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An inequality between the James and
James type constants in Banach spaces

by

Fenghui Wang (Luoyang) and Changsen Yang (Xinxiang)

Abstract. We consider the James and Schäffer type constants recently introduced
by Takahashi. We prove an equality between James (resp. Schäffer) type constants and
the modulus of convexity (resp. smoothness). By using these equalities, we obtain some
estimates for the new constants in terms of the James constant. As a result, we improve
an inequality between the Zbăganu and James constants.

1. Introduction. Recently, the problem of finding the relation between
the James constant J(X) and the von Neumann–Jordan constant CNJ(X)
has been investigated by several authors. This problem was originally studied
by Kato, Maligranda and Takahashi [16] who proved

CNJ(X) ≤ [J(X)]2

1 + [J(X)− 1]2
.(1.1)

Since then much effort has gone into improving this inequality; see e.g., [2,
17–22, 24, 25]. There are several methods for estimating CNJ(X). Among
them we mention one due to Alonso, Martín and Papini [2], which mainly
relies on the inequality

C ′NJ(X) ≤ J(X),(1.2)

where C ′NJ(X) is a constant introduced by Gao [12]. In [21] Wang improved
(1.2) as

(1.3) C ′NJ(X) ≤ 1 +
4(J(X)− 1)2

J2(X)
.

In addition, Wang and Pang [22] obtained a similar inequality:

A2(X) ≤ 1 +
√
J(X)− 1,(1.4)
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where A2(X) is a constant introduced by Baronti, Casini and Papini [6].
Later, inequality (1.4) was improved independently by Takahashi and Kato
[20] and Wang [21] as

A2(X) ≤ 3J(X)− 2
J(X)

.(1.5)

This inequality enabled them to improve (1.1) as

CNJ(X) ≤ J(X),

which was also obtained by Yang and Li [25].
It is readily seen that inequalities (1.2)–(1.5) play an important role in

estimating the von Neumann–Jordan constant. We note that both A2(X)
and C ′NJ(X) fall into the class of James type constants, recently introduced
by Takahashi [19]. The aim of this paper is to present a general method for
estimating James type constants. Moreover we get an inequality between
the James and Schäffer type constants from an equality for the modulus
of smoothness. As an application, we strengthen an inequality between the
Zbăganu and James constants.

2. Preliminaries and notation. Throughout this paper, BX and SX
respectively denote the unit ball and the unit sphere of a Banach space X.
The von Neumann–Jordan constant, introduced by Clarkson [9], is defined
as

CNJ(X) = sup
{
‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: x ∈ SX , y ∈ BX

}
.

A Banach space X is called uniformly nonsquare ((UNS) for short), in the
sense of James, if there exists a positive number δ < 2 such that

min(‖x− y‖, ‖x+ y‖) ≤ δ
for all x, y ∈ SX . The James constant

J(X) = sup{min(‖x+ y‖, ‖x− y‖) : x, y ∈ SX}
is introduced to characterize this concept: obviously X is (UNS) in the sense
of James if and only if J(X) < 2. Now let us turn to another definition of
uniform nonsquareness. A Banach space X is called uniformly nonsquare in
the sense of Schäffer if there exists a λ > 1 such that

max(‖x− y‖, ‖x+ y‖) ≥ λ
for all x, y ∈ SX . The Schäffer constant, defined by

S(X) = inf{max(‖x− y‖, ‖x+ y‖) : x, y ∈ SX},
is introduced to characterize this concept: obviously X is uniformly non-
square in the sense of Schäffer if and only if S(X) > 1. From the equality
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J(X)S(X) = 2 (see [16]), we know that these two definitions of (UNS) are
equivalent. For more information on these constants, we refer to [13, 14, 16].

Recall the generalized mean defined by

Mt(a, b) :=
(
at + bt

2

)1/t

,

where a and b are two positive real numbers. It is well known thatMt(a, b)
is nondecreasing and

M−∞(a, b) := lim
t→−∞

Mt(a, b) = min(a, b),

M+∞(a, b) := lim
t→+∞

Mt(a, b) = max(a, b),

andM0(a, b) = limt→0Mt(a, b) =
√
ab. By using the generalized mean, we

now recall two classes of geometric constants, which include the James and
Schäffer constants, respectively.

Definition 2.1 (Takahashi [19]). (1) For τ ≥ 0 and t ∈ [−∞,+∞), a
James type constant is defined by

JX,t(τ) = sup{Mt(‖x− τy‖, ‖x+ τy‖) : x, y ∈ SX}.
(2) For τ ≥ 0 and 1 < t ≤ +∞, a Schäffer type constant is defined by

SX,t(τ) = inf{Mt(‖x− τy‖, ‖x+ τy‖) : x, y ∈ SX}.
Obviously JX,t(τ) includes some known constants, such as Alonso–Llo-

rens-Fuster’s constant T (X) [1], Baronti–Casini–Papini’s constant A2(X)
[6], Gao’s constant C ′NJ(X) [12] and Yang–Wang’s modulus γX(t) [26]. Also
SX,t(τ) is an extension of S(X), including Gao’s constant f(X) [12] as a
special case.

Notation. Jt := JX,t(1), J := J(X), St := SX,t(1) and S := S(X).

3. Main results

3.1. James type constants. The modulus of convexity δX : [0, 2] →
[0, 1] is defined as

δX(ε) = inf{1− ‖x+ y‖/2 : x, y ∈ SX , ‖x− y‖ ≥ ε}.
Obviously, δX is nondecreasing on [0, 2]; moreover, the function δX(ε)/ε is
also nondecreasing on (0, 2] (see [11]). The equality

J = sup
0≤ε≤2

{ε : δX(ε) ≤ 1− ε/2}

holds for any nontrivial space, while the equality

1− δX(J) = J/2(3.1)

holds whenever X is uniformly nonsquare (see [8]).
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We recall several known results on the modulus of convexity:

A2(X) = 1 + sup√
2≤ε≤2

{ε/2− δX(ε)}

by Baronti, Casini and Papini [6, Proposition 2.4];

T (X) = sup
0≤ε≤2

√
2ε(1− δX(ε))

by Alonso and Llorens-Fuster [1, Theorem 11]; and

C ′NJ(X) = sup
0≤ε≤2

{ε2/4 + (1− δX(ε))2}

by Alonso, Martín and Papini [2, Proposition 4]. We generalize the formulas
above as follows.

Theorem 3.1. Let t ∈ R. Then for any Banach space X,

Jt = sup{Mt(ε, 2(1− δX(ε))) : J ≤ ε ≤ 2}.(3.2)

Proof. Let ε ∈ [0, 2] and let η > 0 be sufficiently small. Then there exist
x, y ∈ SX with ‖x− y‖ = ε and ‖x+ y‖ ≥ 2(1− δX(ε))− η. Therefore

Mt(ε, 2(1− δX(ε))− η) ≤Mt(‖x− y‖, ‖x+ y‖) ≤ Jt.

Since ε is arbitrary, by letting η → 0 we get

Jt ≥ sup
0≤ε≤2

Mt(ε, 2(1− δX(ε))) ≥ sup
J≤ε≤2

Mt(ε, 2(1− δX(ε))).

To show the opposite inequality let x, y ∈ SX . If max(‖x− y‖, ‖x+ y‖) ≥ J,
then we let ‖x−y‖ = ε and assume without loss of generality that ‖x−y‖ =
max(‖x− y‖, ‖x+ y‖). It follows that ε ≥ J , ‖x+ y‖ ≤ 2(1− δX(ε)) and

Mt(‖x− y‖, ‖x+ y‖) ≤Mt(ε, 2(1− δX(ε)))
≤ sup

J≤ε≤2
Mt(ε, 2(1− δX(ε))).

Otherwise, if max(‖x− y‖, ‖x+ y‖) ≤ J, then

Mt(‖x− y‖, ‖x+ y‖) ≤ J =Mt(J, 2(1− δX(J)))
≤ sup

J≤ε≤2
Mt(ε, 2(1− δX(ε))).

Altogether,
Jt ≤ sup

J≤ε≤2
Mt(ε, 2(1− δX(ε))),

which completes the proof.

Remark 3.2. To compute Jt, it suffices to consider the functionMt(ε,
2(1−δX(ε))) on [J, 2] instead of [0, 2]. So our result generalizes and improves
some known results.
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Example 3.3 (`∞-`1 space). Let X be R2 with the norm

‖x‖ = ‖(x1, x2)‖ =
{

max(|x1|, |x2|) if x1x2 ≥ 0,
|x1|+ |x2| if x1x2 ≤ 0.

Since δX(ε) = max(0, (ε− 1)/2) and J = 3/2 (see [15, 16]), we get

Jt = max
3/2≤ε≤2

(
εt + (3− ε)t

2

)1/t

.

It is easy to see that Jt = 3/2 for t ≤ 1 and

Jt =
(

1 + 2t

2

)1/t

for t ≥ 1.

Example 3.4 (`2-`1 space). Let X be R2 with the norm

‖x‖ = ‖(x1, x2)‖ =
{

(|x1|2 + |x2|2)1/2 if x1x2 ≥ 0,
|x1|+ |x2| if x1x2 ≤ 0.

Since J =
√

8/3 and

δX(ε) = 1−
√

1− ε2/8 for
√

8/3 ≤ ε ≤ 2

(see [15, 16]), we get

Jt = max√
8/3≤ε≤2

(
εt + (4− ε2/2)t/2

2

)1/t

.

A simple calculation shows that

Jt =
√

2
(

1 + 2t/2

2

)1/t

for t ≥ 0,

and

Jt = 2
(

1 + 2t/(t−2)

2

)1/t−1/2

for t ≤ 0.

We now extend and improve inequalities (1.2)–(1.5) to the following form.

Theorem 3.5. Let t ≥ 0. Then for any Banach space X,

Jt ≤
2Mt(J, 2(J − 1))

J
.(3.3)

Proof. Since in the case J = 2 the inequality is obvious, we assume J < 2,
that is, X is (UNS). By the monotonicity of δX(ε)/ε and (3.1), we have

δX(ε) ≥ δX(J)
J

ε =
(2− J)ε

2J
=

(S − 1)ε
2
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for any ε ≥ J. This together with Theorem 3.1 yields

Jt = sup
J≤ε≤2

Mt(ε, 2(1− δX(ε)))

≤ sup
J≤ε≤2

Mt(ε, 2− (S − 1)ε) = 2Mt(1, 2− S)

=
2Mt(J, 2(J − 1))

J
.

Remark 3.6. (1) When X is (UNS), by a simple calculation, we can ex-
tend the above result from [0,+∞) to [t0,+∞),where t0 =1−1/logS−1(2−S).
The upper bound ofJt isMt(εt, 2−(S−1)εt)with εt = 2/(S−1+(S−1)1/(1−t))
whenever t < t0.

(2) It is readily seen that inequalities (1.2)–(1.5) are all included in (3.3),
which shows that our result generalizes some known results.

Corollary 3.7. X is (UNS) ⇔ Jt < 2 for some t ∈ R.

Proof. By the definition of Jt, it is not hard to check that Jt ≤ 2 for all
t ∈ R. Thus our assertion is equivalent to J = 2 ⇔ Jt = 2 for all t ∈ R.
That J = 2⇒ Jt = 2 for all t ∈ R follows from Jt ≥ J. To see the converse,
let t ≥ 0 be fixed. By assumption Jt = 2. It follows from (3.3) that

J = J(Jt/2) ≤Mt(J, 2(J − 1)) ≤ J,
which impliesMt(J, 2(J − 1)) = J and thus J = 2.

3.2. Schäffer type constant. The modulus of smoothness %X : [0, 2]→
[0, 1] is defined as

%X(ε) = sup{1− ‖x+ y‖/2 : x, y ∈ SX , ‖x− y‖ ≤ ε}.
It is known that %X is continuous and convex on [0, 2]; moreover, the function
%X(ε)/ε is also nondecreasing on (0, 2]. In addition

1− %X(S) = S/2

for any Banach space X (see e.g. [3, 4, 7, 5]). By using related properties,
we state a relation between this modulus and Schäffer type constants.

Theorem 3.8. Let t > 1. Then for any Banach space X,

St = min{Mt(ε, 2(1− %X(ε))) : 0 ≤ ε ≤ S}.
Proof. Let ε ∈ [0, 2] be fixed. For sufficiently small η > 0, there exist

x, y ∈ SX with ‖x− y‖ = ε so that ‖x+ y‖ ≤ 2(1− %X(ε)) + η. Hence

Mt(ε, 2(1− %X(ε)) + η) ≥Mt(‖x− y‖, ‖x+ y‖) ≥ St.
Since ε is arbitrary, by letting η → 0 we obtain

St ≤ inf
0≤ε≤2

Mt(ε, 2(1− %X(ε))) ≤ inf
0≤ε≤S

Mt(ε, 2(1− %X(ε))).
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To see the opposite inequality, let x, y ∈ SX . If min(‖x − y‖, ‖x + y‖) ≤ S,
then we assume without loss of generality that ‖x−y‖ = min(‖x−y‖, ‖x+y‖)
and let ‖x− y‖ = ε. Then ε ≤ S, ‖x+ y‖ ≥ 2(1− %X(ε)) and

Mt(‖x− y‖, ‖x+ y‖) ≥Mt(ε, 2(1− %X(ε))) ≥ inf
0≤ε≤S

Mt(ε, 2(1− %X(ε))).

Otherwise, if min(‖x− y‖, ‖x+ y‖) ≥ S, then

Mt(‖x− y‖, ‖x+ y‖) ≥ S =Mt(S, 2(1− %X(S)))
≥ inf

0≤ε≤S
Mt(ε, 2(1− %X(ε))).

Altogether
St ≥ inf

0≤ε≤S
Mt(ε, 2(1− %X(ε))).

Thus the result follows from the continuity of %X(ε).

Example 3.9. Let X be the `∞-`1 space defined in Example 3.3. From
%X(ε) = max(ε/4, ε− 1) (see [7]), it follows that

St = min
0≤ε≤4/3

(
εt + (2− ε/2)t

2

)1/t

= 2
(

2
1 + 2 t′

)1/t′

,

where t′ > 1, 1/t+ 1/t′ = 1.

Example 3.10 (`2-`∞ space). Let X be R2 with the norm

‖x‖ = ‖(x1, x2)‖ =
{

(|x1|2 + |x2|2)1/2 if x1x2 ≥ 0,
max(|x1|, |x2|) if x1x2 ≤ 0.

Since J = 1 + 1/
√

2, we have S = 2(2−
√

2). It is proved in [10] that

%X(ε) = max
(

ε

2
√

2
,
ε√
2

+ 1−
√

2
)
,

which implies that

St = min
0≤ε≤2(2−

√
2)

(
εt + (2− ε/

√
2)t

2

)1/t

=
√

2
(

2
1 + 2t′/2

)1/t′

,

where t′ > 1, 1/t+ 1/t′ = 1.

It is readily seen that St ≤ S for every t > 1. By the formula JS = 2, we
see that the upper bound of St is 2/J. We now consider its lower bound.

Theorem 3.11. For any Banach space X,

St ≥ 1/Mt′(1, J − 1),(3.4)

where t, t′ > 1 with 1/t+ 1/t′ = 1.
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Proof. Since %X(ε)/ε is nondecreasing and 2(1 − %X(S)) = S, it follows
that

%X(ε) ≤ %X(S)
S

ε =
(2− S)ε

2S
=

(J − 1)ε
2

for all ε ∈ [0, S]. Using Theorem 3.8 now yields

St = min
0≤ε≤S

Mt(ε, 2(1− %X(ε))) ≥ min
0≤ε≤S

Mt(ε, 2− (J − 1)ε).

SinceMt(ε, 2− (J − 1)ε) attains its minimum at

εt :=
2

(J − 1) + (J − 1)−1/(t−1)
≤ 2

(J − 1) + 1
= S,

we infer that

St ≥Mt(εt, 2− (J − 1)εt) = 1/Mt′(1, J − 1).

Remark 3.12. (1) Example 3.9 shows that inequality (3.4) is sharp even
for a uniformly nonsquare space.

(2) Theorem 3.11 is an improvement of [23, Theorem 2]. In fact, for t = 2,
inequality (3.4) is reduced to

f(X) ≥ 4
1 + (J − 1)2

,

where f(X) = 2(S2)2 is a constant introduced in [12].

Corollary 3.13. X is (UNS) ⇔ St > 1 for some t > 1.

Proof. By the definition of St, we know that St ≥ 1 for all t > 1. Thus our
assertion is equivalent to J = 2⇔ St = 1 for all t > 1. That J = 2⇒ St = 1
for all t > 1 follows from the estimate St ≤ 2/J. To see the converse, we
deduce from (3.4) that

1 ≥Mt′(1, J − 1) ≥ 1/St = 1,

which impliesMt′(1, J − 1) = 1 and thus J = 2.

3.3. Zbăganu constant. The Zbăganu constant, introduced in [27], is
defined as

CZ(X) = sup
{
‖x+ y‖ ‖x− y‖
‖x‖2 + ‖y‖2

: x ∈ SX , y ∈ BX
}
.

Recently Takahashi studied the relation between the Zbăganu and James
constants and proved the following inequality (see [19, Theorem 18]):

CZ(X) ≤
J +

√
J2 + (2− J)2

2
.(3.5)

Applying the previous result, we can improve (3.5) to the following form.
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Theorem 3.14. For any Banach space X,

CZ(X) ≤
2(J − 1) +

√
4(J − 1)2 + (2− J)2

J
.

Proof. Observe first that ‖x±τy‖ ≤ τ‖x±y‖+(1−τ) for every 0 ≤ τ ≤ 1
and x ∈ SX . This together with Theorem 3.5 leads to

J2
X,0(τ)
1 + τ2

= sup
{
‖x+ τy‖ ‖x− τy‖

1 + τ2
: x, y ∈ SX

}
≤
J2
X,0(1)τ2 + 2JX,1(1)τ(1− τ) + (1− τ)2

1 + τ2

≤ (3J − 4)τ2 + 4(J − 1)τ + J

J(1 + τ2)
.

It follows from a simple computation that

CZ(X) = sup
{
J2
X,0(τ)
1 + τ2

: 0 ≤ τ ≤ 1
}

≤ max
0≤τ≤1

(3J − 4)τ2 + 4(J − 1)τ + J

J(1 + τ2)

=
2(J − 1) +

√
4(J − 1)2 + (2− J)2

J
.

Remark 3.15. Since
√

2 ≤ J ≤ 2, one gets

2(J − 1) +
√

4(J − 1)2 + (2− J)2

J
≤ J ≤

J +
√
J2 + (2− J)2

2
.

Indeed, the right-hand inequality is obvious and the left-hand inequality
follows from the following chain:

2(J − 1) +
√

4(J − 1)2 + (2− J)2 ≤ J2

⇔ 4(J − 1)2 + (2− J)2 ≤ (1 + (J − 1)2)2

⇔ (2− J)2 ≤ (1− (J − 1)2)2

⇔ (J − 1)2 ≤ J − 1.

Thus our result significantly improves (3.5).
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