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Riesz sequences and arithmetic progressions
by

ITAY LONDNER and ALEXANDER OLEVSKII (Tel-Aviv)

Abstract. Given a set S of positive measure on the circle and a set A of integers,
one can ask whether E(A) := {e**} ¢ is a Riesz sequence in L?(S).

We consider this question in connection with some arithmetic properties of the set A.
Improving a result of Bownik and Speegle (2006), we construct a set S such that E(A)
is never a Riesz sequence if /A contains an arithmetic progression of length N and step
£ = O(N'"¢) with N arbitrarily large. On the other hand, we prove that every set S admits
a Riesz sequence E(A) such that A does contain arithmetic progressions of length N and
step £ = O(N) with N arbitrarily large.

1. Introduction. We use the following notation:
e /A — a set of integers.
e S — a set of positive measure on the circle T.
e |S| — the Lebesgue measure of S.
For A,B C R and z € R we let
A+B:={a+p|lacA peB}, z-A={z a|lacA}

A sequence {p;};.; of elements in a Hilbert space H is called a Riesz
sequence (RS) if there are positive constants ¢, C' such that

2
e lail® < ‘ > aigi|| <CYlail
i€l iel i€l
for every finite sequence {a;};cs of scalars.
Given A C Z (referred to as a set of frequencies) we denote
E(A) = {eM}rea.
The following result is classical (see |9, p. 203, Lemma 6.5]):

o [f A={Mu}nen C Z is lacunary in the sense of Hadamard, i.e.
An+1

An
then E(A) forms a RS in L*(S) for every S C T with |S| > 0.

>qg>1, neN,
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The following generalization is due to I. M. Mikheev [7, Thm. 7|:
o If E(A) is an Sp-system for some p > 2, i.e.
it At
|2 0|,y < €] Zene™
A€A Le(T) AeA
with some C > 0 for every finite sequence {ay}rca of scalars, then it

forms a RS in L*(S) for every S C T with |S| > 0.

J. Bourgain and L. Tzafriri proved the following result as a consequence
of their “restricted invertibility theorem” [2, Thm. 2.2|:

L3(T)

e Given § C T, there is a set A of integers with positive asymptotic
density
AN[=N,N
dens A := lim #AAN =N, NI}
N—o00 2N

such that E(A) is a RS in L*(S).

(Here and below, C denotes positive absolute constants, which might be
different from one another.)

W. Lawton [, Cor. 2.1|, assuming the Feichtinger conjecture for expo-
nentials, proved the following proposition:

> C|S]

(L) For every S there is a set of frequencies A C Z which is syndetic,
that is, A+ {0,...,n —1} = Z for some n € N, and such that E(A)
is a RS in L*(S).

Recall that the Feichtinger conjecture says that every bounded frame in
a Hilbert space can be decomposed into a finite family of RSs. This claim
turned out to be equivalent to the Kadison—Singer conjecture (see [4]). The
latter conjecture has recently been proved by A. Marcus, D. Spielman and
N. Srivastava [0], so proposition (L) holds unconditionally.

Notice that in some results above, the system E(/A) serves as a RS for all
sets S; however, the set of frequencies A is then quite sparse. In others, A is
rather dense but it works for an S given in advance.

One could wonder whether one can somehow combine the density and
“universality” properties. It turns out this is indeed possible. In [§], a se-
quence A C R has been constructed such that E(A) forms a RS in L?*(S) for
any open set S of a given measure, and the set of frequencies has optimal
density, proportional to |S|. This is not true for nowhere dense sets S.

2. Results. In this paper we consider sets of frequencies A which contain
arbitrarily long arithmetic progressions. Below we denote by N the length
of a progression, and by ¢ its step. Given A which contains arbitrarily long
arithmetic progressions there exists a set & C T of positive measure such
that F(A) is not a RS in L2(S) (see [7]).
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In the case where ¢ grows slowly with respect to N, one can define S
independent of A.
A quantitative version of such a result was proved in [3]:

o There exists a set S such that E(A) is not a RS in L*(S) whenewer A
contains arithmetic progressions of length N; and step

tj=0(N;log ¥ N;) (N1 <Na<---).
The proof is based on some estimates of the discrepancy of sequences of the

form {ak}ren on the circle.
Using a different approach we prove a stronger result:

THEOREM 1. There exists a set S C T such that if a set A C Z contains
arithmetic progressions of length N (= N1 < Na < ---) and step ¢ = O(N?),
a < 1, then E(A) is not a RS in L*(S).

Here one can construct S not depending on « and with arbitrarily small

measure of the complement.
The next theorem shows that the result is sharp.

THEOREM 2. Given a set S C T of positive measure, there is a set A C 7
such that:

(i) For infinitely many N’s A contains an arithmetic progression of
length N and step ¢ = O(N).
(i) E(A) forms a RS in L*(S).
Slightly increasing the bound for ¢, one can get a version of Theorem 2
which admits a progression of any length:

THEOREM 3. Given S one can find A with property (i) above and such
that

(i") For every o > 1 and for every N € N the set A contains an arith-
metic progression of length N and step £ < C(a)N®.

3. Proof of Theorem 1

Proof. Fix € > 0. Take a decreasing sequence {§(¥) }scn of positive num-
bers such that

(a) 2open0(£) <e/2,
(b) 6(¢) - £ — o0 as £ — oo for all a € (0,1),

For every £ € N set Iy = (—d(£),5(¢)) and let I, be the 2m-periodic extension
of Iy, i.e.

I = | J e + 2nk).
kEZ
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We define
1 - c
(1) I[[]: (E-Ie>ﬁ[—7r,7r] and SZT\UI{@]: <UI[@]> y
eN leN
whence

SI=1-> |Igl=1-> 20(6) >1—c.
/=1 /=1

Fix a < 1 and let A C Z be such that one can find arbitrarily large N € N
for which

{M+¢,...,M+N- £} CA,
with some M =M (N) € Z, { =¢(N) € N and
(2) ¢ < C(a)N

Recall that by (1) we have t € Ij if and only if £ € Iy N [—nt, 7f). Since
S lies inside the complement of Ijy, we get

)i (M) el (MR 2dt
i‘k:1c ol Cg‘zc o ‘ 27
|2 dT N

= ‘ c(k)ezlm‘ o ’ c(k zk‘r
[—Wééff]\fe ; 2mt IS; ;

To complete the proof, it is enough to show that || SIp_, c(k)eikTHLg(Iec) can
be made arbitrarily small while keeping Z,ivzl lc(k)|> bounded away from
zero. This observation allows us to reformulate the problem as a norm con-
centration problem for trigonometric polynomials of degree N on the inter-
val Iy.

Let
1 N
Py(t)=—=) ",
g

s0 ||Pn|lz2(ry = 1. Moreover, for every t € T we have |Py(t)] < N

hence

dt <g’§ . _ ¢ _ Cl)
N D2 T S(ON T a0/

where the last inequality holds for every N for which (2) holds. Using con-
dition (b) we see that indeed the last term can be made arbitrarily small,

and so F(A) is not a RS in L*(S). =
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4. Proof of Theorem 2. For n € N we define
By, :={n,2n,...,n?}.

LEMMA 4. Let P be the set of all prime numbers. Then the blocks { Bp}pep
are pairwise disjoint.

Proof. Let p < g be prime numbers. Notice that a € B, N By if and only
if there exist 1 <m < p and 1 < k < ¢ such that

a =mp = kq,
which is possible only if ¢ divides m. But since m < ¢ this cannot happen

and so such an a does not exist. m

LEMMA 5. Let {a(n)}nen be a sequence of non-negative numbers such
that 37y a(n) < 1. Then for every € > 0 there exist infinitely many n € N
such that n .

a(fn) < —.
L
Proof. By Lemma 4 we may write

Za(n) > Z Za(ﬁp).
n=1 peEP (=1

Assuming the contrary for some ¢, i.e. for all but finitely many p € P we
have >°)_, a(fp) > €/p, we get a contradiction to the well-known fact that

ZpEP 1/p=o00. =
COROLLARY 6. Let {a(n)}nen be as in Lemma 5. Then for every e > 0
there exist infinitely many n € N such that

(3) Z a(A—p) <e.
M\ UEBy,
B

Proof. Every p < A from B, must take the form
A=kn, pu=kn 1<K <k<n,

hence A — po = ¢n for some ¢ € {1,...,n — 1}. From Lemma 5 we get, for
infinitely many n € N,

n

Z a(A—p) = Z(n —0a(ln) < nz a(ln) <c. m
AR = =1

Given a sequence B C R, we say that a positive number v is a lower
Riesz bound (in L?(S)) for the sequence E(B) if

| 32 e, 6, 27 I

AeB AeB

for every finite sequence {c(\)}rep of scalars.
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LEMMA 7. Given S C T of positive measure, there exists a constant v =
7(8) > 0 which is a lower Riesz bound (in L*(S)) for E(By) for infinitely
many n € N.

Proof. Let § C T with |S| > 0. Applying Corollary 6 to the sequence
{a(n)}nen == {|i§(n)|2}neN (where 1gs is the indicator function of S), we
get for every € > 0 inﬁnitely many n € N for which (3) holds. We write

S ) S e m’ S( Z W+ Y c(A)@e“H‘”) %tr

S \eB, A\ HEB,
AZp
=18 Y leMWP+ D e e(w) Ts(p — N).
\eB, A\ uEBy,
AZp

By the Cauchy—Schwarz inequality,

| > el Tstu = )|

AyuiBn
AFH 1/2 _ 1/2
< (X lememP) (Y Este—NP)
)\,MEBH A,MeBn
A 1/2
= 3 WP X Tse-NP)
AEBy, A\ nEB,
AF
By (3) we get
S s NP =2 3 [Ts(u- NP <2,
AF L <X
hence
2/\t 1/2 2 o S| 2
| ‘ PIRECY, > (IS] = (2)7%) Y e(N)* = 5 D le(N)
S \eB, XEB, A\eB,

Fixing some ¢ < |S|?/8, we see that the last inequality holds for infinitely
many n € N. m

The next lemma shows how to combine blocks which correspond to dif-
ferent progressions.

LEMMA 8. Lety >0, S C T with |S| >0, and Ay, Ay C N finite subsets
such that 7y is a lower Riesz bound (in L*(S)) for E(4;), j =1,2. Then for
any 0 <" <~ there exists M € Z such that the system E(A; U (M + Az))
has 7' as a lower Riesz bound.

Proof. Denote Pj(t) = Z)\GA], cj(N)ei j = 1,2. Notice that for suffi-
ciently large M = M (S), the polynomials P; and e’™! P, are “almost orthog-
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onal” on §, meaning

: dt
[ IP(E) + €M P02 £ = 1P s, + 1 Pall2ags +ol1),
S

where the last term is uniform with respect to all polynomials having
| P2y = 1. m

Now we are ready to finish the proof of Theorem 2. Given S take v from
Lemma 7 and denote by A the set of all natural numbers n for which v is a

lower Riesz bound (in L%(S)) for E(B,). Define

A= U (Mn + Bn)
neN

By Lemma 8 we can define subsequently, for every n € N, an integer M,
such that for any partial union

ANN)= | J (My+B,), NEeEWN,

neN
n<N

the corresponding exponential system E(A(N)) has lower Riesz bound 3
(14 +), so we conclude that E(A) is a RS in L?(S).

5. Proof of Theorem 3. In order to obtain A which satisfies prop-
erty (i) we will need the following result.

THEOREM A ([I, Thm. 13.12]). Let d(n) denote the number of divisors
of an integer n. Then d(n) = o(n®) for every e > 0.

The next lemma will be used to control the contribution of blocks when
they are not disjoint.

LEMMA 9. Let {a(n)},cy be a sequence of non-negative numbers such
that >~ a(n) < 1. Then for every a > 1 there ezist () > 0 and v(a) € N
such that for every N > v(a) one can find an integer oy < N satisfying

N
1
(4) Zla(ng(LN) < W

Proof. Fix a > 1 and apply Theorem A with € small enough, depending
on «, to be chosen later. We get the inequality d(k) < k° for every k > v(«).
Fix N > v(a), and notice that for every L € N,
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It follows that there exists an integer 0 < ¢ < L such that

N LN) Nt
Za(n€)<< L) =71

n=1
In order to get (4) we require
Ne 1
[1—¢ < N1l+e’
which yields

142¢

N1-s < L.

Therefore, choosing ¢ = £(«) sufficiently small we see that L may be chosen
to be smaller than N%. u

Setting
BQ,N = {Ea,Na 26&,]\/7 cety NKQ,N},

we get

COROLLARY 10. Let {a(n)}nen be as in Lemma 9. For every a > 1 and
N > v(a),

(5) S - < ﬁ

AJ'LGBQ,N
B<A

The proof is identical to that of Corollary 6.
We now combine our estimates.

LEMMA 11. Given & C T of positive measure, there exists a constant
v = Y(S) > 0 such that for every a > 1 there exists N(a) € N for which
the following holds: For every integer N > N () one can find £y N € N with
lo.N < N such that y is a lower Riesz bound (in L*(S)) for E(Ban)-

Proof. Let S C T with |S| > 0. We fix @ > 1 and apply Corollary 10
to the sequence {a(n)}nen = {|Ls(n)|?}nen; we get e(a) and for every
N > v(«) a positive integer ¢, v < N satisfying (5). Proceeding as in the
proof of Lemma 7, we get

- C
S ‘ Z C()\)ez)\trdt > (’S|_]Va(a)/2> Z ‘C(A)’Z
S AeBa,nN AEBy, N AEBy N

where the last inequality holds for all N > N(«). =

AV
@
[~]
Q.
>
S

For the last step of the proof we will use a diagonal process. Given S,
find ~ using Lemma 11. This provides, for every a > 1 and every N > N(«),
a block B, y such that v is a lower Riesz bound (in L?(S)) for E(Ban).



Riesz sequences and arithmetic progressions 191

Let ap, — 1 be a decreasing sequence. Define
N(ag41)—1

A=) U My+Ban).

keN N:N(Oék)

Again, by Lemma 8, we can make sure any partial union has lower Riesz
bound not smaller than v/2, and so E(A) is a RS in L?(S).

It follows directly from the construction that for every N € N, A contains
an arithmetic progression of length N and step ¢ < C'(a)N®, for any o > 1,
as required.

Acknowledgements. This research is supported in part by the Israel
Science Foundation.

References

[1I] T. M. Apostol, Introduction to Analytic Number Theory, Springer, Berlin, 1976.

[2] J. Bourgain and L. Tzafriri, Invertibility of “large” submatrices with applications to
the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57 (1987),
137-224.

[3] M. Bownik and D. Speegle, The Feichtinger conjecture for wavelet frames, Gabor
frames and frames of translates, Canad. J. Math. 58 (2006), 1121-1143.

[4] P. G. Casazza, M. Fickus, J. C. Tremain and E. Weber, The Kadison—Singer problem
in mathematics and engineering: a detailed account, In: Operator Theory, Operator
Algebras, and Applications, Contemp. Math. 414, Amer. Math. Soc., Providence, RI,
2006, 299-355.

[5] W. Lawton, Minimal sequences and the Kadison—Singer problem, Bull. Malaysian
Math. Sci. Soc. 33 (2010), 169-176.

[6] A.Marcus, D. A. Spielman and N. Srivastava, Interlacing families II: Mized charac-
teristic polynomials and the Kadison—Singer problem, arXiv:1306.3969| (2013).

[7] I. M. Miheev, On lacunary series, Math. USSR-~Sb. 27 (1975), no. 4, 481-502.

[8] A. Olevskil and A. Ulanovskii, Universal sampling and interpolation of band-limited
signals, Geom. Funct. Anal. 18 (2008), 1029-1052.

[9] A. Zygmund, Trigonometric Series. Vol. I, 2nd ed., Cambridge Univ. Press, New
York, 1959.

Itay Londner, Alexander Olevskil

School of Mathematical Sciences

Tel-Aviv University

Tel-Aviv 69978, Israel

E-mail: itaylond@post.tau.ac.il
olevskii@post.tau.ac.il

Received July 3, 2014
Revised version November 11, 201/ (8006)


http://dx.doi.org/10.1007/BF02772174
http://dx.doi.org/10.4153/CJM-2006-041-3
http://arxiv.org/abs/1306.3969
http://dx.doi.org/10.1070/SM1975v027n04ABEH002525
http://dx.doi.org/10.1007/s00039-008-0674-7




	1 Introduction
	2 Results
	3 Proof of Theorem 1
	4 Proof of Theorem 2
	5 Proof of Theorem 3
	References

