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Riesz sequences and arithmetic progressions

by

Itay Londner and Alexander Olevskĭı (Tel-Aviv)

Abstract. Given a set S of positive measure on the circle and a set Λ of integers,
one can ask whether E(Λ) := {eiλt}λ∈Λ is a Riesz sequence in L2(S).

We consider this question in connection with some arithmetic properties of the set Λ.
Improving a result of Bownik and Speegle (2006), we construct a set S such that E(Λ)
is never a Riesz sequence if Λ contains an arithmetic progression of length N and step
` = O(N1−ε) withN arbitrarily large. On the other hand, we prove that every set S admits
a Riesz sequence E(Λ) such that Λ does contain arithmetic progressions of length N and
step ` = O(N) with N arbitrarily large.

1. Introduction. We use the following notation:
• Λ — a set of integers.
• S — a set of positive measure on the circle T.
• |S| — the Lebesgue measure of S.

For A,B ⊂ R and x ∈ R we let
A+B := {α+ β | α ∈ A, β ∈ B}, x ·A := {x · α | α ∈ A}.

A sequence {ϕi}i∈I of elements in a Hilbert space H is called a Riesz
sequence (RS) if there are positive constants c, C such that

c
∑
i∈I
|ai|2 ≤

∥∥∥∑
i∈I

aiϕi

∥∥∥2 ≤ C∑
i∈I
|ai|2

for every finite sequence {ai}i∈I of scalars.
Given Λ ⊂ Z (referred to as a set of frequencies) we denote

E(Λ) := {eiλt}λ∈Λ.
The following result is classical (see [9, p. 203, Lemma 6.5]):
• If Λ = {λn}n∈N ⊂ Z is lacunary in the sense of Hadamard, i.e.

λn+1

λn
≥ q > 1, n ∈ N,

then E(Λ) forms a RS in L2(S) for every S ⊂ T with |S| > 0.
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The following generalization is due to I. M. Mikheev [7, Thm. 7]:

• If E(Λ) is an Sp-system for some p > 2, i.e.∥∥∥∑
λ∈Λ

aλe
iλt
∥∥∥
Lp(T)

≤ C
∥∥∥∑
λ∈Λ

aλe
iλt
∥∥∥
L2(T)

with some C > 0 for every finite sequence {aλ}λ∈Λ of scalars, then it
forms a RS in L2(S) for every S ⊂ T with |S| > 0.

J. Bourgain and L. Tzafriri proved the following result as a consequence
of their “restricted invertibility theorem” [2, Thm. 2.2]:

• Given S ⊂ T, there is a set Λ of integers with positive asymptotic
density

densΛ := lim
N→∞

#{Λ ∩ [−N,N ]}
2N

> C|S|

such that E(Λ) is a RS in L2(S).
(Here and below, C denotes positive absolute constants, which might be
different from one another.)

W. Lawton [5, Cor. 2.1], assuming the Feichtinger conjecture for expo-
nentials, proved the following proposition:

(L) For every S there is a set of frequencies Λ ⊂ Z which is syndetic,
that is, Λ+ {0, . . . , n− 1} = Z for some n ∈ N, and such that E(Λ)
is a RS in L2(S).

Recall that the Feichtinger conjecture says that every bounded frame in
a Hilbert space can be decomposed into a finite family of RSs. This claim
turned out to be equivalent to the Kadison–Singer conjecture (see [4]). The
latter conjecture has recently been proved by A. Marcus, D. Spielman and
N. Srivastava [6], so proposition (L) holds unconditionally.

Notice that in some results above, the system E(Λ) serves as a RS for all
sets S; however, the set of frequencies Λ is then quite sparse. In others, Λ is
rather dense but it works for an S given in advance.

One could wonder whether one can somehow combine the density and
“universality” properties. It turns out this is indeed possible. In [8], a se-
quence Λ ⊂ R has been constructed such that E(Λ) forms a RS in L2(S) for
any open set S of a given measure, and the set of frequencies has optimal
density, proportional to |S|. This is not true for nowhere dense sets S.

2. Results. In this paper we consider sets of frequencies Λ which contain
arbitrarily long arithmetic progressions. Below we denote by N the length
of a progression, and by ` its step. Given Λ which contains arbitrarily long
arithmetic progressions there exists a set S ⊂ T of positive measure such
that E(Λ) is not a RS in L2(S) (see [7]).
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In the case where ` grows slowly with respect to N , one can define S
independent of Λ.

A quantitative version of such a result was proved in [3]:

• There exists a set S such that E(Λ) is not a RS in L2(S) whenewer Λ
contains arithmetic progressions of length Nj and step

`j = o(N
1/2
j log−3Nj) (N1 < N2 < · · · ).

The proof is based on some estimates of the discrepancy of sequences of the
form {αk}k∈N on the circle.

Using a different approach we prove a stronger result:

Theorem 1. There exists a set S ⊂ T such that if a set Λ ⊂ Z contains
arithmetic progressions of length N (= N1 < N2 < · · · ) and step ` = O(Nα),
α < 1, then E(Λ) is not a RS in L2(S).

Here one can construct S not depending on α and with arbitrarily small
measure of the complement.

The next theorem shows that the result is sharp.

Theorem 2. Given a set S ⊂ T of positive measure, there is a set Λ ⊂ Z
such that:

(i) For infinitely many N ’s Λ contains an arithmetic progression of
length N and step ` = O(N).

(ii) E(Λ) forms a RS in L2(S).

Slightly increasing the bound for `, one can get a version of Theorem 2
which admits a progression of any length:

Theorem 3. Given S one can find Λ with property (ii) above and such
that

(i′) For every α > 1 and for every N ∈ N the set Λ contains an arith-
metic progression of length N and step ` < C(α)Nα.

3. Proof of Theorem 1

Proof. Fix ε > 0. Take a decreasing sequence {δ(`)}`∈N of positive num-
bers such that

(a)
∑

`∈N δ(`) < ε/2,

(b) δ(`) · `1/α →∞ as `→∞ for all α ∈ (0, 1) ,

For every ` ∈ N set I` = (−δ(`), δ(`)) and let Ĩ` be the 2π-periodic extension
of I`, i.e.

Ĩ` =
⋃
k∈Z

(I` + 2πk).
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We define

(1) I[`] =

(
1

`
· Ĩ`
)
∩ [−π, π] and S = T \

⋃
`∈N

I[`] =
( ⋃
`∈N

I[`]

)c
,

whence

|S| ≥ 1−
∞∑
`=1

|I[`]| = 1−
∞∑
`=1

2δ(`) > 1− ε.

Fix α < 1 and let Λ ⊂ Z be such that one can find arbitrarily large N ∈ N
for which

{M + `, . . . ,M +N · `} ⊂ Λ,

with some M =M (N) ∈ Z, ` = ` (N) ∈ N and

(2) ` < C(α)Nα.

Recall that by (1) we have t ∈ I[`] if and only if t` ∈ Ĩ` ∩ [−π`, π`]. Since
S lies inside the complement of I[`], we get

�

S

∣∣∣ N∑
k=1

c(k)ei(M+k`)t
∣∣∣2 dt

2π
≤

�

Ic
[`]

∣∣∣ N∑
k=1

c(k)ei(M+k`)t
∣∣∣2 dt

2π

=
�

[−π`,π`]\Ĩ`

∣∣∣ N∑
k=1

c(k)eikτ
∣∣∣2 dτ

2π`
=

�

I
c
`

∣∣∣ N∑
k=1

c(k)eikτ
∣∣∣2 dτ

2π
.

To complete the proof, it is enough to show that ‖
∑N

k=1 c(k)e
ikτ‖L2(I

c
` )

can

be made arbitrarily small while keeping
∑N

k=1 |c(k)|2 bounded away from
zero. This observation allows us to reformulate the problem as a norm con-
centration problem for trigonometric polynomials of degree N on the inter-
val I`.

Let

PN (t) =
1√
N

N∑
k=1

eikt,

so ‖PN‖L2(T) = 1. Moreover, for every t ∈ T we have |PN (t)| ≤ 1√
N sin t

2

,
hence

�

Ic`

|PN (t)|2
dt

2π
≤ 1

N

π�

δ(`)

dt

sin2 t
2

<
C

N

π�

δ(`)

dt

t2
<

C

δ(`)N
<

C(α)

δ(`)`1/α
,

where the last inequality holds for every N for which (2) holds. Using con-
dition (b) we see that indeed the last term can be made arbitrarily small,
and so E(Λ) is not a RS in L2(S).
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4. Proof of Theorem 2. For n ∈ N we define
Bn := {n, 2n, . . . , n2}.

Lemma 4. Let P be the set of all prime numbers. Then the blocks {Bp}p∈P
are pairwise disjoint.

Proof. Let p < q be prime numbers. Notice that a ∈ Bp ∩Bq if and only
if there exist 1 ≤ m ≤ p and 1 ≤ k ≤ q such that

a = mp = kq,

which is possible only if q divides m. But since m < q this cannot happen
and so such an a does not exist.

Lemma 5. Let {a(n)}n∈N be a sequence of non-negative numbers such
that

∑∞
n=1 a(n) ≤ 1. Then for every ε > 0 there exist infinitely many n ∈ N

such that n∑
`=1

a(`n) <
ε

n
.

Proof. By Lemma 4 we may write
∞∑
n=1

a(n) ≥
∑
p∈P

p∑
`=1

a(`p).

Assuming the contrary for some ε, i.e. for all but finitely many p ∈ P we
have

∑p
`=1 a(`p) ≥ ε/p, we get a contradiction to the well-known fact that∑

p∈P 1/p =∞.

Corollary 6. Let {a(n)}n∈N be as in Lemma 5. Then for every ε > 0
there exist infinitely many n ∈ N such that

(3)
∑

λ,µ∈Bn
µ<λ

a(λ− µ) < ε.

Proof. Every µ < λ from Bn must take the form
λ = kn, µ = k′n, 1 ≤ k′ < k ≤ n,

hence λ − µ = `n for some ` ∈ {1, . . . , n − 1}. From Lemma 5 we get, for
infinitely many n ∈ N,∑

λ,µ∈Bn
µ<λ

a(λ− µ) =
n∑
`=1

(n− `)a(`n) ≤ n
n∑
`=1

a(`n) < ε.

Given a sequence B ⊂ R, we say that a positive number γ is a lower
Riesz bound (in L2(S)) for the sequence E(B) if∥∥∥∑

λ∈B
c(λ)eiλt

∥∥∥2
L2(S)

≥ γ
∑
λ∈B
|c(λ)|2

for every finite sequence {c(λ)}λ∈B of scalars.
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Lemma 7. Given S ⊂ T of positive measure, there exists a constant γ =
γ(S) > 0 which is a lower Riesz bound (in L2(S)) for E(Bn) for infinitely
many n ∈ N.

Proof. Let S ⊂ T with |S| > 0. Applying Corollary 6 to the sequence
{a(n)}n∈N := {|1̂S(n)|2}n∈N (where 1S is the indicator function of S), we
get for every ε > 0 infinitely many n ∈ N for which (3) holds. We write

�

S

∣∣∣ ∑
λ∈Bn

c(λ)eiλt
∣∣∣2 dt

2π
=

�

S

( ∑
λ∈Bn

|c(λ)|2 +
∑

λ,µ∈Bn
λ 6=µ

c(λ) c(µ) ei(λ−µ)t
) dt
2π

= |S|
∑
λ∈Bn

|c(λ)|2 +
∑

λ,µ∈Bn
λ 6=µ

c(λ) c(µ) 1̂S(µ− λ).

By the Cauchy–Schwarz inequality,∣∣∣ ∑
λ,µ∈Bn
λ6=µ

c(λ) c(µ) 1̂S(µ− λ)
∣∣∣

≤
( ∑
λ,µ∈Bn

|c(λ) c(µ)|2
)1/2( ∑

λ,µ∈Bn
λ 6=µ

|1̂S(µ− λ)|2
)1/2

=
∑
λ∈Bn

|c(λ)|2
( ∑
λ,µ∈Bn
λ 6=µ

|1̂S(µ− λ)|2
)1/2

.

By (3) we get ∑
λ,µ∈Bn
λ 6=µ

|1̂S(µ− λ)|2 = 2
∑

λ,µ∈Bn
µ<λ

|1̂S(µ− λ)|2 < 2ε,

hence�

S

∣∣∣ ∑
λ∈Bn

c(λ)eiλt
∣∣∣2 dt
2π
≥ (|S| − (2ε)1/2)

∑
λ∈Bn

|c(λ)|2 ≥ |S|
2

∑
λ∈Bn

|c(λ)|2.

Fixing some ε < |S|2/8, we see that the last inequality holds for infinitely
many n ∈ N.

The next lemma shows how to combine blocks which correspond to dif-
ferent progressions.

Lemma 8. Let γ > 0, S ⊂ T with |S| > 0, and A1, A2 ⊂ N finite subsets
such that γ is a lower Riesz bound (in L2(S)) for E(Aj), j = 1, 2. Then for
any 0 < γ′ < γ there exists M ∈ Z such that the system E(A1 ∪ (M + A2))
has γ′ as a lower Riesz bound.

Proof. Denote Pj(t) =
∑

λ∈Aj cj(λ)e
iλt, j = 1, 2. Notice that for suffi-

ciently largeM =M(S), the polynomials P1 and eiMtP2 are “almost orthog-
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onal” on S, meaning
�

S
|P1(t) + eiMt · P2(t)|2

dt

2π
= ‖P1‖2L2(S) + ‖P2‖2L2(S) + o(1),

where the last term is uniform with respect to all polynomials having
‖P‖L2(T) = 1.

Now we are ready to finish the proof of Theorem 2. Given S take γ from
Lemma 7 and denote by N the set of all natural numbers n for which γ is a
lower Riesz bound (in L2(S)) for E(Bn). Define

Λ =
⋃
n∈N

(Mn +Bn).

By Lemma 8 we can define subsequently, for every n ∈ N , an integer Mn

such that for any partial union

Λ(N) =
⋃
n∈N
n<N

(Mn +Bn), N ∈ N ,

the corresponding exponential system E(Λ(N)) has lower Riesz bound γ
2 ·(

1 + 1
N

)
, so we conclude that E(Λ) is a RS in L2(S).

5. Proof of Theorem 3. In order to obtain Λ which satisfies prop-
erty (i′) we will need the following result.

Theorem A ([1, Thm. 13.12]). Let d(n) denote the number of divisors
of an integer n. Then d(n) = o(nε) for every ε > 0.

The next lemma will be used to control the contribution of blocks when
they are not disjoint.

Lemma 9. Let {a(n)}n∈N be a sequence of non-negative numbers such
that

∑∞
n=1 a(n) ≤ 1. Then for every α > 1 there exist ε(α) > 0 and ν(α) ∈ N

such that for every N ≥ ν(α) one can find an integer `α,N < Nα satisfying

(4)
N∑
n=1

a(n`α,N ) <
1

N1+ε(α)
.

Proof. Fix α > 1 and apply Theorem A with ε small enough, depending
on α, to be chosen later. We get the inequality d(k) < kε for every k ≥ ν(α).
Fix N ≥ ν(α), and notice that for every L ∈ N,

L∑
`=1

N∑
n=1

a(n`) ≤
LN∑
k=1

d(k)a(k) < (LN)ε.
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It follows that there exists an integer 0 < ` < L such that
N∑
n=1

a(n`) <
(LN)ε

L
=

N ε

L1−ε .

In order to get (4) we require
N ε

L1−ε <
1

N1+ε
,

which yields

N
1+2ε
1−ε < L.

Therefore, choosing ε = ε(α) sufficiently small we see that L may be chosen
to be smaller than Nα.

Setting
Bα,N := {`α,N , 2`α,N , . . . , N`α,N},

we get

Corollary 10. Let {a(n)}n∈N be as in Lemma 9. For every α > 1 and
N ≥ ν(α),

(5)
∑

λ,µ∈Bα,N
µ<λ

a(λ− µ) < 1

N ε(α)
.

The proof is identical to that of Corollary 6.
We now combine our estimates.

Lemma 11. Given S ⊂ T of positive measure, there exists a constant
γ = γ(S) > 0 such that for every α > 1 there exists N(α) ∈ N for which
the following holds: For every integer N ≥ N(α) one can find `α,N ∈ N with
`α,N < Nα such that γ is a lower Riesz bound (in L2(S)) for E(Bα,N ).

Proof. Let S ⊂ T with |S| > 0. We fix α > 1 and apply Corollary 10
to the sequence {a(n)}n∈N := {|1̂S(n)|2}n∈N; we get ε(α) and for every
N ≥ ν(α) a positive integer `α,N < Nα satisfying (5). Proceeding as in the
proof of Lemma 7, we get
�

S

∣∣∣ ∑
λ∈Bα,N

c(λ)eiλt
∣∣∣2 dt ≥ (|S|− C

N ε(α)/2

) ∑
λ∈Bα,N

|c(λ)|2 ≥ |S|
2

∑
λ∈Bα,N

|c(λ)|2,

where the last inequality holds for all N ≥ N(α).

For the last step of the proof we will use a diagonal process. Given S,
find γ using Lemma 11. This provides, for every α > 1 and every N ≥ N(α),
a block Bα,N such that γ is a lower Riesz bound (in L2(S)) for E(Bα,N ).
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Let αk → 1 be a decreasing sequence. Define

Λ =
⋃
k∈N

N(αk+1)−1⋃
N=N(αk)

(MN +Bαk,N ).

Again, by Lemma 8, we can make sure any partial union has lower Riesz
bound not smaller than γ/2, and so E(Λ) is a RS in L2(S).

It follows directly from the construction that for every N ∈ N, Λ contains
an arithmetic progression of length N and step ` < C(α)Nα, for any α > 1,
as required.
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