An inequality between the James and James type constants in Banach spaces

by

FENGHUI WANG (Luoyang) and CHANGSEN YANG (Xinxiang)

Abstract. We consider the James and Schäffer type constants recently introduced by Takahashi. We prove an equality between James (resp. Schäffer) type constants and the modulus of convexity (resp. smoothness). By using these equalities, we obtain some estimates for the new constants in terms of the James constant. As a result, we improve an inequality between the Zbăganu and James constants.

1. Introduction. Recently, the problem of finding the relation between the James constant $J(X)$ and the von Neumann–Jordan constant $C_{NJ}(X)$ has been investigated by several authors. This problem was originally studied by Kato, Maligranda and Takahashi [16] who proved

$$C_{NJ}(X) \leq \frac{[J(X)]^2}{1 + [J(X) - 1]^2}.$$

(1.1)

Since then much effort has gone into improving this inequality; see e.g., [2, 17, 22, 24, 25]. There are several methods for estimating $C_{NJ}(X)$. Among them we mention one due to Alonso, Martín and Papini [2], which mainly relies on the inequality

$$C'_{NJ}(X) \leq J(X),$$

(1.2)

where $C'_{NJ}(X)$ is a constant introduced by Gao [12]. In [21] Wang improved (1.2) as

$$C'_{NJ}(X) \leq 1 + \frac{4(J(X) - 1)^2}{J^2(X)}.$$

(1.3)

In addition, Wang and Pang [22] obtained a similar inequality:

$$A_2(X) \leq 1 + \sqrt{J(X) - 1},$$

(1.4)

2010 Mathematics Subject Classification: Primary 46B20.

Key words and phrases: modulus of convexity, modulus of smoothness, James constant, Schäffer constant, von Neumann–Jordan constant, Zbăganu constant.
where $A_2(X)$ is a constant introduced by Baronti, Casini and Papini \[6\]. Later, inequality (1.4) was improved independently by Takahashi and Kato \[20\] and Wang \[21\] as

$$A_2(X) \leq \frac{3J(X) - 2}{J(X)}.$$

(1.5)

This inequality enabled them to improve (1.1) as

$$C_{NJ}(X) \leq J(X),$$

which was also obtained by Yang and Li \[25\].

It is readily seen that inequalities (1.2)–(1.5) play an important role in estimating the von Neumann–Jordan constant. We note that both $A_2(X)$ and $C'_{NJ}(X)$ fall into the class of James type constants, recently introduced by Takahashi \[19\]. The aim of this paper is to present a general method for estimating James type constants. Moreover we get an inequality between the James and Schäffer type constants from an equality for the modulus of smoothness. As an application, we strengthen an inequality between the Zbăganu and James constants.

2. Preliminaries and notation. Throughout this paper, B_X and S_X respectively denote the unit ball and the unit sphere of a Banach space X. The von Neumann–Jordan constant, introduced by Clarkson \[9\], is defined as

$$C_{NJ}(X) = \sup \left\{ \frac{\|x + y\|^2 + \|x - y\|^2}{2(\|x\|^2 + \|y\|^2)} : x \in S_X, y \in B_X \right\}.$$

A Banach space X is called uniformly nonsquare ((UNS) for short), in the sense of James, if there exists a positive number $\delta < 2$ such that

$$\min(\|x - y\|, \|x + y\|) \leq \delta$$

for all $x, y \in S_X$. The James constant

$$J(X) = \sup \{ \min(\|x + y\|, \|x - y\|) : x, y \in S_X \}$$

is introduced to characterize this concept: obviously X is (UNS) in the sense of James if and only if $J(X) < 2$. Now let us turn to another definition of uniform nonsquareness. A Banach space X is called uniformly nonsquare in the sense of Schäffer if there exists a $\lambda > 1$ such that

$$\max(\|x - y\|, \|x + y\|) \geq \lambda$$

for all $x, y \in S_X$. The Schäffer constant, defined by

$$S(X) = \inf \{ \max(\|x - y\|, \|x + y\|) : x, y \in S_X \},$$

is introduced to characterize this concept: obviously X is uniformly nonsquare in the sense of Schäffer if and only if $S(X) > 1$. From the equality
The James and James type constants

\[J(X)S(X) = 2 \text{ (see [16]) }, \]

we know that these two definitions of (UNS) are equivalent. For more information on these constants, we refer to [13, 14, 16].

Recall the generalized mean defined by

\[M_t(a, b) := \left(\frac{a^t + b^t}{2} \right)^{1/t}, \]

where \(a \) and \(b \) are two positive real numbers. It is well known that \(M_t(a, b) \) is nondecreasing and

\[M_{-\infty}(a, b) := \lim_{t \to -\infty} M_t(a, b) = \min(a, b), \]
\[M_{+\infty}(a, b) := \lim_{t \to +\infty} M_t(a, b) = \max(a, b), \]

and \(M_0(a, b) = \lim_{t \to 0} M_t(a, b) = \sqrt{ab} \). By using the generalized mean, we now recall two classes of geometric constants, which include the James and Schäffer constants, respectively.

Definition 2.1 (Takahashi [19]). (1) For \(\tau \geq 0 \) and \(t \in [-\infty, +\infty) \), a James type constant is defined by

\[J_{X,t}(\tau) = \sup\{ M_t(\|x - \tau y\|, \|x + \tau y\|) : x, y \in S_X \}. \]

(2) For \(\tau \geq 0 \) and \(1 < t \leq +\infty \), a Schäffer type constant is defined by

\[S_{X,t}(\tau) = \inf\{ M_t(\|x - \tau y\|, \|x + \tau y\|) : x, y \in S_X \}. \]

Obviously, \(J_{X,t}(\tau) \) includes some known constants, such as Alonso–Llorens-Fuster’s constant \(T(X) \) [1], Baronti–Casini–Papini’s constant \(A_2(X) \) [6], Gao’s constant \(C'_{NJ}(X) \) [12] and Yang–Wang’s modulus \(\gamma_X(t) \) [26]. Also \(S_{X,t}(\tau) \) is an extension of \(S(X) \), including Gao’s constant \(f(X) \) [12] as a special case.

Notation. \(J_t := J_{X,t}(1) \), \(J := J(X) \), \(S_t := S_{X,t}(1) \) and \(S := S(X) \).

3. Main results

3.1. James type constants. The modulus of convexity \(\delta_X : [0, 2] \to [0, 1] \) is defined as

\[\delta_X(\epsilon) = \inf\{ 1 - \|x + y\|/2 : x, y \in S_X, \|x - y\| \geq \epsilon \}. \]

Obviously, \(\delta_X \) is nondecreasing on \([0, 2]\); moreover, the function \(\delta_X(\epsilon)/\epsilon \) is also nondecreasing on \((0, 2]\) (see [11]). The equality

\[J = \sup_{0 \leq \epsilon \leq 2} \{ \epsilon : \delta_X(\epsilon) \leq 1 - \epsilon/2 \} \]

holds for any nontrivial space, while the equality

\[1 - \delta_X(J) = J/2 \]

holds whenever \(X \) is uniformly nonsquare (see [8]).
We recall several known results on the modulus of convexity:

\[A_2(X) = 1 + \sup_{\sqrt{2} \leq \epsilon \leq 2} \{\epsilon/2 - \delta_X(\epsilon)\} \]

by Baronti, Casini and Papini [6, Proposition 2.4];

\[T(X) = \sup_{0 \leq \epsilon \leq 2} \sqrt{2\epsilon(1 - \delta_X(\epsilon))} \]

by Alonso and Llorens-Fuster [1, Theorem 11]; and

\[C'_{NJ}(X) = \sup_{0 \leq \epsilon \leq 2} \{\epsilon^2/4 + (1 - \delta_X(\epsilon))^2\} \]

by Alonso, Martín and Papini [2, Proposition 4]. We generalize the formulas above as follows.

Theorem 3.1. Let \(t \in \mathbb{R} \). Then for any Banach space \(X \),

\[J_t = \sup \{ J_t(\epsilon, 2(1 - \delta_X(\epsilon))) : J \leq \epsilon \leq 2 \}. \]

Proof. Let \(\epsilon \in [0, 2] \) and let \(\eta > 0 \) be sufficiently small. Then there exist \(x, y \in S_X \) with \(\| x - y \| = \epsilon \) and \(\| x + y \| \geq 2(1 - \delta_X(\epsilon)) - \eta \). Therefore

\[M_t(\epsilon, 2(1 - \delta_X(\epsilon)) - \eta) \leq M_t(\| x - y \|, \| x + y \|) \leq J_t. \]

Since \(\epsilon \) is arbitrary, by letting \(\eta \to 0 \) we get

\[J_t \geq \sup_{0 \leq \epsilon \leq 2} M_t(\epsilon, 2(1 - \delta_X(\epsilon))) \geq \sup_{J \leq \epsilon \leq 2} M_t(\epsilon, 2(1 - \delta_X(\epsilon))). \]

To show the opposite inequality let \(x, y \in S_X \). If \(\max(\| x - y \|, \| x + y \|) \geq J \), then we let \(\| x - y \| = \epsilon \) and assume without loss of generality that \(\| x - y \| = \max(\| x - y \|, \| x + y \|) \). It follows that \(\epsilon \geq J \), \(\| x + y \| \leq 2(1 - \delta_X(\epsilon)) \) and

\[M_t(\| x - y \|, \| x + y \|) \leq M_t(\epsilon, 2(1 - \delta_X(\epsilon))) \leq \sup_{J \leq \epsilon \leq 2} M_t(\epsilon, 2(1 - \delta_X(\epsilon))). \]

Otherwise, if \(\max(\| x - y \|, \| x + y \|) \leq J \), then

\[M_t(\| x - y \|, \| x + y \|) \leq J = M_t(J, 2(1 - \delta_X(J))) \leq \sup_{J \leq \epsilon \leq 2} M_t(\epsilon, 2(1 - \delta_X(\epsilon))). \]

Altogether,

\[J_t \leq \sup_{J \leq \epsilon \leq 2} M_t(\epsilon, 2(1 - \delta_X(\epsilon))), \]

which completes the proof. \(\blacksquare \)

Remark 3.2. To compute \(J_t \), it suffices to consider the function \(M_t(\epsilon, 2(1 - \delta_X(\epsilon))) \) on \([J, 2]\) instead of \([0, 2]\). So our result generalizes and improves some known results.
The James and James type constants

Example 3.3 (ℓ_∞-ℓ_1 space). Let X be \mathbb{R}^2 with the norm

$$
\|x\| = \|(x_1, x_2)\| = \begin{cases}
\max(|x_1|, |x_2|) & \text{if } x_1x_2 \geq 0, \\
|x_1| + |x_2| & \text{if } x_1x_2 \leq 0.
\end{cases}
$$

Since $\delta_X(\epsilon) = \max(0, (\epsilon - 1)/2)$ and $J = 3/2$ (see [15, 16]), we get

$$
J_t = \max_{3/2 \leq \epsilon \leq 2} \left(\frac{\epsilon^t + (3 - \epsilon)^t}{2} \right)^{1/t}.
$$

It is easy to see that $J_t = 3/2$ for $t \leq 1$ and

$$
J_t = \left(\frac{1 + 2^t}{2} \right)^{1/t} \text{ for } t \geq 1.
$$

Example 3.4 (ℓ_2-ℓ_1 space). Let X be \mathbb{R}^2 with the norm

$$
\|x\| = \|(x_1, x_2)\| = \begin{cases}
(\|x_1\|^2 + \|x_2\|^2)^{1/2} & \text{if } x_1x_2 \geq 0, \\
|x_1| + |x_2| & \text{if } x_1x_2 \leq 0.
\end{cases}
$$

Since $J = \sqrt{8/3}$ and

$$
\delta_X(\epsilon) = 1 - \sqrt{1 - \epsilon^2/8} \quad \text{for } \sqrt{8/3} \leq \epsilon \leq 2
$$

(see [15, 16]), we get

$$
J_t = \max_{\sqrt{8/3} \leq \epsilon \leq 2} \left(\frac{\epsilon^t + (4 - \epsilon^2/2)^{t/2}}{2} \right)^{1/t}.
$$

A simple calculation shows that

$$
J_t = \sqrt{2} \left(\frac{1 + 2t^2}{2} \right)^{1/t} \text{ for } t \geq 0,
$$

and

$$
J_t = 2 \left(\frac{1 + 2^{t/(t-2)}}{2} \right)^{1/t-1/2} \text{ for } t \leq 0.
$$

We now extend and improve inequalities (1.2)–(1.5) to the following form.

Theorem 3.5. Let $t \geq 0$. Then for any Banach space X,

$$
(3.3) \quad J_t \leq \frac{2\mathcal{M}_t(J, 2(J - 1))}{J}.
$$

Proof. Since in the case $J = 2$ the inequality is obvious, we assume $J < 2$, that is, X is (UNS). By the monotonicity of $\delta_X(\epsilon)/\epsilon$ and (3.1), we have

$$
\delta_X(\epsilon) \geq \frac{\delta_X(J)}{J} \epsilon = \frac{(2 - J)\epsilon}{2J} = \frac{(S - 1)\epsilon}{2}.
$$
for any \(\epsilon \geq J \). This together with Theorem 3.1 yields
\[
J_t = \sup_{J \leq \epsilon \leq 2} \mathcal{M}_t(\epsilon, 2(1 - \delta_X(\epsilon))) \\
\leq \sup_{J \leq \epsilon \leq 2} \mathcal{M}_t(\epsilon, 2 - (S - 1)\epsilon) = 2\mathcal{M}_t(1, 2 - S) \\
= 2\mathcal{M}_t(J, 2(J - 1)) / J.
\]

Remark 3.6. (1) When \(X \) is (UNS), by a simple calculation, we can extend the above result from \([0, +\infty)\) to \([t_0, +\infty)\), where \(t_0 = 1 - 1 / \log_{S-1}(2 - S) \). The upper bound of \(J_t \) is \(\mathcal{M}_t(\epsilon_t, 2 - (S - 1)\epsilon_t) \) with \(\epsilon_t = 2 / ((S - 1) + (S - 1)^{1/(1 - t)}) \) whenever \(t < t_0 \).

(2) It is readily seen that inequalities (1.2)–(1.5) are all included in (3.3), which shows that our result generalizes some known results.

Corollary 3.7. \(X \) is (UNS) \(\Leftrightarrow J_t < 2 \) for some \(t \in \mathbb{R} \).

Proof. By the definition of \(J_t \), it is not hard to check that \(J_t \leq 2 \) for all \(t \in \mathbb{R} \). Thus our assertion is equivalent to \(J = 2 \Leftrightarrow J_t = 2 \) for all \(t \in \mathbb{R} \). That \(J = 2 \Rightarrow J_t = 2 \) for all \(t \in \mathbb{R} \) follows from \(J_t \geq J \). To see the converse, let \(t \geq 0 \) be fixed. By assumption \(J_t = 2 \). It follows from (3.3) that
\[
J = J(J_t/2) \leq \mathcal{M}_t(J, 2(J - 1)) \leq J,
\]
which implies \(\mathcal{M}_t(J, 2(J - 1)) = J \) and thus \(J = 2 \). \(\blacksquare \)

3.2. Schäffer type constant. The *modulus of smoothness* \(\varrho_X : [0, 2] \to [0, 1] \) is defined as
\[
\varrho_X(\epsilon) = \sup\{1 - \|x + y\|/2 : x, y \in S_X, \|x - y\| \leq \epsilon\}.
\]
It is known that \(\varrho_X \) is continuous and convex on \([0, 2] \); moreover, the function \(\varrho_X(\epsilon)/\epsilon \) is also nondecreasing on \([0, 2] \). In addition
\[
1 - \varrho_X(S) = S/2
\]
for any Banach space \(X \) (see e.g. [3, 4, 7, 5]). By using related properties, we state a relation between this modulus and Schäffer type constants.

Theorem 3.8. Let \(t > 1 \). Then for any Banach space \(X \),
\[
S_t = \min\{\mathcal{M}_t(\epsilon, 2(1 - \varrho_X(\epsilon))) : 0 \leq \epsilon \leq S\}.
\]

Proof. Let \(\epsilon \in [0, 2] \) be fixed. For sufficiently small \(\eta > 0 \), there exist \(x, y \in S_X \) with \(\|x - y\| = \epsilon \) so that \(\|x + y\| \leq 2(1 - \varrho_X(\epsilon)) + \eta \). Hence
\[
\mathcal{M}_t(\epsilon, 2(1 - \varrho_X(\epsilon)) + \eta) \geq \mathcal{M}_t(\|x - y\|, \|x + y\|) \geq S_t.
\]
Since \(\epsilon \) is arbitrary, by letting \(\eta \to 0 \) we obtain
\[
S_t \leq \inf_{0 \leq \epsilon \leq 2} \mathcal{M}_t(\epsilon, 2(1 - \varrho_X(\epsilon))) \leq \inf_{0 \leq \epsilon \leq S} \mathcal{M}_t(\epsilon, 2(1 - \varrho_X(\epsilon))).
\]
To see the opposite inequality, let \(x, y \in S_X \). If \(\min(\|x - y\|, \|x + y\|) \leq S \), then we assume without loss of generality that \(\|x - y\| = \min(\|x - y\|, \|x + y\|) \) and let \(\|x - y\| = \epsilon \). Then \(\epsilon \leq S, \|x + y\| \geq 2(1 - \varrho_X(\epsilon)) \) and
\[
\mathcal{M}_t(\|x - y\|, \|x + y\|) \geq \mathcal{M}_t(\epsilon, 2(1 - \varrho_X(\epsilon))) \geq \inf_{0 \leq \epsilon \leq S} \mathcal{M}_t(\epsilon, 2(1 - \varrho_X(\epsilon))).
\]
Otherwise, if \(\min(\|x - y\|, \|x + y\|) \geq S \), then
\[
\mathcal{M}_t(\|x - y\|, \|x + y\|) \geq S = \mathcal{M}_t(S, 2(1 - \varrho_X(S))) \geq \inf_{0 \leq \epsilon \leq S} \mathcal{M}_t(\epsilon, 2(1 - \varrho_X(\epsilon))).
\]
Altogether
\[
S_t \geq \inf_{0 \leq \epsilon \leq S} \mathcal{M}_t(\epsilon, 2(1 - \varrho_X(\epsilon))).
\]
Thus the result follows from the continuity of \(\varrho_X(\epsilon) \).

Example 3.9. Let \(X \) be the \(\ell_\infty - \ell_1 \) space defined in Example 3.3. From \(\varrho_X(\epsilon) = \max(\epsilon/4, \epsilon - 1) \) (see [7]), it follows that
\[
S_t = \min_{0 \leq \epsilon \leq 4/3} \left(\frac{\epsilon^t + (2 - \epsilon/2)^t}{2} \right)^{1/t} = 2^t \left(\frac{2}{1 + 2^{t'}} \right)^{1/t'},
\]
where \(t' > 1, 1/t + 1/t' = 1 \).

Example 3.10 (\(\ell_2 - \ell_\infty \) space). Let \(X \) be \(\mathbb{R}^2 \) with the norm
\[
\|x\| = \|(x_1, x_2)\| = \begin{cases} (|x_1|^2 + |x_2|^2)^{1/2} & \text{if } x_1x_2 \geq 0, \\ \max(|x_1|, |x_2|) & \text{if } x_1x_2 \leq 0. \end{cases}
\]
Since \(J = 1 + 1/\sqrt{2} \), we have \(S = 2(2 - \sqrt{2}) \). It is proved in [10] that
\[
\varrho_X(\epsilon) = \max \left(\frac{\epsilon}{2\sqrt{2}}, \frac{\epsilon}{\sqrt{2}} + 1 - \sqrt{2} \right),
\]
which implies that
\[
S_t = \min_{0 \leq \epsilon \leq 2(2-\sqrt{2})} \left(\frac{\epsilon^t + (2 - \epsilon/\sqrt{2})^t}{2} \right)^{1/t} = \sqrt{2} \left(\frac{2}{1 + 2^{t'/2}} \right)^{1/t'},
\]
where \(t' > 1, 1/t + 1/t' = 1 \).

It is readily seen that \(S_t \leq S \) for every \(t > 1 \). By the formula \(JS = 2 \), we see that the upper bound of \(S_t \) is \(2/J \). We now consider its lower bound.

Theorem 3.11. For any Banach space \(X \),
\[
S_t \geq 1/M_{t'}(1, J - 1),
\]
where \(t, t' > 1 \) with \(1/t + 1/t' = 1 \).
Proof. Since $\varrho_X(\epsilon)/\epsilon$ is nondecreasing and $2(1 - \varrho_X(S)) = S$, it follows that

$$\varrho_X(\epsilon) \leq \frac{\varrho_X(S)}{S} \epsilon = \frac{(2 - S)\epsilon}{2S} = \frac{(J - 1)\epsilon}{2}$$

for all $\epsilon \in [0, S]$. Using Theorem 3.8 now yields

$$S_t = \min_{0 \leq \epsilon \leq S} M_t(\epsilon, 2(1 - \varrho_X(\epsilon))) \geq \min_{0 \leq \epsilon \leq S} M_t(\epsilon, 2 - (J - 1)\epsilon).$$

Since $M_t(\epsilon, 2 - (J - 1)\epsilon)$ attains its minimum at

$$\epsilon_t := \frac{2}{(J - 1) + (J - 1)^{1/(t-1)}} \leq \frac{2}{(J - 1) + 1} = S,$$

we infer that

$$S_t \geq M_t(\epsilon_t, 2 - (J - 1)\epsilon_t) = 1/M_t(1, J - 1).$$

Remark 3.12. (1) Example 3.9 shows that inequality (3.4) is sharp even for a uniformly nonsquare space.

(2) Theorem 3.11 is an improvement of [23, Theorem 2]. In fact, for $t = 2$, inequality (3.4) is reduced to

$$f(X) \geq \frac{2}{1 + (J - 1)^2},$$

where $f(X) = 2(S_2)^2$ is a constant introduced in [12].

Corollary 3.13. X is (UNS) \iff $S_t > 1$ for some $t > 1$.

Proof. By the definition of S_t, we know that $S_t \geq 1$ for all $t > 1$. Thus our assertion is equivalent to $J = 2$ \iff $S_t = 1$ for all $t > 1$. That $J = 2 \Rightarrow S_t = 1$ for all $t > 1$ follows from the estimate $S_t \leq 2/J$. To see the converse, we deduce from (3.4) that

$$1 \geq M_t(1, J - 1) \geq 1/S_t = 1,$$

which implies $M_t(1, J - 1) = 1$ and thus $J = 2$. \qed

3.3. Zbăganu constant. The Zbăganu constant, introduced in [27], is defined as

$$C_Z(X) = \sup \left\{ \frac{\|x + y\| \|x - y\|}{\|x\|^2 + \|y\|^2} : x \in S_X, y \in B_X \right\}.$$

Recently Takahashi studied the relation between the Zbăganu and James constants and proved the following inequality (see [19, Theorem 18]):

$$C_Z(X) \leq \frac{J + \sqrt{J^2 + (2 - J)^2}}{2}.$$

(3.5)

Applying the previous result, we can improve (3.5) to the following form.
Theorem 3.14. For any Banach space X,

$$C_Z(X) \leq \frac{2(J - 1) + \sqrt{4(J - 1)^2 + (2 - J)^2}}{J}.$$

Proof. Observe first that $\|x + \tau y\| \leq \tau \|x \pm y\| + (1 - \tau)$ for every $0 \leq \tau \leq 1$ and $x \in S_X$. This together with Theorem 3.5 leads to

$$J^2_{X,0}(\tau) = \sup \left\{ \frac{\|x + \tau y\|}{1 + \tau^2} : x, y \in S_X \right\}\frac{\|x - \tau y\|}{1 + \tau^2} \leq \frac{J^2_{X,0}(1)\tau^2 + 2J_{X,1}(1)\tau(1 - \tau) + (1 - \tau)^2}{1 + \tau^2} \leq \frac{(3J - 4)\tau^2 + 4(J - 1)\tau + J}{J(1 + \tau^2)}.$$

It follows from a simple computation that

$$C_Z(X) = \sup \left\{ \frac{J^2_{X,0}(\tau)}{1 + \tau^2} : 0 \leq \tau \leq 1 \right\} \leq \max_{0 \leq \tau \leq 1} \frac{(3J - 4)\tau^2 + 4(J - 1)\tau + J}{J(1 + \tau^2)} = \frac{2(J - 1) + \sqrt{4(J - 1)^2 + (2 - J)^2}}{J}. \quad \blacksquare$$

Remark 3.15. Since $\sqrt{2} \leq J \leq 2$, one gets

$$\frac{2(J - 1) + \sqrt{4(J - 1)^2 + (2 - J)^2}}{J} \leq J \leq \frac{J + \sqrt{J^2 + (2 - J)^2}}{2}.$$

Indeed, the right-hand inequality is obvious and the left-hand inequality follows from the following chain:

$$2(J - 1) + \sqrt{4(J - 1)^2 + (2 - J)^2} \leq J^2 \quad \Leftrightarrow 4(J - 1)^2 + (2 - J)^2 \leq (1 + (J - 1)^2)^2 \quad \Leftrightarrow (2 - J)^2 \leq (1 - (J - 1)^2)^2 \quad \Leftrightarrow (J - 1)^2 \leq J - 1.$$

Thus our result significantly improves (3.5).

Acknowledgements. We would like to express our sincere appreciation to the referee for his/her valuable suggestions and for pointing out an error in the proof of Theorem 3.5.

The second author is supported by the Technology and Pioneering project in Henan province (102300410012).
References

The James and James type constants

Fenghui Wang
Department of Mathematics
Luoyang Normal University
Luoyang 471022, China
E-mail: wfenghui@gmail.com

Changsen Yang
Department of Mathematics
Henan Normal University
Xinxiang 453007, China
E-mail: yangchangsen0991@sina.com

Received March 17, 2010
Revised version September 23, 2010