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Uniqueness of unconditional basis
of `p(c0) and `p(`2), 0 < p < 1

by

F. Albiac and C. Leránoz (Pamplona)

Abstract. We prove that the quasi-Banach spaces `p(c0) and `p(`2) (0 < p < 1) have
a unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss and
Tzafriri have previously proved that the same is true for the respective Banach envelopes
`1(c0) and `1(`2). They used duality techniques which are not available in the non-locally
convex case.

1. Introduction. Suppose that X is a quasi-Banach space (in particu-
lar, a Banach space) with a quasi-norm ‖ · ‖ and a normalized unconditional
basis (en)∞n=1, i.e. ‖en‖ = 1 for all n ∈ N. We say that X has a unique
unconditional basis up to permutation if whenever (xn)∞n=1 is another nor-
malized unconditional basis of X, then there is a permutation π of N so that
(xn)∞n=1 is equivalent to (eπ(n))∞n=1, that is, there is a constant D so that

D−1
∥∥∥

n∑

i=1

aixi

∥∥∥ ≤
∥∥∥

n∑

i=1

aieπ(i)

∥∥∥ ≤ D
∥∥∥

n∑

i=1

aixi

∥∥∥

for any choice of scalars (ai)ni=1 and every n ∈ N. In that case, we will write
(xn)n∈N ∼ (eπ(n))n∈N.

In [7], the authors showed that `2 has a unique unconditional basis. Lin-
denstrauss and Pełczyński ([9]) proved that the same holds for c0 and `1.
Lindenstrauss and Zippin ([11]) showed that c0, `1 and `2 are the only
Banach spaces with this property, which indicates that in the context of
Banach spaces it is quite exceptional for a space to have a unique uncondi-
tional basis. The situation for quasi-Banach spaces which are not Banach is
quite different. Kalton ([3]) showed that a wide class of non-locally convex
Orlicz sequence spaces, including `p for 0 < p < 1, have a unique uncon-
ditional basis. Edelstein and Wojtaszczyk proved in [2] that finite direct
sums of c0, `1 and `2 have a unique unconditional basis up to permutation.
Bourgain, Casazza, Lindenstrauss and Tzafriri studied in [1] infinite direct
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sums of these spaces, showing that in c0(`1), c0(`2), `1(c0) and `1(`2) the
canonical unit vector basis is unique up to permutation, while the result is
not true for `2(c0) and `2(`1). This was the motivation to ask about the
uniqueness of unconditional basis up to permutation of the quasi-Banach
spaces c0(`p), `p(c0) and `p(`2) (0 < p < 1), whose Banach envelopes c0(`1),
`1(c0) and `1(`2), respectively, were the ones on the previous list which had
that property. Leránoz proved in [8] that in c0(`p), 0 < p < 1, all normalized
unconditional bases are equivalent up to permutation to the canonical basis.

In Sections 2 and 3 we prove that the same result is true for the spaces
`p(c0) and `p(`2), respectively.

We recall that if X is a quasi-Banach space whose dual separates points,
then the gauge functional of the convex hull of the closed unit ball of X
is a norm on X; we will denote it by ‖ · ‖c. The Banach space X̂ resulting
from the completion of (X, ‖ · ‖c) is called the Banach envelope of X (see
[6] and [4]). The Banach envelope has the property that every continuous
linear operator from X into a Banach space extends to X̂ with preservation
of norm. In particular, the dual of X̂ is X∗. If (en)∞n=1 is a K-unconditional
basis X, then it is also a K-unconditional basis of X̂, and

(1.1) K−1‖en‖ ≤ ‖en‖c ≤ ‖en‖ for all n ∈ N.

A quasi-Banach lattice X is said to be p-convex, where 0 < p <∞, if there
is a constant C > 0 such that for any x1, . . . , xn ∈ X and n ∈ N, we have

∥∥∥
( n∑

i=1

|xi|p
)1/p∥∥∥ ≤ C

( n∑

i=1

‖xi‖p
)1/p

.

The procedure to define the element (
∑n
i=1 |xi|p)1/p ∈ X is exactly the same

as in Banach lattices (see [10], pp. 40–41).

2. Uniqueness of unconditional basis of `p(c0), 0 < p < 1. For
0 < p ≤ 1 fixed,

`p(c0) = {(xl)∞l=1 : xl ∈ c0 for each l and (‖xl‖∞)∞l=1 ∈ `p}.

This space endowed with the p-norm

‖(xl)l‖p =
( ∞∑

l=1

‖xl‖p∞
)1/p

is a p-Banach space.
For each l ∈ N, we can write xl = (xl1, xl2, . . . , xlk, . . .) ∈ c0, and

then identify `p(c0) with the space of infinite matrices (xlk)∞l,k=1 satisfying
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xlk → 0 for all l ∈ N as k →∞, and

‖(xlk)l,k‖p =
( ∞∑

l=1

sup
k
|xlk|p

)1/p
<∞.

The dual space of `p(c0) can be identified with `∞(`1), where `∞(`1) is
the Banach space of infinite matrices a = (alk)∞l,k=1 such that

‖a‖ = sup
l

∞∑

k=1

|alk| <∞,

and the Banach envelope of (`p(c0), ‖ · ‖p) is (`1(c0), ‖ · ‖1).
‖ · ‖ will denote without confusion both the quasi-norm in `p(c0) and

the norm in the dual `∞(`1), and ‖ · ‖c will denote the norm in the Banach
envelope `1(c0).

The spaces `p(c0) (0 < p ≤ 1) have a canonical 1-unconditional basis of
unit vectors that we will denote by (elk)∞l,k=1. The (l, k) coordinate of el0k0

is 1 if l = l0 and k = k0, and 0 otherwise. The lattice structure induced by
the canonical basis in `p(c0) (0 < p ≤ 1) is p-convex.

Suppose Q is a bounded linear projection from `p(c0) onto a subspace X
with normalized K-unconditional basis (xn)ηn=1 (the symbol η can denote
either a positive integer or∞). The sequences in `∞(`1) of the biorthogonal
linear functionals associated with the unconditional bases (elk) and (xn) are
denoted by (e∗lk) and (x∗n) respectively. From now on, for abbreviation, we
will write

e∗lk(xn) = bnlk and x∗n(elk) = anlk.

Then

(2.1) ‖x∗n‖ = sup
l

∞∑

k=1

|anlk| ≤ K‖Q‖.

We also recall that (xn)ηn=1 is a K-unconditional basis of X̂, the Banach
envelope of X, which is complemented in `1(c0), and that from (2.1) we
easily obtain

(‖Q‖K)−1 ≤ ‖xn‖c ≤ 1 for all n = 1, . . . , η.
In this section, we prove the next theorem:

Theorem 2.1. Suppose 0 < p < 1. Let Q be a bounded linear projection
from `p(c0) onto a subspace X with a normalized K-unconditional basis
(xn)ηn=1. Then there exist constants ∆1, ∆2 and a partition of {1, . . . , η}
into mutually disjoint subsets (Li)Ii=1 so that

∆1

( I∑

i=1

sup
n∈Li

|an|p
)1/p (2)

≤
∥∥∥

η∑

n=1

anxn

∥∥∥
(1)
≤ ∆2

( I∑

i=1

sup
n∈Li

|an|p
)1/p

for any choice of scalars (an)n.
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Bourgain, Casazza, Lindenstrauss and Tzafriri proved the analogue of
the previous result for the Banach envelope `1(c0):

Theorem 2.2 (Corollary 4.8 of [1]). Let Q be a bounded linear projec-
tion from `1(c0) onto a subspace Z with a normalized K-unconditional basis
(zn)ηn=1. Then there exist a constant ∆, depending only on K and ‖Q‖, and
a partition of the integers {1, . . . , η} into mutually disjoint subsets (Bj)Jj=1
such that

(2.2) ∆−1
J∑

j=1

sup
n∈Bj

|an| ≤
∥∥∥

η∑

n=1

anzn

∥∥∥
c
≤ ∆

J∑

j=1

sup
n∈Bj

|an|

for any choice of scalars (an)n. In particular , `1(c0) has a unique normalized
unconditional basis up to permutation.

The proof of Theorem 2.2 uses duality techniques which are not available
in the non-locally convex case. We will prove Theorem 2.1 in two parts,
corresponding to each one of the inequalities (1) and (2).

The proof of Theorem 2.1(1) is based on two deep results: Theorem 2.2
itself and the following theorem due to Kalton.

Lemma 2.3 (Theorem 3.3 of [4]). Let Y be a p-convex quasi-Banach
lattice with unconditional basis such that Y ∗ has finite cotype. Then there
exists a constant A, depending only on p and the cotype constant of Y ∗,
such that

‖y‖Y ≤ A‖y‖c
for every y ∈ Y . (In particular , Y is isomorphic to its Banach envelope.)

Proof of Theorem 2.1(1). The Banach envelope X̂ of X is a comple-
mented subspace of `1(c0) and (xn)ηn=1 is a K-unconditional basis of X̂,
equivalent in `1(c0) to the normalized basis (xn/‖xn‖c)ηn=1. Therefore, The-
orem 2.2 applies, hence there exist a constant D, depending only on K and
‖Q‖, and a partition of {1, . . . , η} into disjoint subsets (Bj)Jj=1 so that (2.2)
holds. We will see that this is the partition (Li)Ii=1 stated in Theorem 2.1.

For each j ∈ {1, . . . , J} let Xj be the closed linear span in `p(c0) of
{xn : n ∈ Bj}. The Banach envelope X̂j of Xj is the closed linear span in
`1(c0) of {xn : n ∈ Bj}. By (2.2) applied to each fixed j, we obtain

(2.3) ∆−1 sup
n∈Bj

|an| ≤
∥∥∥
∑

n∈Bj
anxn

∥∥∥
c
≤ ∆ sup

n∈Bj
|an|,

for any scalars (an)n. That is, (xn)n∈Bj is ∆-equivalent (in `1(c0)) to
(en)n∈Bj , where (en)∞n=1 denotes the canonical basis of c0, with the equiv-

alence constant ∆ independent of j. Hence, X∗j (= X̂∗j '∆′ `
(|Bj |)
1 ) has

cotype 2.
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By Lemma 2.3 applied to Xj (p-convex quasi-Banach lattice with an un-
conditional basis (xn)n∈Bj , so that X∗j has cotype 2) there exists a constant
A (not depending on j) so that

(2.4)
∥∥∥
∑

n∈Bj
anxn

∥∥∥ ≤ A
∥∥∥
∑

n∈Bj
anxn

∥∥∥
c

for any choice of scalars (an)n.
By the p-subadditivity of ‖ · ‖,

(2.5)
∥∥∥

η∑

n=1

anxn

∥∥∥
p

=
∥∥∥

J∑

j=1

∑

n∈Bj
anxn

∥∥∥
p

≤
J∑

j=1

∥∥∥
∑

n∈Bj
anxn

∥∥∥
p

.

Combining (2.3), (2.4) and (2.5) we get

∥∥∥
η∑

n=1

anxn

∥∥∥
p

≤ Ap∆p
J∑

j=1

sup
n∈Bj

|an|p

for any scalars (an), so the inequality (1) holds with ∆2 = A∆.
The proof of Theorem 2.1(2) relies on the next four lemmas.
The following technique was introduced by N. Kalton to prove the uni-

queness of unconditional basis in non-locally convex Orlicz sequence spaces
(cf. [3]), and was used to prove the uniqueness of unconditional basis up to
permutation of c0(`p) (0 < p < 1) (see [8]).

Lemma 2.4 (cf. Theorem 2.3 of [5]). Let X be a p-convex quasi-Banach
lattice (0 < p < 1) with a normalized unconditional basis (en)∞n=1; let Q
be a bounded linear projection from X onto a subspace Z with a normal-
ized unconditional basis (xn)n∈S (S ⊂ N). Let (e∗n)∞n=1 and (x∗n)n∈S be
the sequences of biorthogonal linear functionals associated with (en)∞n=1 and
(xn)n∈S respectively , i.e.

x =
∞∑

n=1

e∗n(x)en and Q(x) =
∑

n∈S
x∗n(x)xn

for all x ∈ X. Suppose that there is a constant β > 0 and an injective map
σ : S → N so that

|e∗σ(n)(xn)| ≥ β and |x∗n(eσ(n))| ≥ β
for all n ∈ S. Then there exist positive constants %, %′ so that

%
∥∥∥
∑

n∈S
αneσ(n)

∥∥∥ ≤
∥∥∥
∑

n∈S
αnxn

∥∥∥ ≤ %′
∥∥∥
∑

n∈S
αneσ(n)

∥∥∥

for any scalars (αn).
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The following result is an elementary remark which nevertheless becomes
fundamental when we want to apply Lemma 2.4 to those quasi-Banach
spaces in which `p (0 < p < 1) is involved.

Lemma 2.5 (Lemma 2.2 of [8]). Fix 0 < p < 1. For any ε > 0 there exist
Cε > 0 so that

N∑

n=1

|αn| ≤ Cε sup
n
|αn|+ ε

( N∑

n=1

|αn|p
)1/p

for any choice of scalars (αn)Nn=1 and N ∈ N.

The next result is a “patching lemma”:

Lemma 2.6. Suppose {Λi : i = 1, . . . , N} is a partition of {1, . . . , J}
and that for each j = 1, . . . , J , {Ωm

j : m = 1, . . . ,M} is a partition of Bj .
Suppose there is a constant % > 0 so that for each i and m

∥∥∥
∑

n∈Ωmj , j∈Λi
anxn

∥∥∥ =
∥∥∥
∑

j∈Λi

∑

n∈Ωmj

anxn

∥∥∥ ≥ %
( ∑

j∈Λi
sup
n∈Ωmj

|an|p
)1/p

for any sequence of scalars (an). Further suppose that M , N and % depend
only on K and ‖Q‖. Then there exists a constant Γ > 0 so that

∥∥∥
η∑

n=1

anxn

∥∥∥ =
∥∥∥

J∑

j=1

∑

n∈Bj
anxn

∥∥∥ ≥ Γ
( J∑

j=1

sup
n∈Bj

|an|p
)1/p

for any sequence of scalars (an).

Proof. By the unconditionality of the basis (xn)ηn=1 we have

∥∥∥
∑

j∈Λi

∑

n∈Ωmj

anxn

∥∥∥ ≤ K
∥∥∥

J∑

j=1

∑

n∈Bj
anxn

∥∥∥ = K
∥∥∥

η∑

n=1

anxn

∥∥∥,

for each i and m fixed. Then, by the hypothesis,

∥∥∥
η∑

n=1

anxn

∥∥∥
p

≥ K−p%p
∑

j∈Λi
sup
n∈Ωmj

|an|p;

therefore
∥∥∥

η∑

n=1

anxn

∥∥∥
p

≥ K−p%p sup
1≤i≤N

sup
1≤m≤M

∑

j∈Λi
sup
n∈Ωmj

|an|p.
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Now,

sup
1≤i≤N

(
sup

1≤m≤M

∑

j∈Λi
sup
n∈Ωmj

|an|p
)
≥ 1
N

N∑

i=1

(
sup

1≤m≤M

∑

j∈Λi
sup
n∈Ωmj

|an|p
)

≥ 1
NM

N∑

i=1

M∑

m=1

∑

j∈Λi
sup
n∈Ωmj

|an|p =
1

NM

N∑

i=1

∑

j∈Λi

M∑

m=1

sup
n∈Ωmj

|an|p

≥ 1
NM

N∑

i=1

∑

j∈Λi
sup

1≤m≤M
sup
n∈Ωmj

|an|p =
1

NM

J∑

j=1

sup
n∈Bj

|an|p.

Hence
∥∥∥

η∑

n=1

anxn

∥∥∥ ≥ %

KM1/pN1/p

( J∑

j=1

sup
n∈Bj

|an|p
)1/p

.

The following is a “counting lemma”.

Lemma 2.7. Let {Fj : j ∈ N} be a family of sets so that :

(i) |Fj | ≤ r for all j ∈ N,
(ii) |{j ∈ N : l ∈ Fj}| ≤M for every l,

for some constants r, M independent of j. Then there exists a partition
of N into N ≤ rM subsets

N = S1 ∪ . . . ∪ SN
so that Fj1 ∩ Fj2 = ∅ for any j1 6= j2 ∈ Si, 0 ≤ i ≤ N .

Proof. From the hypotheses it is easy to deduce that, for each j0 ∈ N
fixed,

|{j ∈ N : Fj ∩ Fj0 6= ∅}| ≤ rM.

We will prove the existence of a partition N = S1 ∪ . . . ∪ SN satisfying
the assertion by building the sets S1, S2, . . . recurrently, as follows:

• We put the element j0 = 1 into a set, namely S1.
• Now, for j0 = 2, if F2 ∩ F1 = ∅ then we put the element 2 into the set

S1 (because we still do not have any needs of taking a new set in order for
the lemma to be satisfied), but if F2 ∩F1 6= ∅ then we must put the element
2 into a new set, namely S2.
• Let j0 > 2.

If Fj0 ∩ Fj = ∅ for all j ∈ S1 (j < j0, of course) then j0 ∈ S1.
If Fj0 ∩Fj 6= ∅ for some j ∈ S1 then j0 6∈ S1. Now, if Fj0 ∩Fj = ∅ for all

j ∈ S2 then j0 ∈ S2.
. . .
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If Fj0 ∩ Fj 6= ∅ for some j ∈ S1 (j < j0), Fj0 ∩ Fj 6= ∅ for some j ∈ S2

(j < j0), . . . , Fj0 ∩ Fj 6= ∅ for some j ∈ Sk−1 (j < j0), then we put j0
into Sk, where

k = min{m ∈ N : there is no j ∈ Sm (j < k) such that Fj0 ∩ Fj 6= ∅}.
Since |{j ∈ N : Fj ∩ Fj0 6= ∅}| ≤ rM it follows that

|{j ∈ N, j < j0 : Fj ∩ Fj0 6= ∅}| ≤ rM,

so k is finite and uniformly bounded by rM , the number of sets we need, at
most, in order to distribute all j’s according to the lemma.

Proof of Theorem 2.1(2). For each n ∈ Bj , j ∈ {1, . . . , J}, we have

1 = x∗n(xn) = x∗n
( ∞∑

l,k=1

bnlkelk

)
=

∞∑

l,k=1

bnlka
n
lk ≤

∞∑

l=1

( ∞∑

k=1

|anlkbnlk|
)
.

On the other hand, since ‖xn‖ = 1 and ‖x∗n‖ ≤ K‖Q‖,
∞∑

l=1

( ∞∑

k=1

|anlkbnlk|
)p
≤
∞∑

l=1

sup
k
|bnlk|p

( ∞∑

k=1

|anlk|
)p
≤
(

sup
l

∞∑

k=1

|anlk|
)p ∞∑

l=1

sup
k
|bnlk|p

= ‖x∗n‖p‖xn‖p ≤ Kp‖Q‖p.
From Lemma 2.5 applied to the sequence (

∑∞
k=1 |anlkbnlk|)l∈N, with ε =

1/(2K‖Q‖), there is a constant C = C(ε) so that

1 ≤
∞∑

l=1

( ∞∑

k=1

|anlkbnlk|
)
≤ C sup

l

∞∑

k=1

|anlkbnlk|+
1
2
.

Then

sup
l

∞∑

k=1

|anlkbnlk| ≥
1

2C
,

and therefore, there exists l = l(n) so that
∑∞
k=1 |anlkbnlk| > 1/(4C).

Thus, we can define a function {1, . . . , η} → N, n 7→ ln, so that
∞∑

k=1

|anlnkbnlnk| >
1

4C
.

Let us remark that

1
4C

<
∞∑

k=1

|anlnkbnlnk| ≤ sup
k
|bnlnk|

∞∑

k=1

|anlnk|,

and, in particular, we have

sup
k
|bnlnk| >

1
4CK‖Q‖ and

∞∑

k=1

|anlnk| >
1

4C

for each n ∈ {1, . . . , η}.
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We want the correspondence {1, . . . , η} → N, n 7→ ln, to be injective on
j, that is, to all n’s belonging to Bj (j fixed) should correspond the same l,
and to n’s in different Bj ’s should correspond different l’s. We will see that
we are not essentially far from this situation.

For each given j ∈ {1, . . . , J}, we define

Fj := {ln : n ∈ Bj}.
Let us first see that |Fj | is uniformly bounded on j. Fix j ∈ {1, . . . , J}
and suppose that l1, . . . , lr are different elements in Fj , that is, there exist
n1, . . . , nr ∈ Bj so that

sup
k
|bnilik| >

1
4CK‖Q‖ , i = 1, . . . , r.

Then, by Banach lattice estimates (Theorem 1.d.6 of [10]),

1 ∆∼ ‖xn1 + . . .+ xnr‖c
D∼ ‖(|xn1 |2 + . . .+ |xnr |2)1/2‖c

=
∞∑

l=1

sup
k

( r∑

i=1

|bnilk |2
)1/2

≥
r∑

s=1

sup
k

( r∑

i=1

|bnilsk|
2
)1/2

≥
r∑

i=1

sup
k
|bnilik|

≥ r 1
4CK

.

Thus, for j fixed, there is a partition of the set Bj ,

Bj = B
(1)
j ∪ . . . ∪B

(r)
j ,

in such a way that to all n’s belonging to one of these subsets B(i)
j corre-

sponds the same l, i.e. ln =: lji for any n ∈ B
(i)
j , and i = 1, . . . , r. Fur-

thermore, r ≤ 4CDK∆‖Q‖ (a constant that does not depend on j) for all
j ∈ {1, . . . , J}.

Now, for each fixed l, we will see that l ∈ Fj for, at most, a finite and
uniformly bounded number of j’s. Suppose that there are M different j’s,
j1, . . . , jM , such that l ∈ Fj1 ∩ . . . ∩ FjM , i.e. there is ni ∈ Bji so that

∞∑

k=1

|ani
lk
| > 1

4C
, i = 1, . . . ,M.

Then, combining Banach lattice estimates and the triangular inequality of
the `2 norm, we have

1 ∆′∼ ‖x∗n1
+ . . .+ x∗nM ‖ ≥ (

√
2K)−1‖(|x∗n1

|2 + . . .+ |x∗nM |2)1/2‖

= (
√

2K)−1 sup
l

∞∑

k=1

( M∑

m=1

|anmlk |2
)1/2

≥ (
√

2K)−1
∞∑

k=1

( M∑

m=1

|anm
lk
|2
)1/2

≥ (
√

2K)−1
( M∑

m=1

( ∞∑

k=1

|anm
lk
|
)2)1/2

≥M1/2 1

4
√

2CK
.
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Therefore, M ≤ (4
√

2CK∆′)2 (a constant that does not depend on l).
Lemma 2.7 will allow us to split the set {1, . . . , J} into subsets in such a
way that the correspondence j 7→ lj will be injective in each one of them.

Combining Lemma 2.7 and the partitions of Bj , we obtain a partition of
{1, . . . , J} into at most N ≤ rM subsets,

{1, . . . , J} = S1 ∪ . . . ∪ SN ,
and a function

σ : {(j, i) : j ∈ {1, . . . , J}, i ∈ {1, . . . , r}} → N, σ(j, i) = lji,

so that
sup
k
|bnσ(j,i)k| >

1
4CK

for each n ∈ B
(i)
j . Furthermore, given j1 6= j2 ∈ Sm, we have σ(j1, i1) 6=

σ(j2, i2) for any i1, i2 ∈ {1, . . . , r} and 1 ≤ m ≤ N . Therefore, for each
n ∈ B(i)

j there exists kn so that

|bnσ(j,i)kn | >
1

4CK‖Q‖ .

We want the correspondences

νij : B(i)
j → N, n 7→ νij(n) = kn,

to be injective on each B(i)
j for all (j, i). Let us see that we are not essentially

far from this situation by proving that the number of n’s belonging to the
same B(i)

j to which can correspond the same k is at most finite and uniformly
bounded.

Indeed, for (j, i) fixed, suppose there are different n1, . . . , nI ∈ B(i)
j so

that kn1 = . . . = knI = k, i.e.

|bnm
σ(j,i)k

| > 1
4CK

, m = 1, . . . , I.

Then
1 ∆∼ ‖xn1 + . . .+ xnI‖`1(c0)

D∼ ‖(|xn1 |2 + . . .+ |xnI |2)1/2‖
`1(c0)

=
∞∑

l=1

sup
k

( I∑

m=1

|bnmlk |2
)1/2

≥ sup
k

( I∑

m=1

|bnmσ(j,i)k|2
)1/2

≥
( I∑

m=1

|bnm
σ(j,i)k

|2
)1/2

≥ I1/2 1
4CK‖Q‖ ;

therefore I ≤ (4CKD∆)2, a constant that depends on neither (j, i) nor k.
Hence, for each (j, i) there is a partition of B(i)

j into at most I subsets,

B
(i)
j = Ri1j ∪ . . . ∪RiIj ,
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and a function νij : B(i)
j → N whose restriction to each Rij

t is injective and
such that

|bnσ(j,i)νij(n)| >
1

4CK

for all n ∈ B(i)
j . In this way, for any 1 ≤ m ≤ N , 1 ≤ i ≤ r, 1 ≤ t ≤ I fixed

we have injective functions

πtm,i :
⋃

j∈Sm
Rij

t → N× N, n 7→ πtm,i(n) = (lσ(j,i), ν
i
j(n)),

so that

|bnπtm,i(n)| >
1

4CK‖Q‖ .

By Lemma 2.4, there is a constant % > 0 (independent of m, i, t) so that,
for any 1 ≤ m ≤ N , 1 ≤ i ≤ r, 1 ≤ t ≤ I given we have∥∥∥

∑

j∈Sm

∑

n∈Rijt
anxn

∥∥∥ ≥ %
∥∥∥
∑

j∈Sm

∑

n∈Ritj

aneπtm,i(n)

∥∥∥ = %
∥∥∥
∑

j∈Sm

∑

n∈Ritj

aneljikn

∥∥∥

= %
( ∑

j∈Sm
sup
n∈Ritj

|an|p
)1/p

for any scalars (an). Now, the result follows from Lemma 2.6.

As a consequence we get the following infinite-dimensional results:

Theorem 2.8. Every normalized unconditional basis of an infinite-
dimensional complemented subspace of `p(c0) (0 < p < 1) is equivalent
to a permutation of the unit vector basis of one of the following spaces: `p,
c0, `p ⊕ c0, `p(`n∞)∞n=1, c0 ⊕ `p(`n∞)∞n=1, `p(c0).

Theorem 2.9. The following quasi-Banach spaces have a unique uncon-
ditional basis up to permutation: `p⊕ c0, `p(`n∞)∞n=1, c0⊕ `p(`n∞)∞n=1, `p(c0).

3. Uniqueness of unconditional basis of `p(`2), 0 < p < 1. Let
`p(`2) (0 < p ≤ 1) be the space of infinite matrices (xlk)∞l,k=1 satisfying

‖(xlk)l,k‖p =
( ∞∑

l=1

( ∞∑

k=1

|xlk|2
)p/2)1/p

<∞.

Then ‖ · ‖p is a p-norm and (`p(`2), ‖ · ‖p) is a p-Banach space; in particular,
(`1(`2), ‖ · ‖1) is a Banach space, the Banach envelope of (`p(`2), ‖ · ‖p).

The dual space of `p(`2) can be identified with `∞(`2), where `∞(`2) is
the Banach space of infinite matrices a = (alk)∞l,k=1 satisfying

‖a‖ = sup
l

( ∞∑

k=1

|alk|2
)1/2

<∞.
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We will denote by ‖ · ‖ without confusion both the quasi-norm in `p(`2) and
the norm in the dual `∞(`2), and ‖ · ‖c will denote the norm in the Banach
envelope `1(`2).

The spaces `p(`2) (0 < p ≤ 1) have a canonical 1-unconditional basis of
unit vectors that we will denote by (elk)∞l,k=1. The (l, k) coordinate of el0k0

is 1 if l = l0 and k = k0, and 0 otherwise.
As in the previous section, if (xn)ηn=1 is a complemented normalized

unconditional basic sequence in `p(`2), we will write, for abbreviation,

e∗lk(xn) = bnlk and x∗n(elk) = anlk.

Then

‖x∗n‖ = sup
l

( ∞∑

k=1

|anlk|2
)1/2

≤ K‖Q‖,

where Q is the projection from `p(`2) onto the closed linear span of (xn)ηn=1.
The lattice structure induced by the canonical basis in `p(`2) (0 < p ≤ 1)

is p-convex.
Bourgain, Casazza, Lindenstrauss and Tzafriri proved:

Theorem 3.1 (Theorem 2.2 of [1]). Let Q be a bounded linear projec-
tion from `1(`2) onto a subspace Z which has a normalized K-unconditional
basis (zn)ηn=1. Then there exist a constant ∆ and a partition (Bj)Jj=1 of the
integers {1, . . . , η} into mutually disjoint subsets so that

(3.1) ∆−1
J∑

j=1

( ∑

n∈Bj
|an|2

)1/2
≤
∥∥∥

η∑

n=1

anzn

∥∥∥ ≤ ∆
J∑

j=1

( ∑

n∈Bj
|an|2

)1/2

for any choice of scalars (an)n. In particular , `1(`2) has a unique normalized
unconditional basis up to permutation.

This was the motivation for the following result:

Theorem 3.2. Suppose 0 < p < 1. Let Q be a bounded linear pro-
jection from `p(`2) onto a subspace X with a normalized K-inconditional
basis (xn)ηn=1. Then there exist constants Γ1, Γ2 (which depend only on K
and ‖Q‖) and a partition of {1, . . . , η} into mutually disjoint subsets (Li)Ii=1
so that

Γ1

( I∑

i=1

( ∑

n∈Li
|an|2

)p/2)1/p (1)
≤
∥∥∥

η∑

n=1

anxn

∥∥∥
(2)
≤ Γ2

( I∑

i=1

( ∑

n∈Li
|an|2

)p/2)1/p

for any scalars (an)ηn=1.

The proof of Theorem 3.2 is completely analogous to that of Theorem 2.1,
and uses essentially the same lemmas. As we did in the previous case, we will
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prove Theorem 3.2 in two parts, corresponding to each one of the inequalities
(1) and (2).

The proof of Theorem 3.2(1) is based on Theorem 3.1 (the analogue of
Theorem 2.2) and Lemma 2.3.

Proof of Theorem 3.2(1). The Banach envelope X̂ of X is a comple-
mented subspace of `1(`2) and (xn)ηn=1 is a K-unconditional basis of X̂,
equivalent in `1(`2) to the normalized basis (xn/‖xn‖c)ηn=1. Therefore, The-
orem 3.2 applies, hence there exist a constant ∆, depending only on K and
‖Q‖, and a partition of {1, . . . , η} into disjoint subsets (Bj)Jj=1 so that (3.1)
holds. We will see that this is the partition (Li)Ii=1 stated in Theorem 3.2.

For each j ∈ {1, . . . , J} let Xj be the closed linear span in `p(`2) of
{xn : n ∈ Bj}. The Banach envelope X̂j of Xj is the closed linear span in
`1(`2) of {xn : n ∈ Bj}.

By (3.1) applied to each fixed j, we obtain

∆−1
( ∑

n∈Bj
|an|2

)1/2
≤
∥∥∥
∑

n∈Bj
anxn

∥∥∥
c
≤ ∆

( ∑

n∈Bj
|an|2

)1/2

for any j and scalars (an)n. That is, (xn)n∈Bj is ∆-equivalent (in `1(`2)) to
(en)n∈Bj , where (en)∞n=1 denotes the canonical basis of `2, and the equiva-
lence constant ∆ is independent of j.

Thus, X∗j (= X̂∗j '∆′ `
(|Bj |)
2 ) has cotype 2.

Hence, the same arguments used in Theorem 2.1(1) lead us to

∥∥∥
η∑

n=1

anxn

∥∥∥
p

=
∥∥∥

J∑

j=1

∑

n∈Bj
anxn

∥∥∥
p

≤
J∑

j=1

∥∥∥
∑

n∈Bj
anxn

∥∥∥
p

≤ Ap
J∑

j=1

∥∥∥
∑

n∈Bj
anxn

∥∥∥
p

c
≤ Ap∆p

J∑

j=1

( ∑

n∈Bj
|an|2

)p/2

for any sequence of scalars (an). Therefore, the inequality (1) holds with
Γ2 = A∆.

The proof of Theorem 3.2(2) relies on Lemmas 2.4, 2.5, 2.7 and 3.3, an
analogue of Lemma 2.6.

Lemma 3.3. Suppose {Sm : m = 1, . . . , N} is a partition of the set
{1, . . . , J} and that for each j = 1, . . . , J , {Ωi

j : i = 1, . . . , r} is a parti-
tion of Bj. Suppose there is a constant % > 0 so that for each i and m,

∥∥∥
∑

j∈Sm

∑

n∈Ωij

anxn

∥∥∥ ≥ %
( ∑

j∈Sm

( ∑

n∈Ωij

|an|2
)p/2)1/p
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for any sequence of scalars (an). Further suppose that N , r and % depend
only on K and ‖Q‖. Then there exists a constant Γ ′ > 0 so that

∥∥∥
η∑

n=1

anxn

∥∥∥ ≥ Γ ′
( J∑

j=1

( ∑

n∈Bj
|an|2

)p/2)1/p

for any sequence of scalars (an).

Proof. For every m ∈ {1, . . . , N} and i ∈ {1, . . . , r} fixed, by the uncon-
ditionality of the basis (xn)ηn=1 we have

∥∥∥
∑

j∈Sm

∑

n∈Ωij

anxn

∥∥∥ ≤ K
∥∥∥

J∑

j=1

∑

n∈Bj
anxn

∥∥∥ = K
∥∥∥

η∑

n=1

anxn

∥∥∥.

Raising to the pth power and using the hypothesis, we get
∥∥∥

η∑

n=1

anxn

∥∥∥
p

≥ K−p
∥∥∥
∑

j∈Sm

∑

n∈Ωij

anxn

∥∥∥
p

≥ K−p%p
∑

j∈Sm

( ∑

n∈Ωij

|an|2
)p/2

.

Therefore,
∥∥∥

η∑

n=1

anxn

∥∥∥
p

≥ K−p%p sup
1≤m≤N

sup
1≤i≤r

∑

j∈Sm

( ∑

n∈Ωij

|an|2
)p/2

.

Observe that,

sup
1≤m≤N

sup
1≤i≤r

∑

j∈Sm

( ∑

n∈Ωij

|an|2
)p/2

≥ 1
N

N∑

m=1

sup
1≤i≤r

∑

j∈Sm

( ∑

n∈Ωij

|an|2
)p/2

≥ 1
Nr

N∑

m=1

r∑

i=1

∑

j∈Sm

( ∑

n∈Ωij

|an|2
)p/2

=
1
Nr

N∑

m=1

∑

j∈Sm

r∑

i=1

( ∑

n∈Ωij

|an|2
)p/2

≥ 1
Nr

N∑

m=1

∑

j∈Sm

( r∑

i=1

∑

n∈Ωij

|an|2
)p/2

=
1
Nr

J∑

j=1

( ∑

n∈Bj
|an|2

)p/2
.

Then
∥∥∥

η∑

n=1

anxn

∥∥∥ ≥ %

KN1/pr1/p

( J∑

j=1

( ∑

n∈Bj
|an|2

)p/2)1/p
.

Proof of Theorem 3.2(2). For each j ∈ {1, . . . , J}, and n ∈ Bj , we have

1 = x∗n(xn) = x∗n
( ∞∑

l,k=1

bnlkelk

)
=

∞∑

l,k=1

bnlka
n
lk ≤

∞∑

l=1

( ∞∑

k=1

|anlkbnlk|
)
.
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On the other hand, for each l ∈ N, by Hölder’s inequality,
∞∑

k=1

|anlkbnlk| ≤
( ∞∑

k=1

|anlk|2
)1/2( ∞∑

k=1

|bnlk|2
)1/2

≤
( ∞∑

k=1

|bnlk|2
)1/2

sup
l

( ∞∑

k=1

|anlk|2
)1/2

.

Then, since ‖xn‖ = 1, ‖x∗n‖ ≤ K‖Q‖, we obtain
∞∑

l=1

( ∞∑

k=1

|anlkbnlk|
)p
≤ sup

l

( ∞∑

k=1

|anlk|2
)p/2 ∞∑

l=1

( ∞∑

k=1

|bnlk|2
)p/2

= ‖x∗n‖p ‖xn‖p ≤ Kp‖Q‖p.
From Lemma 2.5 applied to the sequence (

∑∞
k=1 |anlkbnlk|)l∈N, with ε =

1/(2K‖Q‖), there is a constant C = C(ε) so that

1 ≤
∞∑

l=1

( ∞∑

k=1

|anlkbnlk|
)
≤ C sup

l

∞∑

k=1

|anlkbnlk|+
1
2
.

Thus,

sup
l

∞∑

k=1

|anlkbnlk| ≥
1

2C
,

and therefore, there exists l = l(n) so that
∑∞
k=1 |anlkbnlk| > 1/(4C).

So, we can define a function {1, . . . , η} → N, n 7→ ln, so that
∞∑

k=1

|anlnkbnlnk| >
1

4C

for any n ∈ Bj , j ∈ {1, . . . , J}. Let us remark that for each n,

1
4C

<

∞∑

k=1

|anlnkbnlnk| ≤
( ∞∑

k=1

|anlnk|2
)1/2( ∞∑

k=1

|bnlnk|2
)1/2

;

then, in particular,
( ∞∑

k=1

|bnlnk|2
)1/2

>
1

4CK‖Q‖ and
( ∞∑

k=1

|anlnk|2
)1/2

>
1

4C
.

For each j ∈ {1, . . . , J}, we define Fj := {ln : n ∈ Bj}. Let us first see
that |Fj | is uniformly bounded in j: Fix j ∈ {1, . . . , J} and suppose that
l1, . . . , lr are different elements in Fj , i.e., there exist n1, . . . , nr ∈ Bj so that

( ∞∑

k=1

|bnilik|
2
)1/2

>
1

4CK‖Q‖ , i = 1, . . . , r.
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Then, by Banach lattice estimates (Theorem 1.d.6 of [10]),

r1/2 ∆∼ ‖xn1 + . . .+ xnr‖c
D∼ ‖(|xn1 |2 + . . .+ |xnr |2)1/2‖c

=
∞∑

l=1

( ∞∑

k=1

r∑

i=1

|bnilk |2
)1/2

≥
r∑

i=1

( ∞∑

k=1

|bnilik|
2
)1/2

≥ r 1
4CK‖Q‖ .

Thus, for each j ∈ {1, . . . , J} there is a partition of the set Bj ,

Bj = B
(1)
j ∪ . . . ∪B

(r)
j ,

in such a way that ln=: lji for any n∈B(i)
j . Furthermore, r≤(4CDK∆‖Q‖)2

(a constant that does not depend on j) for all j = 1, . . . , J .
Now, for each fixed l, we will see that l ∈ Fj for, at most, a finite and

uniformly bounded number of j’s. Suppose that there are M different j’s,
j1, . . . , jM , such that l ∈ Fj1 ∩ . . . ∩ FjM , i.e. there are ni ∈ Bji so that

( ∞∑

k=1

|ani
lk
|2
)1/2

>
1

4C
, i = 1, . . . ,M.

Then, by Banach lattice estimates,

1 ∆′∼ ‖x∗n1
+ . . .+ x∗nM ‖ ≥ (

√
2K)−1‖(|x∗n1

|2 + . . .+ |x∗nM |2)1/2‖

= (
√

2K)−1 sup
l

( ∞∑

k=1

M∑

m=1

|anmlk |2
)1/2

≥ (
√

2K)−1
( ∞∑

k=1

M∑

m=1

|anm
lk
|2
)1/2

≥M1/2 1

4
√

2CK
.

Therefore, M ≤ (4
√

2CK∆′)2 (a constant that does not depend on l).
Combining Lemma 2.7 and the partitions of the sets Bj , we get a parti-

tion of {1, . . . , J} into at most N ≤ rM subsets S1, . . . , SN , and a function

σ : {(j, i) : j ∈ {1, . . . , J}, i ∈ {1, . . . , r}} → N, (j, i) 7→ σ(j, i) = lji,

so that
( ∞∑

k=1

|bnσ(j,i)k|2
)1/2

>
1

4CK‖Q‖

for each n ∈ B
(i)
j . Furthermore, given j1 6= j2 ∈ Sm, we have σ(j1, i1) 6=

σ(j2, i2) for any i1, i2 ∈ {1, . . . , r} and 1 ≤ m ≤ N .
Now, for each 1 ≤ m ≤ N and 1 ≤ i ≤ r fixed, by quasi-Banach lattice

estimates (Proposition 2.1 of [5]),
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∥∥∥
∑

j∈Sm

∑

n∈B(i)
j

anxn

∥∥∥
p B∼

∥∥∥
( ∑

j∈Sm

∑

n∈B(i)
j

|anxn|2
)1/2∥∥∥

p

=
∞∑

l=1

( ∞∑

k=1

∑

j∈Sm

∑

n∈B(i)
j

|an|2|bnlk|2
)p/2

≥
∑

j∈Sm

( ∞∑

k=1

∑

n∈B(i)
j

|an|2|bnljik|2
)p/2

=
∑

j∈Sm

( ∑

n∈B(i)
j

|an|2
∞∑

k=1

|bnljik|2
)p/2

≥ 1
(4CK‖Q‖)p

∑

j∈Sm

( ∑

n∈B(i)
j

|an|2
)p/2

for any scalars (an).
Hence, the inequality (2) follows from Lemma 3.3.

As a consequence we get the following results:

Theorem 3.4. Every normalized unconditional basis of an infinite-
dimensional complemented subspace of `p(`2) (0 < p < 1) is equivalent
to a permutation of the unit vector basis of one of the following spaces: `p,
`2, `p ⊕ `2, `p(`n2 )∞n=1, `2 ⊕ `p(`n2 )∞n=1, `p(`2).

Theorem 3.5. The following quasi-Banach spaces have a unique uncon-
ditional basis up to permutation: `p ⊕ `2, `p(`n2 )∞n=1, `2 ⊕ `p(`n2 )∞n=1, `p(`2).

The authors want to thank Prof. Gustavo Ochoa for showing them the
proof of Lemma 2.7.
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