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Perturbations of bi-continuous semigroups

by

Bálint Farkas (Tübingen and Budapest)

Abstract. The notion of bi-continuous semigroups has recently been introduced to
handle semigroups on Banach spaces that are only strongly continuous for a topology
coarser than the norm-topology. In this paper, as a continuation of the systematic treat-
ment of such semigroups started in [20–22], we provide a bounded perturbation theorem,
which turns out to be quite general in view of various examples.

1. Introduction. While the theory of C0-semigroups is well under-
stood and has found a wide range of applications, there are important ex-
amples of semigroups of bounded linear operators on Banach spaces that
are not strongly continuous on [0,∞) with respect to the norm-topology
(see, e.g., [5, 20–22, 24] and also [8, 12, 18, 19, 23]). To deal with such
semigroups the notion of bi-continuous semigroups has been introduced re-
cently by F. Kühnemund ([20–22]). Among the semigroups that fit into this
setting are adjoint semigroups ([20, 24]), evolution semigroups on Cb(R),
semigroups induced by flows ([13–15]), implemented semigroups ([2, 3]) and
the Ornstein–Uhlenbeck semigroup on Cb(H) ([9, 10, 20, 25]). In [21, 22],
F. Kühnemund obtained generation and approximation theorems for such
semigroups (see also [1, 6]). Although perturbation results for semigroups
which are not strongly continuous were investigated for example in [11, 17]
and [24, Ch. 4] in a different setting, a general perturbation theory of gen-
erators of bi-continuous semigroups is still lacking. Our aim is to close this
gap and to provide a bounded perturbation theorem for bi-continuous semi-
groups. It turns out that some additional assumptions on the perturbing
operator are needed.

In Section 2 we give some examples showing that we cannot expect that
a bounded perturbation theorem holds in general. In Section 3 we prove
the bounded perturbation theorem for bi-continuous semigroups, and we
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also show the existence of a Dyson–Phillips expansion and a variation of
parameters formula for the perturbed semigroup. In Section 4 we return
to examples and collect some conditions on bounded perturbations of bi-
continuous semigroups for various topologies.

Throughout this paper X denotes a Banach space which is also endowed
with a locally convex, Hausdorff topology τ . On the space (X, τ) we always
assume the following (see [20, Sec. 1.1]).

Assumption 1.1. (i) The norm topology is finer than τ .
(ii) The locally convex space (X, τ) is sequentially complete on τ -closed,

norm-bounded sets.
(iii) The dual space (X, τ)′ is norming for (X, ‖ · ‖), i.e.,

‖x‖ = sup
ϕ∈(X,τ)′

‖ϕ‖≤1

|ϕ(x)|.

The locally convex topology τ is determined by a directed family P of
seminorms, and for simplicity we assume that all seminorms p ∈ P satisfy
p(x) ≤ ‖x‖ for all x ∈ X.

We now recall the basic notions as introduced and studied in [20–22].

Definition 1.2. A set B ⊆ L(X) of bounded linear operators is said to
be bi-equicontinuous (for the topology τ), if for every norm-bounded τ -null
sequence xn

τ -lim
n→∞

Bxn = 0

uniformly for B ∈ B. A family {T (s) : s ∈ R+} of operators is locally
bi-equicontinuous, if {T (s) : s ∈ [0, t]} is bi-equicontinuous for all t > 0.

Definition 1.3. A function T : R+ → L(X) is called a bi-continuous
semigroup, if

(i) T (0) = I and T (s+ t) = T (s)T (t) for all t, s ≥ 0,
(ii) T is locally bounded, i.e., T |[0,t] is a norm-bounded function for some

(and in this case for all) t > 0,
(iii) {T (t) : t ∈ R+} is locally bi-equicontinuous,
(iv) the maps t 7→ T (t)x are τ -continuous for all x ∈ X.

Since
‖x‖ = sup{p(x) : p ∈ P} for all x ∈ X

by Assumption 1.1, the function ‖ · ‖ is τ -lower semicontinuous. This has an
important consequence which we state explicitly in the following proposition.

Proposition 1.4. The unit ball in X is τ -closed.

The following notion will become important in Section 3, when we extend
a non-densely defined operator to the whole space X.
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Definition 1.5. Let Y ⊆ X be an arbitrary subset. It is called bi-dense,
if for all x ∈ X there exists a norm-bounded sequence xn which converges
to x in τ . If moreover there exists a δ > 1 such that for all x ∈ X there is a
sequence xn τ -convergent to x with

‖xn‖ ≤ δ‖x‖ for all n ∈ N,(1)

then we say that Y is δ-bi-dense in X for the topology τ .

The following two results show that requiring δ-bi-denseness instead of
bi-denseness is not so restrictive.

Remark 1.6. Suppose that the topology τ is metrisable. Then any bi-
dense set D ⊆ X which contains 0 is δ-bi-dense for arbitrary δ > 1. This
can be seen by means of a simple diagonal process. In fact, take an arbitrary
x ∈ X and suppose that

p1 ≤ p2 ≤ . . . ≤ pn ≤ . . .
is cofinal in P. Let n ∈ N and choose xn ∈ D such that pn(xn − x) ≤ 1/n.
Then xn

τ→ x and ‖xn‖ ≤ δ‖x‖ for n ∈ N sufficiently large.

Proposition 1.7. Let T be a bi-continuous semigroup, and denote its
generator by (A,D(A)). Then D(A) is δ-bi-dense in X for an appropriate
δ > 1.

Proof. Take x ∈ X. Then it is shown in [20, Sec. 1.2] that

τ -lim
n→∞

nR(n,A)x = x.

Let M > 0 and ω ∈ R satisfy

‖T (t)‖ ≤Meωt for t ≥ 0.(2)

Since (A,D(A)) is a Hille–Yosida operator, we have

‖nR(n,A)x‖ ≤ Mn

n− ω ‖x‖ for all t ≥ 0,

hence taking xn = nR(n,A)x and any δ > M we see that (1) is satisfied for
large n ∈ N.

2. Counterexamples. In this section we show that in general the per-
turbation of the generator of a bi-continuous semigroup by a norm-bounded
operator does not generate a bi-continuous semigroup. In fact, it suffices to
show that a norm-bounded operator is not necessarily the generator of a
bi-continuous semigroup.

The first example deals with adjoint semigroups which are bi-continuous
for the weak∗-topology ([20, Sec. 3.5], [24]). Namely, we show that not all
bounded operators on dual spaces are generators of weak∗-bi-continuous
semigroups.
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Example 2.1. Consider the Banach spaces X := C([0, 1]) and X ′ =
M([0, 1]), the space of all complex Borel measures on [0, 1]. Define the fol-
lowing shift operator on X ′:

(Bµ)(S) = µ((S−3/4)∩ [0, 1]) for all µ ∈M([0, 1]), S ⊆ [0, 1] a Borel set.

Then B is a norm-continuous operator onM([0, 1]) and clearly B2 = 0. We
show that B is not weak∗-continuous. Indeed, consider the sequence of Dirac
measures δ3/4−1/(n+1). It obviously converges to δ3/4 in the weak∗-topology
σ(X ′,X). Further, Bδ3/4−1/(n+1) = 0, whereas Bδ3/4 = δ0, showing that B
is not continuous for the topology σ(X ′,X). The C0-semigroup T generated
by B is given by

T (t) = I + tB, t ≥ 0,

which shows that T is not bi-continuous for the weak∗-topology σ(X ′,X).

The following two examples are given on Cb(R). Both rely on the fact
that there exist Baire measures on the Stone–Čech compactification βR of
R with support disjoint from R.

Example 2.2. Let X = Cb(R) and take x ∈ βR \ R and consider the
linear operator B = 1⊗ δx on X. Then B is a contractive projection. Now,
we show that B is not continuous with respect to the compact-open topology
τc. Let fn be a sequence of continuous functions satisfying

fn|[−n,n] = 1, supp fn ⊆ [−(n+ 1), n+ 1].

Then fn → 1 in the topology τc, but Bfn = 0 since the function fn vanishes
outside a compact set of R, while B1 = 1. Hence, B is not continuous with
respect to τc. As before, the C0-semigroup T generated by B is given by the
series

T (t) =
∞∑

n=0

(Bt)n

n!
= I +

∞∑

n=1

tn

n!
B = I −B + etB, t ≥ 0.

This implies that T (t) is not sequentially τc-continuous on bounded sets
unless t = 0, therefore B is not the generator of a bi-continuous semigroup
with respect to τc.

Example 2.3. Again we work on X = Cb(R) and take a Banach limit,
i.e., a linear functional ϕ with

‖ϕ‖ = 1, ϕ(1) = 1, ϕ(f(·+ r)) = ϕ(f) for all f ∈ X and r ∈ R.
For such a ϕ, we define the norm-bounded linear operator

B = 1⊗ ϕ.
As in Example 2.2, one shows that B is not τc-continuous on norm-bounded
sets, hence B is not the generator of a bi-continuous semigroup for the topol-
ogy τc. Now, we show that there exists a non-trivial bi-continuous semigroup
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S with generator (A,D(A)) for which (A+B,D(A)) is not the generator of
a bi-continuous semigroup.

It is not hard to check that the translation group S on X is τc-bi-
continuous (cf. [20, Sec. 3.2]). Denote its generator by (A,D(A)). We now
show that a bounded perturbation of S need not be bi-continuous. We take
the above B as the perturbing operator and make use of the translation
invariance of ϕ, which implies that B commutes with the semigroup S.
Consider the function

R 3 t 7→ T (t) = S(t)(I −B + etB) = (I −B + etB)S(t).

Then T obviously has the semigroup property and is τc-strongly continuous.
A straightforward computation shows that for all x ∈ D(A) the orbits t 7→
T (t)x are τc-differentiable with derivative (A + B)T (t)x. If (A + B,D(A))
is the generator of a bi-continuous semigroup, then this semigroup has to
coincide with T . However, T is not locally bi-equicontinuous, which can be
seen by taking the sequence of functions fn as before. Therefore (A+B,
D(A)) cannot be the generator of a bi-continuous semigroup.

3. Bounded perturbation of bi-continuous semigroups. We now
turn to positive results concerning bounded perturbations of bi-continuous
semigroups and prove that a bi-continuous semigroup can be perturbed by
a bounded operator provided that the perturbing operator is also sequen-
tially τ -continuous on norm-bounded sets. We make use of abstract Volterra
operators as in [16, Sec. III.1] and put all the necessary properties of a bi-
continuous semigroup into the Banach space on which this operator acts.

Definition 3.1. For t0 > 0 consider

Xt0 := {T : [0, t0]→ L(X) τ -strongly continuous,

norm-bounded, and {T (t) : t ∈ [0, t0]} bi-equicontinuous}.
It is clear that Xt0 is a linear space.

Lemma 3.2. The space Xt0 is complete for the supremum norm

‖T‖∞ := sup{‖T (t)‖ : t ∈ [0, t0]} for T ∈ Xt0.

Proof. We show that Xt0 is a closed subspace of the Banach space
B([0, t0],L(X)) of all bounded functions from [0, t0] to the space of bounded
linear operators L(X) endowed with the supremum norm. Let Tn ∈ Xt0 con-
verge to T ∈ B([0, t0],L(X)) and take any x ∈ X. Then Tn(·)x converges to
T (·)x for τ uniformly in t ∈ [0, t0]. Indeed, for any p ∈ P we have

p(Tn(t)x− T (t)x) ≤ ‖Tn(t)x− T (t)x‖ ≤ ‖Tn − T‖∞ → 0.

Hence, T is τ -strongly continuous. The norm-boundedness of T is trivial. In
order to prove the bi-equicontinuity of the set {T (t) : t ∈ [0, t0]} we take
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a norm-bounded τ -null sequence xn and ε > 0. Choose m ∈ N such that
‖Tm − T‖∞ < ε/2. Then we obtain

p(T (t)xn) ≤ p((T (t)− Tm(t))xn) + p(Tm(t)xn) ≤ ε/2 + ε/2 = ε

for n sufficiently large, by the bi-equicontinuity of {Tm(t) : t ∈ [0, t0]}.
Lemma 3.3. The Banach space Xt0 is a Banach algebra.

Proof. Take 0 < t < t0 and hn ∈ R converging to 0. For S, T ∈ Xt0 and
x ∈ X we write

T (t+ hn)S(t+ hn)x− T (t)S(t)x

= T (t+ hn)S(t+ hn)x− T (t+ hn)S(t)x+ T (t+ hn)S(t)x− T (t)S(t)x.

Clearly we have
T (t+ hn)S(t)x− T (t)S(t)x τ→ 0.

From the bi-equicontinuity of {T (t) : t ∈ [0, t0]} it also follows that

T (t+ hn)S(t+ hn)x− T (t+ hn)S(t)x = T (t+ hn)(S(t+ hn)− S(t))x τ→ 0.

The left (respectively right) τ -strong continuity of T · S at the endpoints of
[0, t0] can be proved analogously. The norm-boundedness of t 7→ T (t)S(t) is
obvious. It remains to show the bi-equicontinuity of {T (t)S(t) : t ∈ [0, t0]}.
Suppose the contrary, i.e., there exists a norm-bounded τ -null sequence xn,
an ε > 0 and a seminorm p ∈ P such that for all n ∈ N there exists tn ∈ [0, t0]
convergent and satisfying

p(T (tn)S(tn)xn) > ε.

This leads to a contradiction since S(tn)xn is norm-bounded and τ -conver-
gent to 0 (by the bi-equicontinuity of S), hence by the bi-equicontinuity of
T we conclude that

p(T (tn)S(tn)xn)→ 0.

Take now a τ -bi-continuous semigroup T and suppose that B ∈ L(X)
is also sequentially τ -continuous on norm-bounded sets. The previous two
lemmas enable us to define an abstract Volterra operator Vt0 associated to
the semigroup T on the Banach space Xt0 in the following way. For t ∈ [0, t0]
and x ∈ X set

[Vt0S](t)x :=
t�

0

T (t− s)BS(s)x ds, x ∈ X,(3)

for any S ∈ Xt0 . The integral exists in the τ topology since the mapping
s 7→ T (t− s)BS(s) is τ -continuous by assumption and Lemma 3.3. We now
prove that Vt0 ∈ L(Xt0) and compute its spectral radius r(Vt0).

Notice that [Vt0S](t) (for t ∈ [0, t0]) is independent of the particular
choice of t0.
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Lemma 3.4. The linear operator defined in (3) maps Xt0 into itself , is
bounded , and has spectral radius r(Vt0) = 0.

Proof. Take S ∈ Xt0 , t ∈ [0, t0] and x ∈ X, and write

‖[Vt0S](t)x‖ = sup
φ∈(X,τ)′

‖φ‖≤1

∣∣∣
〈t�

0

T (t− s)BS(s)x ds, φ
〉∣∣∣(4)

≤ sup
φ∈(X,τ)′

‖φ‖≤1

t�

0

|〈T (t− s)BS(s)x, φ〉| ds

≤ t0‖T |[0,t0]‖∞ · ‖B‖ · ‖S‖∞ · ‖x‖,
which proves that [Vt0S](t) ∈ L(X).

Second, we show that {[Vt0S](t) : t ∈ [0, t0]} is bi-equicontinuous. To do
this, consider a norm-bounded τ -null sequence xn and take p ∈ P and ε > 0.
Then

p([Vt0S](t)xn) = p
(t�

0

T (t− s)BS(s)xn ds
)

≤
t�

0

p(T (t− s)BS(s)xn) ds ≤ t0ε

for n sufficiently large since {T (t−s)BS(s) : s ∈ [0, t0]} is bi-equicontinuous
by Lemma 3.3. Clearly [Vt0S](·) is norm-bounded and τ -strongly continuous,
hence Vt0S ∈ Xt0 .

The operator Vt0 is the restriction of the abstract Volterra operator de-
fined on the space of all strongly continuous functions C([0, t0],Ls(X)),
hence it is bounded and has spectral radius r(Vt0) = 0 (see [16, III.1.5]).
In fact,

(5) ‖V n
t0S‖ ≤

(t0 · ‖T |[0,t0]‖∞ · ‖B‖)n
n!

‖S‖∞ for n ∈ N and S ∈ Xt0 .

The previous lemma plays a key role in the following since it implies
1 ∈ %(Vt0). Furthermore, the resolvent of Vt0 at 1 is given by

R(1, Vt0) =
∞∑

n=0

V n
t0 ,

the series converging in the operator norm of L(Xt0). We are now ready to
prove our main theorem.

Theorem 3.5. Let T be a bi-continuous semigroup with generator
(A,D(A)) and suppose that B ∈ L(X) is sequentially τ -continuous on norm-
bounded sets. Then (A + B,D(A)) is also the generator of a bi-continuous
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semigroup S. Moreover S is given by the Dyson–Phillips series

S(t) =
∞∑

n=0

Tn(t), t ≥ 0,(6)

which is uniformly norm-convergent on compact intervals. Here,

T0(t) := T (t), Tn(t) :=
t�

0

T (t− s)BTn−1(s) ds for n > 0,

where the integral is understood in the τ -strong topology.

Proof. Let t0 > 0 arbitrary, and define the abstract Volterra operator
Vt0 on the space Xt0 as above. Further set

St0(t) := δt(R(1, Vt0)T |[0,t0])(7)

for each t ∈ [0, t0] (δt is the Dirac measure at t). In the following we will
write T instead of the restriction T |[0,t0]. From the definition of Vt0 , it is
immediate that

St0(t)x = St′0(t)x for all t ≤ t′0 ≤ t0 and x ∈ X.
This enables us to define

S(t) :=
{
I for t = 0,

St(t) for t > 0.

First, we show that S is a semigroup. As a first step, we prove that

St0(t+ s) = St0(t)St0(s)

whenever 0 ≤ s, t ≤ s + t ≤ t0. Indeed, for such t and s, by definition we
have

St0(t)St0(s) =
∞∑

n=0

[V n
t0T ](t) ·

∞∑

n=0

[V n
t0T ](s).

Since the series converges in the operator norm, the Cauchy product yields

St0(t)St0(s) =
∞∑

n=0

n∑

k=0

[V k
t0T ](t)[V n−k

t0 T ](s).

Therefore it remains to show that
n∑

k=0

[V k
t0T ](t)[V n−k

t0 T ](s) = [V n
t0T ](t+ s),

which obviously holds for n = 0 and then can be proved by induction.
Since S|[0,t0] = St0 ∈ Xt0 , we see immediately that S is a bi-continuous

semigroup and from the definition it is straightforward that Tn(t) =
(V n
t T |[0,t])(t) and hence (6) is satisfied. The uniform convergence on compact

intervals follows from the continuity of δt.
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We claim that the generator (C,D(C)) of S is (A+B,D(A)). To prove
this, we first remark that (A,D(A)) is a Hille–Yosida operator (cf. [20, Sec.
1.5] and [21]) and therefore its bounded perturbation (A+B,D(A)) is also
a Hille–Yosida operator (see, e.g., [4, Theorem 3.5.5]), in particular its re-
solvent set is not empty. Now, take x ∈ X arbitrary. Then

[Vt0T ](h)x
h

=
1
h

h�

0

T (h− s)BT (s)x ds,

from which we deduce that
[Vt0T ](h)x

h

τ→ Bx.(8)

Indeed, by the τ -continuity of the orbits s 7→ S(s)Bx one can choose 0 <
δ < t0 for a given ε > 0 such that

p(S(h− s)Bx−Bx) ≤ ε/2
whenever h ∈ [0, δ] and s ∈ [0, h]. Further, by taking δ possibly smaller, we
see by the bi-equicontinuity of {S(s) : s ∈ [0, t0]} and the τ -continuity of
s 7→ BT (s)x that

p

(
1
h

h�

0

S(h− s)BT (s)x ds−Bx
)

≤ 1
h

h�

0

p(S(h− s)Bx−Bx) ds+
1
h

h�

0

p(S(h− s)(BT (s)x−Bx)) ds

≤ ε/2 + ε/2 = ε.

For x ∈ D(A) we have

S(h)x− x
h

=
T (h)x− x

h
+

[Vt0T ](h)x
h

+
∞∑

n=2

[V n
t0T ](h)x
h

.(9)

Using (5) we see that

(10)

∥∥∥∥
∞∑

n=2

[V n
t0T ](h)x
h

∥∥∥∥ ≤ h
∞∑

n=2

hn−2(‖T‖∞ · ‖B‖)n
n!

‖T‖∞ · ‖x‖ ≤ hC‖x‖

for all x ∈ X and for some constant C > 0, which shows that the third term
in (9) converges to zero in the topology τ as h → 0. Putting (8) and (9)
together we obtain

S(h)x− x
h

τ→ Ax+Bx,

proving that A + B ⊆ C. This together with the above remark on the
non-empty resolvent set of A+B implies that A+B = C.
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Corollary 3.6. If T is a bi-continuous semigroup with generator
(A,D(A)) and B ∈ L(X) is sequentially τ -continuous on norm-bounded
sets, then the semigroup S generated by (A+B,D(A)) satisfies the integral
equation

S(t)x = T (t)x+
t�

0

T (t− s)BS(s)x ds,(IE)

T (t)x = S(t)x−
t�

0

S(s)BT (t− s)x ds(IE′)

for all x ∈ X and t ≥ 0, where the integral is understood in the τ -Rieman-
nian sense. As a consequence

‖T (t)− S(t)‖ ≤ tM
for all t ∈ [0, t0] and some constant M > 0.

Proof. The equation (IE) is just a reformulation of (7). The integral
equation (IE′) can be deduced from (IE) by applying the bounded pertur-
bation theorem with the operator −B. For the third assertion, let t0 ≥ 0 be
arbitrary and set

M := ‖B‖ · sup{‖T (t)‖ : t ∈ [0, t0]} · sup{‖S(t)‖ : t ∈ [0, t0]}.
Then the desired inequality follows immediately from (IE).

Corollary 3.7. Let T be a bi-continuous semigroup with generator
(A,D(A)) and B ∈ L(X) an operator which is sequentially τ -continuous on
norm-bounded sets. Denote by S the semigroup generated by (A+B,D(A)).
Then the operators

U(0) := 0 and U(t) :=
S(t)− T (t)

t
for t > 0

form a locally bi-equicontinuous family.

Proof. Let ε > 0 and xn
τ→ 0 be a norm-bounded sequence. We make

use of (IE) and write, for p ∈ P,

p(U(t)xn) =
1
t
p(S(t)xn− T (t)xn) ≤ 1

t

t�

0

p(T (t− s)BS(s)xn) ds ≤ 1
t
· tε = ε,

the last inequality being true for sufficiently large n ∈ N since the family of
operators {T (t− s)BS(s) : s ∈ [0, t]} is bi-equicontinuous by Lemma 3.3.

We show that these two corollaries together characterise bounded pertur-
bations of a given bi-continuous semigroup T (cf. [16, III, Corollary 3.12]).

Theorem 3.8. Let T and S be bi-continuous semigroups with generators
(A,D(A)) and (C,D(C)) respectively , and suppose that
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(i) there exists M > 0 such that

‖T (t)− S(t)‖ ≤ tM
for all t ∈ [0, 1],

(ii) the family

U(0) := 0, U(t) :=
S(t)− T (t)

t
for t > 0

is locally bi-equicontinuous.

If D(A)∩D(C) is δ-bi-dense for some δ > 0, then there exists a bounded
operator B which is sequentially τ -continuous on norm-bounded sets such
that C = A+B.

Proof. Let x ∈ D(A) ∩D(C). Then

U(1/n)x = n · (S(1/n)x− x) + n · (x− T (1/n)) τ→ Cx− Ax(11)

as n→∞. We define
Bx := τ -lim

n→∞
U(1/n)x

for x ∈ D(A)∩D(C). Now, let x ∈ X be arbitrary, and take a norm-bounded
sequence xn ∈ D(A) ∩ D(C) which is τ -convergent to x and satisfies (1).
Then, for arbitrary p ∈ P we conclude by (ii) that

(12) p(B(xm − xk)) ≤ lim
n→∞

p(U(1/n)(xm − xk))

≤ lim
n→∞

p(U(1/n)(xm − x)) + lim
n→∞

p(U(1/n)(x− xk)) ≤ 2ε

if m,k ∈ N are sufficiently large. Therefore, Bxm is a norm-bounded, τ -
Cauchy sequence, hence it is convergent. So we can extend B to the whole
space X by

Bx := τ -lim
m→∞

Bxm.

We claim that B is a bounded operator. Indeed, it follows from (i) and
Proposition 1.4 that

‖Bx‖ ≤ lim
m→∞

‖Bxm‖ ≤ lim
m→∞

lim
n→∞

‖U(1/n)xm‖ ≤ lim
m→∞

M‖xm‖ ≤Mδ‖x‖

for all x ∈ X, proving B ∈ L(X). From (12) it is straightforward that B is
sequentially τ -continuous on norm-bounded sets.

We conclude the proof by showing that A + B = C. To this end, let S
be the bi-continuous semigroup generated by (A + B,D(A)) and consider
x ∈ D(A) ∩D(C). Then it is straightforward from (11) that

d

dt
(S(t)x− S(t)x) = 0

for all t ≥ 0, taking the derivative in the τ topology. Also

S(0)x− S(0)x = 0,



158 B. Farkas

therefore
(S(t)− S(t))x = 0 for all x ∈ D(A) ∩D(C).

Since D(A)∩D(C) is bi-dense in X, we obtain S = S, hence A+B = C.

4. Examples. It is shown in [20, Sec. 3.5] that adjoint semigroups are
bi-continuous with respect to the weak∗-topology. Therefore, we consider
bounded perturbations of bi-continuous semigroups with respect to various
topologies on the dual space X ′. First, we remark that if T is a weak∗-
continuous semigroup on X ′ with generator (A,D(A)) and X is invariant
under the operators T (t)′, then T is the dual of a C0-semigroup S (since
T ′|X is weakly, hence strongly continuous). From the bounded perturbation
theorem for C0-semigroups it follows that if B ∈ L(X), then (A+B ′,D(A))
is the generator of a bi-continuous semigroup with respect to the weak∗-
topology σ(X ′,X). We now show that weak∗-bi-continuous semigroups are,
in certain cases, adjoint semigroups of C0-semigroups. To do this, we need
the following lemma.

Lemma 4.1. Let T ∈ L(X ′) and suppose that T is weak∗-continuous on
norm-bounded sets. Then there exists S ∈ L(X) such that S ′ = T .

Proof. It is enough to show that T ′ ∈ L(X ′′) leaves X invariant. This
follows if we prove that T has a weak∗-adjoint

T ′w
∗

: X → X

which, in this case, coincides with T ′|X . For x ∈ X consider the linear form

ϕx(·) := 〈T ·, x〉.
Then the restriction ϕx|B to the unit ball B in X ′ is weak∗-continuous,
so kerϕx ∩ B is weak∗-closed. From the Krein–Šmulian Theorem (see [26,
Ch. IV, Sec. 6]) it follows that kerϕx is weak∗-closed, hence ϕx is weak∗-
continuous. Therefore T has a weak∗-adjoint T ′w

∗
given by T ′w

∗
x = ϕx.

An immediate consequence of this lemma and the previous remarks is
the characterisation of certain weak∗-bi-continuous semigroups.

Theorem 4.2. If T is a weak∗-bi-continuous semigroup in X ′ and T (t)
is weak∗-continuous on norm-bounded sets for t ≥ 0, then there exists a
C0-semigroup S in X with S′ = T .

The assumptions of the previous theorem are satisfied, for example, when
T is a weak∗-bi-continuous semigroup on X ′ and X is separable, because in
this case the unit ball B(0, 1) ⊆ X ′ is metrisable for the weak∗-topology.
Thus the following proposition becomes trivial in view of the bounded per-
turbation theorem for C0-semigroups. Nevertheless, the proposition is valid
for all weak∗-bi-continuous semigroups.
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Proposition 4.3. Let T be a bi-continuous semigroup on X ′ with re-
spect to the weak∗-topology with generator (A,D(A)). Then for every B ∈
L(X), (A+ B′,D(A)) is the generator of a bi-continuous semigroup on X ′

with respect to the weak∗-topology σ(X ′,X).

Proof. In view of Theorem 3.5, it suffices to show B ′ is σ(X ′,X)-conti-
nuous (on norm-bounded sets) for any operator B ∈ L(X). To this end,
consider the σ(X ′,X) open neighbourhood U of 0 in X ′ determined by
the seminorms pi(·) = |〈xi, ·〉|, xi ∈ X, i = 1, . . . , n and the positive real
number ε,

U = {x′ : x′ ∈ X ′, pi(x′) < ε, i = 1, . . . , n}.
Then we have to find a σ(X ′,X)-neighbourhood of 0 for which B′V ⊆ U .
However, it is obvious that the σ(X ′,X)-neighbourhood V determined by
the seminorms qi(·) = |〈Bxi, ·〉| and ε > 0 fulfills this requirement.

Next, we prove a similar result for the Mackey topology µ(X ′,X) (see [26,
Ch. IV, Sec. 3]), i.e., the topology determined by the family of seminorms

{sup
x∈K
|〈x, x′〉| : K ⊆ X is weakly compact, absolutely convex}.

Proposition 4.4. Let T be a bi-continuous semigroup on X ′ with re-
spect to the Mackey topology with generator (A,D(A)) and B ∈ L(X). Then
(A+B′,D(A)) is the generator of a bi-continuous semigroup on X ′ with re-
spect to the Mackey topology.

Proof. We show first that an operator B′ satisfying the above assump-
tions is also continuous for the Mackey topology. In Proposition 4.3 it is
shown that B is weakly continuous. Next, we suppose that K ⊆ X is a
weakly compact, absolutely convex set. Then BK ⊆ X is also weakly com-
pact and absolutely convex. For a given µ(X ′,X)-neighbourhood U of 0,

U := {x′ : x′ ∈ X ′, pi(x′) < ε, i = 1, . . . , n},
with

pi(x′) = sup{|〈x, x′〉| : x ∈ Ki} and ε > 0,

we have to find a µ(X ′,X)-neighbourhood V ⊆ X ′ of 0 such that B′V ⊆ U .
But the neighbourhood V determined by the seminorms

qi(x′) = sup{|〈x, x′〉| : x ∈ BKi}
and ε > 0 fulfills this requirement. We have seen that the assumptions of
Theorem 3.5 are satisfied, therefore our statement is proved.

Finally, we give some examples of τc-continuous operators.

Remark 4.5. Let (Ω, τ) be a locally compact, Hausdorff topological
space, and suppose that Φ : Ω → Ω is continuous. Then the linear operator
B on Cb(Ω) defined as

(Bf)(x) = f(Φ(x)) for x ∈ Ω,
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is continuous on Cb(Ω) with respect to the compact-open topology τc. Hence
Theorem 3.5 can be applied to semigroups induced by jointly continuous
flows (see [13–15]) and for these “local” perturbations.

Remark 4.6. For a given function f ∈ Cb(R) the multiplication opera-
tor

Vf : Cb(R)→ Cb(R), Vf (g) := f · g,
is norm-bounded and τc-continuous on norm-bounded sets.

As an application, we consider the heat equation in Cb(R) with bounded,
continuous potential V = Vf :

(HE)
{
u′(t) = ∆u(t) + V u(t) for all t ≥ 0,

u(0) = u0, u0 ∈ Cb(R).
Let

D(∆) := {f : f ∈ Cb(R), f ′′ exists, f ′′ ∈ Cb(R)}.
Then it is easy to see that (∆,D(∆)) is the generator of a bi-continuous
semigroup. Indeed, it generates the Gaussian semigroup

[P (t)f ](x) =
1√
4πt

�

R
e−|y−x|

2/4tf(y) dy for f ∈ Cb(R).

In order to solve the abstract Cauchy problem (cf. [7]) corresponding to
the equation (HE) it suffices to show that (∆+V,D(∆)) is the generator of
a bi-continuous semigroup. This is, however, a straightforward consequence
of Theorem 3.5 and Remark 4.6 above.
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