to some permutation of the other.) In
the present paper, we prove that each general Haar system is permutatively
equivalent in Lp([0, 1]), 1 < p <∞, to some subsequence of the dyadic Haar
system (Theorem 3.2). We also give an example of a general Haar system
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which is not permutatively equivalent to the whole dyadic Haar system
(Theorem 4.6).

The second topic of the paper concerns general Haar systems and their
tensor products as greedy bases in Lp([0, 1]d), 1 < p < ∞, d ∈ N. Let us
recall the concepts of greedy approximation and greedy basis (cf. e.g. [7]).

Let (X, ‖ · ‖) be a real Banach space with a normalized basis X =
{xn : n ∈ N} (i.e. ‖xn‖ = 1). For x ∈ X with x =

∑∞
n=1 anxn and m ∈ N,

consider a subset G(m,x) ⊂ N of cardinality m such that

min
n∈G(m,x)

|an| ≥ max
n∈N\G(m,x)

|an|.

(There is some ambiguity in the choice of the set G(m,x), but our con-
siderations do not depend on the particular choice.) Then the mth greedy
approximation of x with respect to the basis X is defined as

Gm(x,X ) =
∑

n∈G(m,x)

anxn.

In addition, consider the mth best approximation of x with respect to X :

σm(x,X ) = inf
G⊂N,#G=m

inf
cn∈R

∥∥∥x−
∑

n∈G
cnxn

∥∥∥.

Clearly, σm(x,X ) ≤ ‖x − Gm(x,X )‖. Now, the basis X is called greedy if
there is a constant C > 0, independent of m, such that for each m ∈ N and
x ∈ X,

(1.1) ‖x− Gm(x,X )‖ ≤ Cσm(x,X ).

It has been shown by V. N. Temlyakov [10] that the dyadic Haar system
(normalized in Lp([0, 1])), or any basis equivalent to it in Lp([0, 1]), is a
greedy basis in Lp([0, 1]), 1 < p <∞. S. V. Konyagin and V. N. Temlyakov
[7] have given a characterization of greedy bases in Banach spaces, recalled
in Section 2.1 below (see also P. Wojtaszczyk [13] for more general results in
this direction). As a consequence of the results of [10], [7] and our Theorem
3.2, we deduce that each general Haar system (normalized in Lp([0, 1])) is a
greedy basis in Lp([0, 1]), 1 < p <∞ (Corollary 4.1).

In the d-variate case, one can consider either a “localized” dyadic Haar
system (obtained by dyadic scaling and translations of some 2d − 1 d-
variate step functions given on [0, 1]d), or the tensor products of the uni-
variate dyadic Haar system. The “localized” d-variate Haar system is also
a greedy basis in Lp([0, 1]d), 1 < p < ∞, d ≥ 2 (cf. V. N. Temlyakov
[10]). However, concerning the tensor product case, the example presented
by V. N. Temlyakov [11] shows that for p 6= 2 the bases consisting of the
tensor products of the dyadic Haar system are not greedy in Lp([0, 1]d) in
any dimension d ≥ 2. In contrast to this result, in Section 4.3 we give an
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example of a sequence of points such that the tensor products of the corre-
sponding general Haar system are greedy in Lp([0, 1]d) for each d ∈ N and
1 < p <∞.

To simplify the notation, by C,Cp etc. we denote constants whose value
may be different at each occurrence; a ∼ b means that there are constants
c1, c2 > 0 such that c1a ≤ b ≤ c2a. For a set A, #A is the cardinality of A,
|A| the Lebesgue measure of A, and χA the characteristic function of A.

2. Preliminaries

2.1. Characterization of greedy bases in Banach spaces. In what follows,
we need the characterization of greedy bases given in [7].

Following [7], we call a normalized basis X of a Banach space (X, ‖ · ‖)
democratic if there is a constant C > 0 such that for each m ∈ N and
P,Q ⊂ N with #P = m = #Q,

(2.1)
1
C

∥∥∥
∑

n∈P
xn

∥∥∥ ≤
∥∥∥
∑

n∈Q
xn

∥∥∥ ≤ C
∥∥∥
∑

n∈P
xn

∥∥∥.

For completeness, let us also recall the definition of unconditional basis:
a basis X of a Banach space (X, ‖ · ‖) is called unconditional if there is a
constant C > 0 such that for each x ∈ X with x =

∑∞
n=1 anxn and for each

sequence ε = {εn : n ∈ N} with εn ∈ {−1, 1},

(2.2)
∥∥∥
∞∑

n=1

εnanxn

∥∥∥ ≤ C
∥∥∥
∞∑

n=1

anxn

∥∥∥.

Now, the characterization of greedy bases from [7] is as follows:
A normalized basis X of a Banach space (X, ‖ · ‖) is greedy if and only

if it is democratic and unconditional.
Moreover, if a basis X is unconditional and democratic, then the constant

in (1.1) depends only on the constants in (2.1) and (2.2).

2.2. Definition and basic properties of general Haar systems. In the
following, we consider subintervals I ⊂ [0, 1] of the type I = [a, b) with
0 ≤ a < b < 1 or I = [a, 1].

Let I ⊂ [0, 1] be an interval and let I ′, I ′′ be subintervals of I such that

(2.3) I = I ′ ∪ I ′′ and I ′ ∩ I ′′ = ∅.
Without loss of generality we may assume that

(2.4) δI = |I ′| ≤ |I ′′| = ∆I .

Let hI : [0, 1]→ R be the unique function such that supphI = I,
� 1
0 hI = 0,

� 1
0 h

2
I = 1, hI is constant on I ′, I ′′ and hI > 0 on I ′. Then
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(2.5)

hI = αIχI′ − βIχI′′ , where

αI =

√
∆I

δI
· 1√

δI +∆I

, βI =

√
δI
∆I
· 1√

δI +∆I

.

We call hI the Haar function corresponding to I = I ′∪I ′′; clearly, hI depends
on the decomposition I = I ′ ∪ I ′′, but for simplicity it is suppressed in the
notation.

Observe that

‖hI‖∞ = αI , so 2−1/2δ
−1/2
I ≤ ‖hI‖∞ ≤ δ−1/2

I ,

and for 0 < p <∞,

(2.6) ‖hI‖p =

√
δI∆I√
δI +∆I

(
δ1−p
I +∆1−p

I

)1/p
.

This implies that

(2.7) 2−1/2δ
1/p−1/2
I ≤ ‖hI‖p ≤ 2δ1/p−1/2

I for 1 ≤ p ≤ ∞.
We will also need general Haar functions normalized in Lp([0, 1]):

(2.8) hI,p =
hI
‖hI‖p

= αI,pχI′ − βI,pχI′′ , 1 ≤ p ≤ ∞.

Now, let T = {tn : n ≥ 0} be a sequence of distinct points from [0, 1],
dense in [0, 1], with t0 = 0, t1 = 1. For n ≥ 1, let Tn = {t0, . . . , tn} =
{0 = s

(n)
0 < s

(n)
1 < . . . < s

(n)
n = 1}. For n ≥ 2, let In be the interval

[s(n−1)
i−1 , s

n−1)
i ), 1 ≤ i ≤ n− 1, such that tn ∈ In (clearly, In is unique). Let

I ′n, I
′′
n be intervals obtained by dividing In by the point tn. The Haar system

corresponding to T is defined as follows:

(2.9) h1 = 1, hn = hIn with the partition In = I ′n ∪ I ′′n for n ≥ 2.

The Haar system corresponding to T is denoted by HT . For convenience,
below we write δn = δIn ,∆n = ∆In etc.

The classical Haar system (i.e. corresponding to the sequence of dyadic
points D = {0, 1, 1

2 ,
1
4 ,

3
4 ,

1
8 ,

3
8 ,

5
8 , . . .}) is denoted by Hn, n ≥ 1.

For each T (dense in [0, 1]), the corresponding Haar systemHT is a com-
plete orthonormal system in L2([0, 1]), and it is a monotone basis (i.e. with
basis constant 1) in each Lp([0, 1]), 1 ≤ p < ∞. Since HT = {hn : n ≥ 1}
is a sequence of martingale differences (with the Lebesgue measure on [0, 1]
as probability measure, and the sequence of σ-fields generated by HT ), it
follows from D. L. Burkholder’s results on unconditionality of martingale
differences (cf. [1], [2]) that every general Haar system is an unconditional
basis in Lp([0, 1]), 1 < p <∞, and

(2.10)
∥∥∥
∞∑

n=1

εnanhn

∥∥∥
p
≤ (p∗ − 1)

∥∥∥
∞∑

n=1

anhn

∥∥∥
p
,
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where p∗ = max(p, p/(p− 1)), εn = ±1 and {an : n ≥ 1} are any real
coefficients. This fact and Khinchin’s inequality imply that for each p with
1 < p < ∞, there are finite constants Cp, cp > 0 such that for each T and
real coefficients {an : n ≥ 1},

(2.11) cp

∥∥∥
( ∞∑

n=1

a2
nh

2
n

)1/2∥∥∥
p
≤
∥∥∥
∞∑

n=1

anhn

∥∥∥
p
≤ Cp

∥∥∥
( ∞∑

n=1

a2
nh

2
n

)1/2∥∥∥
p
.

We will need the maximal inequality of C. Fefferman and E. Stein (cf.
e.g. Theorem 1 in Chapter II of [12]). Let Mf denote the Hardy–Littlewood
maximal function of f . Then for each p with 1 < p <∞, there is a constant
Cp such that for any sequence gn ∈ Lp([0, 1]),

(2.12)
∥∥∥
( ∞∑

n=1

(Mgn)2
)1/2∥∥∥

p
≤ Cp

∥∥∥
( ∞∑

n=1

g2
n

)1/2∥∥∥
p
.

Now, we state some properties of general Haar functions which are
needed later on.

Proposition 2.1. Let I ⊂ [0, 1] be an interval , and I ′, I ′′ subintervals
of I satisfying (2.3), (2.4). Let αI , βI be as in (2.5). Then
(2.13) βIχI′′ ≤ 2αI ·MχI′ .

Proof. Let x ∈ I ′′. Then

MχI′(x) ≥ 1
|I|

�

I

χI′(u) du =
δI

δI +∆I
,

so by the definition of αI , βI (cf. (2.5)),

2αI ·MχI′(x) ≥ 2∆I

δI +∆I

√
δI
∆I
· 1√

δI +∆I

≥ βI ,

which implies (2.13).

As h2
I = α2

IχI′ + β2
IχI′′ (cf. (2.5)), Proposition 2.1 combined with (2.12)

implies

Proposition 2.2. Let 1 < p < ∞. There exists a constant cp > 0
such that for each sequence T of points, the corresponding Haar system
HT = {hn : n ≥ 1} and real coefficients {an : n ≥ 1},

(2.14) cp

∥∥∥
( ∞∑

n=1

a2
nh

2
n

)1/2∥∥∥
p
≤
∥∥∥
( ∞∑

n=1

a2
nα

2
nχI′n

)1/2∥∥∥
p
≤
∥∥∥
( ∞∑

n=1

a2
nh

2
n

)1/2∥∥∥
p
.

3. General Haar systems and subsequences of the dyadic Haar
system. Let I ⊂ [0, 1] be an interval, I = I ′ ∪ I ′′, with subintervals I ′, I ′′

as in (2.3), (2.4), and let hI be as in (2.5). We associate with hI some
function Hπ(I) from the dyadic Haar system. Hπ(I) depends only on hI , or
more precisely, on the partition I = I ′ ∪ I ′′ as in (2.3), (2.4). Thus, for each
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general Haar system HT , we obtain a subsequence (and a permutation)
of the dyadic Haar system. We are going to show the equivalence of HT
and this permutation of the subsequence of the dyadic Haar system in each
Lp([0, 1]), 1 < p <∞.

Let νI ≥ 1 be the integer such that 1/2νI+1 < |I ′| ≤ 1/2νI . Then, for
some integer ηI with 1 ≤ ηI ≤ 2νI+2, we have [(ηI − 1)/2νI+2, ηI/2νI+2)⊂I ′
(in case there are two such η’s, we take the smaller one). Now, we associate
with hI the dyadic Haar function with support [(ηI − 1)/2νI+2, ηI/2νI+2],
i.e. we take π(I) ∈ N such that suppHπ(I) = [(ηI − 1)/2νI+2, ηI/2νI+2].

Note that
1
4
δI ≤ |suppHπ(I)| <

1
2
δI , suppHπ(I) ⊂ I ′,(3.1)

21/2δ
−1/2
I < |Hπ(I)| ≤ 2δ−1/2

I on suppHπ(I),(3.2)

which implies

(3.3) |Hπ(I)| ≤ 23/2αIχI′ , αIχI′ ≤ 23/2 ·MHπ(I).

Moreover, it follows from (3.1)–(3.2) and (2.7) that

(3.4)
1
4
‖hI‖p ≤ ‖Hπ(I)‖p ≤ 23/2‖hI‖p for 1 ≤ p ≤ ∞.

Now, for a given sequence T dense in [0, 1], with the corresponding Haar
system HT = {hn : n ≥ 1}, consider τ : N→ N given by

(3.5) τ(1) = 1, τ(n) = π(In) for n ≥ 2.

It follows from (3.3) and (2.12) that for each p with 1 < p < ∞ there is
a constant Cp > 0 (depending only on p) such that for each T and real
coefficients {an : n ≥ 1},

2−3/2
∥∥∥
( ∞∑

n=1

a2
nH

2
τ(n)

)1/2∥∥∥
p

≤
∥∥∥
( ∞∑

n=1

a2
nα

2
nχI′n

)1/2∥∥∥
p
≤ Cp

∥∥∥
( ∞∑

n=1

a2
nH

2
τ(n)

)1/2∥∥∥
p
.

This inequality and Proposition 2.2 imply that there are Cp, cp > 0 (de-
pending only on p, 1 < p < ∞) such that for each T and real coefficients
{an : n ≥ 1},

(3.6) cp

∥∥∥
( ∞∑

n=1

a2
nH

2
τ(n)

)1/2∥∥∥
p

≤
∥∥∥
( ∞∑

n=1

a2
nh

2
n

)1/2∥∥∥
p
≤ Cp

∥∥∥
( ∞∑

n=1

a2
nH

2
τ(n)

)1/2∥∥∥
p
.

Moreover, the following lemma shows that τ is an injection:
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Lemma 3.1. Let T = {tn : n ≥ 0} be a dense sequence of points in [0, 1].
Then for k,m ≥ 2 with k 6= m we have τ(k) 6= τ(m).

Proof. Note that for k 6= m either I ′k ∩ I ′m = ∅, or I ′k ⊂ I ′m, or I ′m ⊂ I ′k.
If I ′k∩I ′m = ∅, then by (3.1) the supports of Hτ(k) and Hτ(m) are disjoint,

so τ(k) 6= τ(m).
If I ′k ⊂ I ′m and I ′k 6= I ′m, then we have Ik ⊂ I ′m, so δk = |I ′k| ≤ 1

2 |Ik| ≤
1
2 |I ′m| = δm/2. By (3.1),

|suppHτ(k)| <
δk
2
≤ δm

4
≤ |suppHτ(m)|,

which implies τ(k) 6= τ(m). Clearly, the case I ′m ⊂ I ′k is symmetric.

As τ is an injection, {Hτ(n) : n ≥ 1} is a permutation of some subse-
quence of the dyadic Haar system {Hn : n ≥ 1}. This fact in combination
with (3.6) and (2.11) gives

Theorem 3.2. Let T be a dense sequence of points in [0, 1], with the cor-
responding general Haar system HT = {hn : n ≥ 1}. Then {Hτ(n) : n ≥ 1}
is a permutation of a subsequence of the dyadic Haar system, equivalent
to HT in Lp([0, 1]) for each p, 1 < p < ∞. Moreover , for each p with
1 < p < ∞, there are constants Cp, cp > 0 such that for all T and for all
coefficient sequences {an : n ≥ 1} we have

cp

∥∥∥
∞∑

n=1

anHτ(n)

∥∥∥
p
≤
∥∥∥
∞∑

n=1

anhn

∥∥∥
p
≤ Cp

∥∥∥
∞∑

n=1

anHτ(n)

∥∥∥
p
.

4. General Haar systems and greedy approximation in Lp([0, 1]d),
1 < p <∞, d ∈ N

4.1. The case of d = 1. The fact that the dyadic Haar system normalized
in Lp([0, 1]), and any basis equivalent to it, is a greedy basis in Lp([0, 1])
for 1 < p < ∞ has been proved by V. N. Temlyakov [10] (see also [13] for
a simplified proof); moreover, it has been shown that there are constants
Cp, cp > 0 (depending only on p) such that for any m ∈ N and sequence
n1 < . . . < nm,

(4.1) cpm
1/p ≤ ‖Hn1,p + . . .+Hnm,p‖p ≤ Cpm1/p.

This inequality, (2.11), (3.4) and Theorem 3.2 imply that for each p with
1 < p < ∞, there are constants Cp, cp > 0 such that for each sequence
T with the corresponding general Haar system (normalized in Lp([0, 1]))
HT ,p = {hn,p : n ≥ 1}, and for any m ∈ N and sequence n1 < . . . < nm,

(4.2) cpm
1/p ≤ ‖hn1,p + . . .+ hnm,p‖p ≤ Cpm1/p.

This means that HT ,p is democratic in Lp([0, 1]); recall that it is also un-
conditional (cf. (2.10)). Combining this with the characterization of greedy
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bases proved in [7], i.e. that a normalized basis in a Banach space is greedy
if and only if it is unconditional and democratic (cf. Section 2.1), we get

Corollary 4.1. Let T be a dense sequence of points in [0, 1], and let
HT = {hn : n ≥ 1} be the corresponding general Haar system. Then for
each p with 1 < p < ∞, HT , p = {hn,p : n ≥ 1} is a greedy basis in
Lp([0, 1]). In addition, for each p, there is a constant Cp such that for each
T , f ∈ Lp([0, 1]) and m ∈ N,

‖f − Gm(f,HT , p)‖p ≤ Cpσm(f,HT , p).
4.2. Comments

Remark 1. In this paper, we discuss only general Haar systems based
on intervals and partitions of intervals into intervals, but one can replace in
(2.3) and (2.5) intervals I, I ′, I ′′ by arbitrary measurable sets A,A′, A′′ with
positive Lebesgue measure, and consider general Haar systems correspond-
ing to sequences A = {An : n ∈ N} of sets. More precisely, let (Ω,F , P ) be a
non-atomic probability space, and let (Fn, n ∈ N) be an increasing sequence
of σ-fields, Fn ⊂ F , such that Fn is generated by a set An of atoms with
#An = n and An+1 is obtained by splitting one of elements of An into
two disjoint subsets, and limn→∞maxA∈An P (A) = 0. Then A =

⋃
n∈NAn,

and the function hA,n is defined by a formula analogous to (2.5), but with
A = A′ ∪ A′′ such that A ∈ An and A′, A′′ ∈ An+1, A′ ∩ A′′ = ∅. However,
one then constructs a sequence IA = {In : n ∈ N} of intervals and a mea-
sure preserving mapping % : Ω → [0, 1] such that %(An) = In, P (An) = |In|,
An1 = A′n iff In1 = I ′n and An2 = A′′n iff In2 = I ′′n . Note that for 1 ≤ p ≤ ∞,

∥∥∥
∞∑

n=1

anhIA,n
∥∥∥
p

=
∥∥∥
∞∑

n=1

anhA,n
∥∥∥
p
.

Thus, Theorem 3.2 is also valid for Haar systems corresponding to A, with
the subsequence and its permutation τ being the same as for IA. Moreover,
it follows that {hA,n,p : n ∈ N} is a greedy basis in its span in Lp(Ω,P ),
1 < p <∞.

Remark 2. L. E. Dor and E. Odell [3] have obtained a characterization
of monotone bases in Lp([0, 1]), 1 < p <∞, p 6= 2, in terms of general Haar
systems (see also Theorem 10.b.4 in [9]). More precisely, for each normalized
monotone basis {xn : n ∈ N} of Lp([0, 1]), they have constructed disjoint
intervals Si, i ∈ P , where P = N or #P < ∞ and [0, 1] =

⋃
i∈P Si, and

general Haar systems HTi,p on Si such that there is a one-to-one mapping
T : {xn : n ∈ N} → ⋃

i∈P HTi,p which extends linearly to an isometry
T : Lp([0, 1]) → Lp([0, 1]). This characterization allows us to extend Theo-
rem 3.2 to monotone bases—it is enough to assign to |Si|−1/pχSi the dyadic
Haar function (normalized in Lp([0, 1])) with support being a dyadic interval
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of maximal length contained in Si, and to the rest of elements of
⋃
i∈P HTi,p

assign dyadic Haar functions according to the procedure π described in Sec-
tion 3. Clearly, this also implies that each normalized monotone basis in
Lp([0, 1]) is greedy.

Remark 3. V. N. Temlyakov [10] has proved that the dyadic Haar basis
and each basis equivalent to the dyadic Haar basis are greedy in Lp([0, 1]).
P. Wojtaszczyk [13] gives an example of a greedy basis in Lp([0, 1]), 2 < p
<∞, which is not equivalent to the dyadic Haar basis; his example uses the
isomorphism of Lp([0, 1]) and X ⊕ Lp([0, 1]), where 2 < p < ∞ and X is
the Rosenthal space. As there exist non-equivalent general Haar systems, in
fact, there is an uncountable family of general Haar systems such that any
two of them are not equivalent in Lp([0, 1]), p 6= 2 (cf. [3] or Theorem 10.b.10
of [9]), we get other examples of greedy bases in Lp([0, 1]) not equivalent
to the dyadic Haar basis. We do not present in detail the examples from
[3], as below we give an example of a general Haar system which is not
permutatively equivalent to the dyadic Haar basis in any Lp([0, 1]), 1 <
p < ∞, p 6= 2 (Theorem 4.6). (Recall that the question on the existence of
general Haar systems which are not permutatively equivalent was asked e.g.
in [3].)

Remark 4. Recall that the unconditionality of general Haar systems in
Lp([0, 1]), 1 < p < ∞, is a consequence of the results by D. L. Burkholder
on unconditionality of martingale differences in appropriate spaces ([1], [2]).
Note that though any sequence of martingale differences is unconditional in
an appropriate space Lp(Ω,P ), 1 < p <∞, it need not be democratic (and
greedy). This can be seen by the following example: take the dyadic Haar
systemHD = {Hn : n ≥ 1}. The sequenceM of martingale differences is ob-
tained fromHD by replacing blocks of Haar functionsH22j+k, k = 1, . . . , 22j ,

j ≥ 1, by the corresponding Rademacher function R2j = 2−j
∑22j

k=1 H22j+k;
the Haar functions Hn with n 6= 22j +k, 1 ≤ k ≤ 22j , belong toM, and the
order of functions is induced by the order in HD. Note thatM is a sequence
of martingale differences (with respect to the sequence of generated σ-fields).
Now, taking 1 < p <∞, p 6= 2, and m normalized elements ofM of the form
Hni,p we have ‖∑m

i=1 Hni,p‖p ∼ m1/p (cf. (4.1)), while for m elements of
M of the form R2ji (note that ‖R2j‖p = 1) we have ‖∑m

i=1 R2ji‖p ∼ m1/2,
so the sequence M of martingale differences is not democratic in Lp([0, 1])
with p 6= 2.

Remark 5. In [6], general Franklin systems (i.e. orthonormal systems
of piecewise linear functions corresponding to quasi-dyadic partitions) have
been discussed. In particular, it has been proved that if the correspond-
ing sequence of partitions is weakly regular (for the definition we refer to
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[6]), then the corresponding Franklin system {fn : n ≥ 0} is an uncondi-
tional basis in Lp([0, 1]), 1 < p < ∞, and the basic sequence {fn : n ≥ 1}
is equivalent in Lp([0, 1]), 1 < p < ∞, to the corresponding Haar system
(cf. Theorem 3.1 and Proposition 6.1 of [6]). These results, together with
Corollary 4.1 and the characterization of greedy bases recalled in Section
2.1, imply that general Franklin systems (properly normalized) correspond-
ing to weakly regular sequences of partitions are greedy bases in Lp([0, 1]),
1 < p <∞.

4.3. Tensor products of general Haar systems in Lp([0, 1]d), d ≥ 2. Let
us now discuss bases in Lp([0, 1]d), d > 1, consisting of tensor products
of general Haar systems. Let T1, . . . , Td be dense sequences of points in
[0, 1]. Consider H(T1,...,Td) = {hn : n ∈ Nd}, where for n = (n1, . . . , nd),
hn = h1,n1⊗. . .⊗hd,nd with hi,n ∈ HTi . Note that for each p with 1 < p <∞,
H(T1,...,Td) is an unconditional basis in Lp([0, 1]d). (This follows e.g. from
unconditionality of univariate general Haar systems by the method used in
[8] in the proof of the multivariate version of the Paley–Littlewood theorem,
cf. Chapter 1.5.2 of [8].)

V. N. Temlyakov [11] has shown that for p 6= 2,H(D,...,D),p, i.e. the tensor
product of the dyadic Haar basis, normalized in Lp([0, 1]d), is not a greedy
basis in Lp([0, 1]d). P. Wojtaszczyk [13] has proved that for f ∈ Lp([0, 1]d),

(4.3) ‖f − Gm(f,H(D,...,D),p)‖p
≤ Cp,d(logm)(d−1)|1/p−1/2|σm(f,H(D,...,D),p),

with the constant Cp,d depending only on p, d; this was conjectured by
V. N. Temlyakov [11]. It is also known that the factor (logm)(d−1)|1/p−1/2|

is optimal (cf. [11], [13]).
Inequality (4.3) and Theorem 3.2 imply that for each d ∈ N and p with

1 < p < ∞, there is a constant Cp,d such that for all sequences T1, . . . , Td
and f ∈ Lp([0, 1]d),

(4.4) ‖f − Gm(f,H(T1,...,Td),p)‖p
≤ Cp,d(logm)(d−1)|1/p−1/2|σm(f,H(T1,...,Td),p).

Clearly, the factor (logm)(d−1)|1/p−1/2| is optimal for the class of all tensor
products of general Haar systems, but it may not be optimal for a particular
choice of T1, . . . , Td. Indeed, now we show examples of sequences such that
the tensor products of the corresponding Haar systems are greedy bases in
all Lp([0, 1]d) with 1 < p <∞ and d ≥ 2.

Let S = {sν : ν ∈ N} be a strictly increasing sequence of natural num-
bers; later on, we consider sequences Sλ = {sλ,ν : ν ∈ N} such that sλ,ν ∼ λν
with fixed λ > 1 (cf. (4.7) below). To construct the required Haar systems
we use points from uniform partitions of [0, 1] with steps 1/2sν , ν ∈ N. Let
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VS,0 = {0, 1}, US,0 = {0, 1},
VS,ν = {k/2sν : k = 0, . . . , 2sν}, US,ν = VS,ν \ VS,ν−1 for ν ≥ 1.

Clearly, US,ν1 ∩ US,ν2 = ∅ for ν1 6= ν2. The sequence US = {un : n ≥ 0} is
now defined as the points of the set

⋃∞
ν=0 US,ν , with the following natural

order: for each pair ν1 < ν2, the points from US,ν1 precede those from US,ν2 ,
and for each ν, the points in US,ν are in increasing order.

Let Jn be the interval corresponding to un in US . By the construction
of US we have

(4.5) δn = |J ′n| = 2−sν for un ∈ US,ν with ν ≥ 1.

Moreover,

(4.6) J ′n ∩ J ′l = ∅ for n, l such that un, ul ∈ US,ν .
We consider the following sequences S:

(4.7) Sλ = {sλ,ν := [λν+µλ ] : ν ∈ N}, with fixed λ > 1,

where [x] denotes the integer part of x, and µλ = 0 if λ ≥ 2, while µλ =
[− log(λ− 1)/ log(λ)] + 1 in case 1 < λ < 2; this choice of µλ guarantees
that sλ,ν+1 > sλ,ν .

We are going to show that for each λ > 1, 1 < p < ∞ and d ≥ 2, the
product Haar systemH(USλ ,...,USλ ),p is a greedy basis in Lp([0, 1]d). We start
with the following facts:

Fact 4.2. Let λ > 1 and d ∈ N. For m ∈ N, let

Zλ(d,m) = {(ν1, . . . , νd) ∈ Nd : m = sλ,ν1 + . . .+ sλ,νd , ν1 ≤ . . . ≤ νd}.
Then there is a constant Cλ,d > 0 (depending only on λ and d) such that

#Zλ(d,m) ≤ Cλ,d for all m ∈ N.
Proof. This is checked by induction on d. It is clear that it holds for

d = 1 with Cλ,1 = 1. Now, let d > 1 and suppose that m ∈ N admits a
representation m = sλ,ν1 + . . . + sλ,νd with ν1 ≤ . . . ≤ νd. If m = sλ,l1 +
. . .+ sλ,ld with l1 ≤ . . . ≤ ld is another such representation, then

λνd+µλ ≤ [λνd+µλ ] + 1 ≤ d[λld+µλ ] + 1 ≤ (2d+ 1)λld+µλ ,

and analogously λld+µλ ≤ (2d+ 1)λνd+µλ , which implies

|νd − ld| ≤Mλ,d, where Mλ,d =
[

log(2d+ 1)
log(λ)

]
,

and consequently, by the induction hypothesis,

#Zλ(d,m) ≤
∑

ld:|νd−ld|≤Mλ,d

Zλ(d− 1,m− sλ,ld) ≤ (2Mλ,d + 1)Cλ,d−1.

Thus, it is enough to put Cλ,d = (2Mλ,d + 1)Cλ,d−1.
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Fact 4.3. Let 1 < p < ∞ and d ∈ N. For j = 1, . . . , d, let Φj = {ϕj,n :
n ∈ N}, Ψj = {ψj,n : n ∈ N} with ϕj,n, ψj,n ∈ Lp([0, 1]). Assume that for
each j there are constants Cj , cj > 0 such that for any sequence {an : n ∈ N}
of real coefficients,

cj

∥∥∥
(∑

n∈N
a2
nψ

2
j,n

)1/2∥∥∥
Lp([0,1])

≤
∥∥∥
(∑

n∈N
a2
nϕ

2
j,n

)1/2∥∥∥
Lp([0,1])

≤ Cj
∥∥∥
(∑

n∈N
a2
nψ

2
j,n

)1/2∥∥∥
Lp([0,1])

.

For n = (n1, . . . , nd) ∈ Nd, set ϕn = ϕ1,n1 ⊗ . . .⊗ ϕd,nd and ψn = ψ1,n1 ⊗
. . . ⊗ ψd,nd . Then, with c = c1 . . . cd and C = C1 . . . Cd, for each sequence
{an : n ∈ Nd} of real coefficients,

c
∥∥∥
( ∑

n∈Nd
a2
nψ

2
n

)1/2∥∥∥
Lp([0,1]d)

≤
∥∥∥
( ∑

n∈Nd
a2
nϕ

2
n

)1/2∥∥∥
Lp([0,1]d)

≤ C‖
( ∑

n∈Nd
a2
nψ

2
n

)1/2∥∥∥
Lp([0,1]d)

.

This is an immediate consequence of Fubini’s theorem.

For n = (n1, . . . , nd) ∈ Nd, define

(4.8) Rn = J ′n1
× . . .× J ′nd , rn = |Rn| = δn1 . . . δnd .

The following lemma is the main step in the proof of the democracy of
H(USλ ,...,USλ ),p in Lp([0, 1]d):

Lemma 4.4. Let λ > 1, 1 < p < ∞, d ∈ N, d ≥ 2. Let Sλ, USλ , Rn, rn
be as defined above. Then there are constants Cp, cp > 0, depending only on
p, λ, d, such that for each m ∈ N, n1, . . . , nm ∈ Nd, ni 6= nj for i 6= j, and
x ∈ [0, 1]d,

(4.9) cp

m∑

i=1

r−1
ni χRni (x) ≤

( m∑

i=1

r−2/p
ni χRni (x)

)p/2
≤ Cp

m∑

i=1

r−1
ni χRni (x).

Moreover , let H(USλ ,...,USλ ),p = {hλ:n,p : n ∈ Nd} be the system consisting
of all tensor products of elements of HUSλ ,p, normalized in Lp([0, 1]d). Then
there are constants Dp, dp > 0, depending only on p, λ, d, such that for each
m ∈ N and n1, . . . ,nm ∈ Nd with ni 6= nj for i 6= j,

(4.10) dpm
1/p ≤

∥∥∥
( m∑

i=1

h2
λ;ni,p

)1/2∥∥∥
Lp([0,1]d)

≤ Dpm
1/p.

Proof. The proof of (4.9) is similar to the proof of Lemma 9 in [13].
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Let m ∈ N and n1, . . . ,nm ∈ Nd, ni 6= nj for i 6= j, be fixed. It is
enough to consider x ∈ [0, 1]d for which χRni (x) 6= 0 for some i, 1 ≤ i ≤ m.
For such x and µ ∈ N ∪ {0}, let

A(x, µ) = {i : x ∈ Rni , 1/2µ+1 < rni ≤ 1/2µ}.
Setting ni = (ni,1, . . . , ni,d), let νi,j be such that uni,j ∈ USλ,νi,j . It follows
from (4.5) and (4.8) that

rni =
d∏

j=1

δni,j = 2−(sλ,νi,1+...+sλ,νi,d ),

so
A(x, µ) = {i : x ∈ Rni , µ = sλ,νi,1 + . . .+ sλ,νi,d}.

Now, (4.6) and Fact 4.2 imply that there is bd > 0, depending only on λ and
d, such that

(4.11) #A(x, µ) ≤ bd.
Let µx = max{µ ∈ N ∪ {0} : #A(x, µ) > 0}. Then

2µx ≤
( m∑

i=1

r−2/p
ni χRni (x)

)p/2
=
( µx∑

µ=0

22µ/p ·#A(x, µ)
)p/2

≤ bp/2d

( µx∑

µ=0

22µ/p
)p/2

≤ Cp2µx .

By similar arguments

2µx ≤
m∑

i=1

r−1
ni χRni (x) ≤ C2µx ,

which gives inequality (4.9).
Inequality (4.9) implies

∥∥∥
( m∑

i=1

r−2/p
ni χRni

)1/2∥∥∥
p
∼ m1/p.

This equivalence, combined with Proposition 2.2 (cf. also (2.5), (2.7)) and
Fact 4.3, gives

∥∥∥
( m∑

i=1

h2
λ;ni,p

)1/2∥∥∥
Lp([0,1]d)

∼
∥∥∥
( m∑

i=1

r−2/p
ni χRni

)1/2∥∥∥
p
∼ m1/p,

i.e. inequalities (4.10).

Theorem 4.5. Let λ > 1 and let USλ be the sequence of points as de-
scribed in this section. Then for each p with 1 < p < ∞ and d ∈ N,
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H(USλ ,...,USλ ),p, i.e. the system consisting of all tensor products of the gen-
eral Haar system corresponding to USλ , normalized in Lp([0, 1]d), is a greedy
basis in Lp([0, 1]d).

Proof. By the results of [7], a normalized basis is greedy iff it is uncon-
ditional and democratic. Unconditionality of H(USλ ,...,USλ ),p in Lp([0, 1]d)
follows from unconditionality of general Haar systems in Lp([0, 1]). Democ-
racy of H(USλ ,...,USλ ),p is a consequence of its unconditionality in Lp([0, 1]d)
and inequality (4.10) from Lemma 4.4.

Theorem 4.6. Let λ > 1 and let USλ be the sequence of points corre-
sponding to Sλ. Moreover , let D be the sequence of dyadic points. Then for
each p with 1 < p <∞, p 6= 2, the corresponding Haar systems HUSλ ,p and
HD,p (normalized in Lp([0, 1])) are not permutatively equivalent in Lp([0, 1]).
Thus, there are general Haar systems which are not permutatively equiva-
lent.

Proof. Let {hn : n ∈ N} and {Hn : n ∈ N} be the general Haar systems
corresponding to USλ and to the dyadic Haar system, respectively.

Fix p, 1 < p < ∞, p 6= 2. Suppose that there is a permutation ξ :
N → N such that {hξ(n),p : n ∈ N} and {Hn,p : n ∈ N} are equivalent
in Lp([0, 1]). Then hξ(n1),p ⊗ hξ(n2),p and Hn1,p ⊗ Hn2,p are equivalent in
Lp([0, 1]2). However, {hξ(n1),p ⊗ hξ(n2),p : n1, n2 ∈ N} is a democratic basis
in Lp([0, 1]2), by its unconditionality and inequality (4.10) from Lemma 4.4.
On the other hand, the example presented in [11] shows that {Hn1,p⊗Hn2,p :
n1, n2 ∈ N} is not democratic in Lp([0, 1]2). Thus, these two bases cannot
be equivalent in Lp([0, 1]2), and consequently, HUSλ ,p and HD,p are not
permutatively equivalent in Lp([0, 1]).

5. The case of L1([0, 1]). Let us discuss the analogues of the results
of Section 3 for p = 1. Since general Haar systems are bases of L1([0, 1]),
but they are not unconditional, we are going to examine the equivalence of
L1-norms of the appropriate square functions—more precisely, we are going
to prove that inequality (3.6) can be extended to the case p = 1. However, as
there is no analogue of the Fefferman–Stein maximal inequality for p = 1,
the method of proof is now different—the proof is based on the method
developed by G. G. Gevorkyan and used e.g. in the study of Franklin series
in Lp and Hp with 0 < p ≤ 1 (cf. e.g. [5]). Note that the results of Section 3
can also be obtained by this method (for 1 < p < 2 directly, and then by a
duality argument also for 2 < p <∞); however, we have decided to present
also the argument given in Section 3 because of its simplicity.

Theorem 5.1. Let T be a dense sequence of points in [0, 1], with the
corresponding general Haar system HT = {hn : n ∈ N}. Let τ : N → N be
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given by formula (3.5). Then there are constants C, c > 0, independent of T ,
such that for each sequence {an : n ∈ N} of real coefficients,

(5.1) c
∥∥∥
( ∞∑

n=1

a2
nH

2
τ(n)

)1/2∥∥∥
1

≤
∥∥∥
( ∞∑

n=1

a2
nh

2
n

)1/2∥∥∥
1
≤ C

∥∥∥
( ∞∑

n=1

a2
nH

2
τ(n)

)1/2∥∥∥
1
.

For the proof, the following technical lemma is needed:

Lemma 5.2. Let T be a sequence of points. Let Ini , i ∈ N, be a sequence
of intervals corresponding to points tni ∈ T such that Ini+1 ⊂ Ini . Let
M = min{i : Ini+1 ⊂ I ′ni} if such an i exists, and M =∞ otherwise. Then

∞∑

i=1

δni ≤ 6
M∑

i=1

δni .

In addition, the intervals I ′n1
, . . . , I ′nM are disjoint.

Proof. First, assume that M = 1; clearly, we can also assume that
Ini+1 = I ′ni or Ini+1 = I ′′ni . Put

l1 = min{i ≥ 1 : Ini+1 = I ′′ni}, k1 = min{i ≥ l1 : Ini+1 = I ′ni},
and for j ≥ 2,

lj = min{i ≥ kj−1 : Ini+1 = I ′′ni}, kj = min{i ≥ lj : Ini+1 = I ′ni}.
As In2 = I ′n1

, we have l1 ≥ 2 and |Inl1 | ≤ δn1 . Moreover, Inlj = I ′nlj−1
,

which implies

(5.2) |Inlj+1
| = |I ′nlj+1−1

| ≤ 1
2
|Inlj+1−1 | ≤

1
2
|Inlj |, |Inlj | ≤

1
2j−1 |Inl1 |.

For fixed j and lj ≤ i ≤ kj , the intervals I ′ni are disjoint and included in
Inlj , so

(5.3)
kj∑

i=lj

δni ≤ |Inlj |.

For kj + 1 ≤ i ≤ lj+1 − 1 we have Ini = I ′ni−1
, so

(5.4) δni = |I ′ni | ≤
1
2
|Ini | =

1
2
δni−1 ≤

1
2i−kj

δnkj ,

lj+1−1∑

i=kj+1

δni ≤ δnkj .

By similar arguments we check that
l1−1∑

i=1

δni ≤ 2δn1 .
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This inequality, together with (5.2)–(5.4), gives

∞∑

i=1

δni ≤
l1−1∑

i=1

δni +
∞∑

j=1

( kj∑

i=lj

δni +
lj+1−1∑

i=kj+1

δni

)
≤ 2δn1 + 2

∞∑

j=1

kj∑

i=lj

δni

≤ 2δn1 + 2
∞∑

j=1

|Inlj | ≤ 2δn1 + 4|Inl1 | ≤ 6δn1 .

If M > 1, then the sequence {Ini : i ≥ M} is of the type considered
above, which implies the required inequality in the general case.

The fact that the intervals I ′n1
, . . . , I ′nM are disjoint is an immediate

consequence of the definition of M .

Proof of Theorem 5.1. The left inequality in (5.1) is a consequence of
inequality (3.3) (cf. also (2.5)).

Now, let us prove the right inequality of (5.1).
For a function f , denote by M∗f the dyadic maximal function of f . In

addition, define Dn = suppHn.
For a fixed sequence {an : n ∈ N} of real coefficients, put

S(x) =
∞∑

n=1

a2
nH

2
τ(n)(x),

Er = {x : S(x) > 2r}, r ∈ Z,
Br = {x : M∗χEr(x) > 1/2}, r ∈ Z,
Nr = {n ∈ N : Dτ(n) ⊂ Br, Dτ(n) 6⊂ Br+1},

ψr(x) =
( ∑

n∈Nr
a2
nh

2
n(x)

)1/2
.

Note that for n ∈ Nr we have |Dτ(n) ∩ Ec
r+1| ≥ 1

2 and consequently
�

Dτ(n)∩Ec
r+1

H2
τ(n)(x) dx ≥ 1

2
.

Using this inequality we obtain

‖ψr‖22 =
∑

n∈Nr
a2
n ≤ 2

∑

n∈Nr
a2
n

�

Dτ(n)∩Ec
r+1

H2
τ(n)(x) dx

≤ 2
�

Br∩Ec
r+1

∑

n∈Nr
a2
nH

2
τ(n)(x) dx ≤ 2

�

Br∩Ec
r+1

S(x) dx,

which combined with the fact that S(x) ≤ 2r+1 on Ec
r+1 gives

(5.5) ‖ψr‖22 ≤ 2r+2|Br|.
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Now, by the Schwarz inequality we get
�

Br

ψr(x) dx ≤ |Br|1/2
( �

Br

(ψr(x))2 dx
)1/2

≤ |Br|1/2‖ψr‖2,

which together with (5.5) gives

(5.6)
�

Br

ψr(x) dx ≤ 21+r/2|Br|.

Now, we estimate the analogous integral over Bc
r. First, note that

‖a2
nH

2
τ(n)‖∞ ≤ 2r+1 for n ∈ Nr: if not, then, as |Hτ(n)| is constant on Dτ(n),

we would have Dτ(n) ⊂ Er+1 and consequently Dτ(n) ⊂ Br+1, contrary to
the definition of Nr. Combining this inequality with (3.2), we get

(5.7) |an| ≤ 2r/2δ1/2
n for n ∈ Nr.

Moreover, Br is a union of dyadic intervals. Let Dr denote the family of
maximal dyadic intervals contained in Br; as the interiors of intervals from
Dr are disjoint, we have

(5.8) Br =
⋃

J∈Dr
J, |Br| =

∑

J∈Dr
|J |.

For J ∈ Dr, let

Nr,J = {n ∈ Nr : Dτ(n) ⊂ J}, N∗r,J = {n ∈ Nr,J : In 6⊂ J}.
Observe that if n ∈ N∗r,J , then In contains either the left or the right end-
point of J ; denote by NL

r,J , N
R
r,J the respective subsets of N∗r,J . Recall that

any two intervals Ik, Il are either disjoint, or one is included in the other.
All intervals in NL

r,J and in NR
r,J have a common point, so this is the latter

case, and the families NL
r,J , N

R
r,J satisfy the assumptions of Lemma 5.2. As

δn ≤ 4|Dτ(n)| (cf. (3.1)) and Dτ(n) ⊂ J for n ∈ Nr,J , Lemma 5.2 implies

(5.9)
∑

n∈N∗r,J

δn ≤
∑

n∈NLr,J

δn +
∑

n∈NRr,J

δn ≤ 48|J |.

Now, using the definitions of ψr, Nr,J , N∗r,J , (5.8), (5.7), (5.9) and (2.7) we
get

�

Bc
r

ψr(x) dx ≤
�

Bc
r

∑

n∈Nr
|an| · |hn(x)| dx ≤

∑

J∈Dr

∑

n∈Nr,J
|an|

�

Jc

|hn(x)| dx

≤
∑

J∈Dr

∑

n∈N∗r,J

|an| · ‖hn‖1 ≤ 21+r/2
∑

J∈Dr

∑

n∈N∗r,J

δn

≤ 96 · 2r/2
∑

J∈Dr
|J | = 96 · 2r/2|Br|.
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The last inequality in combination with (5.6) gives

1�

0

ψr(x) dx ≤ 97 · 2r/2|Br|.

As {n ∈ N : an 6= 0} ⊂ ⋃r∈ZNr, the above inequality, together with the
definitions of S(·), Er, Br and the fact that M∗ is of weak type (1, 1), implies

1�

0

( ∞∑

n=1

a2
nh

2
n(x)

)1/2
dx ≤

∑

r∈Z

1�

0

ψr(x) dx ≤ 97 ·
∑

r∈Z
2r/2|Br|

≤ C
∑

r∈Z
2r/2|Er| ≤ C

1�

0

S(x)1/2 dx,

and the proof of Theorem 5.1 is complete.

For a given sequence T of points and the corresponding Haar system
HT = {hn : n ∈ N}, let H1

T be the space of those f =
∑∞
n=1 anhn ∈

L1([0, 1]) for which the series
∑∞
n=1 anhn is unconditionally convergent in

L1([0, 1]), with the norm

‖f‖H1
T

= sup
ε={εn:n∈N}

∥∥∥
∞∑

n=1

εnanhn

∥∥∥
1
, where εn = ±1.

H1
T is a Banach space, and it is called a (martingale) Hardy space. It follows

from Khinchin’s inequality and inequalities between the L1-norms of the
maximal and square functions for martingales (cf. e.g. Chapter II of [4])
that

f ∈ H1
T iff Sf =

( ∞∑

n=1

a2
nh

2
n

)1/2
∈ L1([0, 1]),

and moreover ‖f‖H1
T
∼ ‖Sf‖1. It should be clear that HT ,1 is a normalized

unconditional basis of H1
T . Moreover, it follows from Lemma 9 of [13] that

for each sequence n1 < . . . < nm,
∥∥∥
( m∑

i=1

H2
ni,1

)1/2∥∥∥
1
∼ m,

which combined with inequalities (3.4) and Theorem 5.1 implies that HT ,1
is democratic in H1

T . Thus, by the characterization of greedy bases recalled
in Section 2.1, we have

Corollary 5.3. For each sequence T , the corresponding general Haar
system HT ,1, normalized in L1([0, 1]), is a greedy basis in the corresponding
martingale Hardy space H1

T .
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Let us briefly discuss the case 0 < p < 1. First, for 0 < p < 1 the
analogue of the equivalence (5.1) of Theorem 5.1 can fail to hold. To see
this, note that (2.6) implies

2−1/2δ
1/2
I ∆

1/p−1
I ≤ ‖hI‖p ≤ 21/pδ

1/2
I ∆

1/p−1
I for 0 < p < 1,

while (3.1) and (3.2) give

41/2−1/pδ
1/p−1/2
I ≤ ‖Hπ(I)‖p ≤ 21/2−1/pδ

1/p−1/2
I for 0 < p < 1,

so the analogue of (5.1) cannot hold in general for p < 1. Moreover, (5.1)
need not hold even if hn and Hτ(n) are replaced by hn,p = hn/‖hn‖p and
Hτ(n),p = Hτ(n)/‖Hτ(n)‖p, respectively (see below).

In [13], the notion of a greedy basis is also considered for quasi-Banach
spaces. As in the case p = 1, for 0 < p < 1 and a given sequence T of
points, one could consider the martingale Hardy space Hp

T defined in terms
of the corresponding square function, and ask if HT ,p is greedy in Hp

T . Using
Theorem 4 of [13] one can show that, in contrast to the case of 1 ≤ p <∞,
now HT ,p need not be greedy in Hp

T . More precisely, one can show thatHT ,p
is democratic (and, consequently, greedy) in the corresponding martingale
Hardy space Hp

T with 0 < p < 1 if and only if there is K ∈ N such that
for any collection of intervals In1 , . . . , Inl with In1 ⊃ . . . ⊃ Inl and |Inl | ≥
1
2 |In1 |, we have l ≤ K. Note that for T not satisfying this condition, the
analogue of (5.1) for hn,p and Hτ(n),p (0 < p < 1) cannot hold, as by Lemma
9 of [13] we have ‖(∑m

i=1H
2
ni,p)

1/2‖p ∼ m1/p for each n1 < . . . < nm, so
{Hτ(n),p : n ≥ 1} is democratic while HT ,p is not.

Finally, let us remark that there is an example of a sequence T such that
HT ,p is greedy in Hp

T , 0 < p < 1, but the analogue of (5.1) for hn,p and
Hτ(n),p with 0 < p < 1 does not hold; however, this example is technical
and it will not be presented here.
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