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On the (C,a) Cesaro bounded operators
by

ELmourLoupi Ep-DARI (Lens)

Abstract. For a given linear operator 7' in a complex Banach space X and a« € C
with R(a) > 0, we define the nth Cesaro mean of order « of the powers of T' by M, =
(A ~ISr . Af{:iTk. For a = 1, we find M} = (n + 1)1 37, T, the usual Cesaro
mean. We give necessary and sufficient conditions for a (C,a) bounded operator to be
(C, a) strongly (weakly) ergodic.

Introduction. Let T be a bounded linear operator in a Banach space X
and let a € C with R(«) > 0. We say that T' is power bounded if sup,, | T"||
< 00, and (C, a) Cesaro bounded (or (C,«) bounded) if

1 n
T E Ae "
" k=0

sup || M| = sup < o0.
n n

In particular for @« = 1, a (C,1) Cesaro bounded operator is said to be
Cesaro bounded (see [D], [M-S], [G-H], [D-L]). One can show that power
bounded operators are (C, ) bounded (this is obvious for a > 0). However
(C, ) bounded operators need not be power bounded (see for example [D],
[T-Z], and Remark and Example in the present paper).

We shall say that a (C, ) Cesaro bounded operator T is (C, «) strongly
(resp. weakly) ergodic if there exists a bounded linear operator E on X such
that Mz converges to Ex in X for every z € X (resp. z*M%x — z*Ex for
all z € X and z* € X*).

FEinar Hille, applying abelian and tauberian theorems, proved the strong
ergodic theorem [H, Theorem 7] which says that if a bounded linear operator
T in a Banach space X is (C, «) strongly ergodic for some real number o > 0
then 7" must be strongly Abel ergodic, that is, (A — 1)R(\,T") converges in
the strong operator topology as A — 17 and (T™/n®)x converges to 0 in X
for all z € X; he also proved that the converse holds if T' is power bounded.
So the power boundedness of T seems to be necessary together with strong
Abel ergodicity to have the (C,«) strong ergodicity of T'.
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Recently Yoshimoto [Y] gave sufficient conditions (more restrictive) for
a (C,a) bounded operator T in a Banach space X to be (C,«) strongly
ergodic (T need not be power bounded). Also Derriennic [D] gave sufficient
conditions for a Cesaro bounded operator to be (C, 1) strongly ergodic but
only in a reflexive Banach space.

In this paper, we consider a more general situation. For any complex
number a with R(a) > 0 we define the Cesaro averages of a bounded linear
operator T of order o and we give necessary and sufficient conditions for a
(C, «) bounded operator in a complex Banach space X to be strongly (or
weakly) ergodic.

Section 1 gives some preliminaries in order to make this paper as self-
contained as possible. Section 2 presents our main results. Section 3 contains
an example and some propositions.

1. Preliminaries. Let X be a complex Banach space and let B(X)
denote the Banach algebra of all bounded linear operators from X to itself.
For T € B(X), the resolvent set of T, denoted by o(T), is the set of A € C
for which (A — T)~! exists as an operator in B(X) with domain X. The
spectrum of T is the complement of o(T') and it is denoted by o(T). The
resolvent set o(7) is an open subset of C and ¢(7T) is a nonempty compact
subset of C. So the spectral radius 7(T) = sup{|\| : A € o(T)} is well
defined; in fact 7(T) = lim,,_.o ||T"]|*/™. The function R(\,T) : X € o(T) —
(M — T)~! is called the resolvent of T. It is well known that R(\,T) is
analytic in o(T") and if T € B(X) and |[A| > r(T), then A € o(T) and
RA\T) = Y00 T™/A"*1. The series converges in the uniform operator
topology.

For any complex number «a, we define

a+1)(a+2)...(a+n)
n!

o

n

formn>1, Ag=1.

These coefficients appear in the formula
agn
1—ta+1 ZAt It] < 1.
As in the real case, the equality
n
-1
- Z ATk
k=0

remains valid for each complex number « and for all integer n = 0,1,2,...
Obviously for a € {—1,-2,...}, A% =0 for every integer n > —a.
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Let « € C\ {—1,—-2,...} and put

Mo = AL%ZAg;T’f forn=0,1,2,...
k=0
In the following, we denote the kernel and range of a bounded linear
operator T' by N(T') and R(T'), respectively. By a projection of a Banach
space X, we mean an element P of B(X) satisfying P? = P. We recall
that if P is a projection of X, then R(P) is a closed subspace of X and in
addition X = R(P)@® N(P). Conversely, for every direct-sum decomposition
X =Y ® Z where Y and Z are closed subspaces of X there exists a unique
projection P of X such that R(P) = Y and N(P) = Z; we call P the
projection of X ontoY along Z.
We conclude this section with an interesting result which shows a con-
nection between the decomposition of a Banach space X and the strong
Abel summability of a bounded linear operator T € B(X):

LEMMA 1.1 ([H-P, Theorem 18.8.1)). Let X be a Banach space and T €
B(X). If there exists a sequence (A\,) C o(T) and E € B(X) such that

(1) A, = 1 as n — oo,

2) (A = 1)R(A\p, T)x — Ez|| = 0 as n — oo for all z € X,
then X = R(I —T)®N(I —T) and E is the projection of X onto N(I—T)
along R(I = T).

2. Our main results

THEOREM 2.1. Let « be a complex number with R(a)) > 0, T a (C, )
bounded operator on a complex Banach space X, and E € B(X). Then

(1) so-lim My = FE
if and only if
(2) so-lim(A —1)R(\,T)=FE

A—1+

and
n

T
(3) so-lim — = 0.

n—oo N

We shall first prove that if (2) and (3) are satisfied then (1) holds. For
this we need some auxiliary results.

DEFINITION 2.2. Let X be a Banach space and T € B(X). For a complex
number a with R(a) > 0 and an integer | > 1, we say that T satisfies
condition S(I, ) if ||(I — T)!M(T)z|| — 0 as n — oo for all z € X.

When a = 1 we recover Definition 2 of [L-M].
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We shall see that (2)&(3)=-(1) comes immediately from the following
crucial result:

PROPOSITION 2.3. Fiz o € C with R(a) > 0 and let T be a (C, )
bounded operator in a compler Banach space X satisfying the following two
conditions:

(1) A—1)R(\,T)x — Ex as A\ — 17 for all z € X and some E € B(X).
(2) T satisfies condition S(l, ) for some integer 1 > 1.
Then T is (C,«) strongly ergodic.

Proof. By Lemma 1.1, (1) yields the decomposition X = R(I —T) @
N(I —T) and FE is the projection of X onto N(I —T') along R(I —T). It is
not hard to check that R(I —T)" = R(I —T) for all n > 1.

Now let € X. We have = (I — E)x + Ex where (I —E)x € R(I — T)!
and Ex € N(I-T). Thus MYx—FEx = M$(I—FE)z. Since sup,, || M%z| < oo
forallz € RI—T) = R(I-T) and (I — T)!M2z — 0 as n — oo for all
x € X, the desired result follows.

PROPOSITION 2.4. Let a € C with R(ar) > 0 and T € B(X) be such
that (T™/n®)x — 0 as n — oo. Then (T —I)!M%x — 0 as n — oo for some
integer | > 1.

Proof. First if o € {1,2,...} then

o
T-NH*M" = Tt — pr (T —1),
( )7 m+1)(n+2)...(n+ ) a-1( )
where
« a!
P (T—-1)= T-D* 4. .+ I
i ) n—l—l( ) m+1)(n+2)...(n+ )

(see [E, Lemma 2.3]). It is clear that P ,(T'— I)z — 0 as n — oo and by
assumption (7" /n%*)x — 0, thus (T'— I)*M%x — 0.

If a is not an integer, then o —1[ is not either for any integer I > 1, M. g_pll
is well defined, and we have

ala—1)...(a—=1+1) _
M> 7 — P (T —1).
n+1)(n+2)...(n+1) ™ = )
We now prove that for an appropriate integer [ > 1, (T —I)!M%x — 0 as
n — 00. Since P/* (T —I)z — 0 as n — oo, it follows that (T —I)'M2&z — 0
as n — oo if and only if

a(a—l).‘.(a—l+1) N
M ‘
m+1)(n+2)...(n+1) T —0 asn— o0

Set a = a+1ib, a,b € R with a > 0 (we may suppose that a is not an integer),
and let [ = [a] + 1. Then there is a unique § € [0, 1 such that a = [a] + 5.

(T - D' Mg =
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So

ala—=1)...(a=1+1) _ ., ‘ '
m+1)(n+2)...(n+1) M n:;oo if and only if

1 B+1ib . s 14tip

Qnﬂn[a] n+1 el —

n—oo
where ¢, o — 1 as n — oco. Now we use the equality

at+tn+1
n+1
(see [E, Lemma 2.3]), which remains valid for all complex numbers o with
R(a) >0, so

B+ib  saym BHib+n+1l  gig "
w1 Mo = T M - M

1 n
_ n+1 B—2+1ibpk
- Aﬁ+z’b{T +2An+1 e }

1 — 14 514
_ T+l B8 1+szk
42—&-1’1){ + E : nt+1— Anfk }

Ma o Ma _ Ma 1
n+1 n n -+ 1 n+1

Since A+ is equivalent to nPt®/I(B+ib+1) as n — oo (see [B-G,
p. 502]), and by assumption 7" /n“z — 0 as n — oo, we have
Tn+1

B+ib

———— 2 —0 asn— oco.
qn,an[a}An

We will be done if we prove that

B—1+1b o= I—Hb k
n[a]AﬂJ”bZn—i—l Al Tz —0 asn— oo.

For this, put

n/2

1 —1 'Hb B 1+2b k
= T x
E G ol B+zb Z n+1-— -
1 1 + Zb ﬁ 1+Zb k
e n k= n/2+1

We shall prove that both I7 and I§ converge to 0 as n — co. We have

n/2

. 1 28-1+ zby
Ml < —— o [0l S| 2
n.a pors

1+zb

Aﬂ—i—zb
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n/2 B—1+41b
R S R SR ’Tkm’z/: o
- Qman[a] n ] 0 £+zb

By assumption ||(T"/n®)z| — 0 as n— 0o, which yields n=® maxy_ ||T"z||

— 0 as n — oo. Therefore n~14~1 max? HT z|| — 0 as n — oo.
We now show that the sequence {]Aﬁ“b\ 1Zn/2 |A n/zlj;b]}n is bounded.

Indeed, for any nonnegative integers k£ and j we have

B1+ib__ 4B—14ib B—1+1ib B—1+1b B—1+1ib
Al =4 [<1+7k+1 =) 1+7k+j ,

and in particular for k =n/2 and j =0,1,...,n/2 we have
n/2

1+14b B—1+1ib
ZAn/2+] An/2

B—1+ib B—1+ib B—1+ib
x@+(1+755:T)+u”+<1+7U§IT>.”(L+EEI;E)}

Then

n/2
14ib 14ib
\ZAWL <147,
|6 — 1+ b |6 — 1+ b |8 — 1+ 1ib|
1 1+ ———F— 1+—F— .. ([ I+ —— ] |.
X[+<+ n/2+1 Foer (0 n/2+1 * n

On the other hand, there exists a constant K such that

|8 — 1+ b | — 1+ 1b]

Since Ag/}lﬂb is equivalent to (n/2)?~1*® (3 +ib)~ as n — oo, it follows
that
n/2 -1

‘ZA —14ib
w243 | = BT+ )

From this we see that

(n/2+1)K.

n/2
—1+1b
Sup |Aﬂ+zb Z| n/2+j | < oo

Hence I7' converges to 0 as n — 00.
It remains to show that I3’ — 0 as n — oo. We have
n/2—1
1 Z /8 1 + Zb Aﬁ 1+7,an k‘
APFib k+1

1

12 =

k=0
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. e} —1+1ib
_ 18— 1 bl max_ | TFal| o= |47
QH,an[a] ‘AgJﬂb‘ =0 k+1

Since Ag_Hib is equivalent to k°~17% /(3 +ib) as k — oo, the series
converges, and for the same reason as above
max?_, || T
% —0 asn—oo.
nlal ’An ’

This implies that I3 — 0 and completes the proof of Proposition 2.4.

It is well known that when « is a nonnegative real number, Hille proved
in his classical paper that (1) (of Theorem 2.1) implies (3) ([H, Theorem 7]).
We now prove it for o € C with R(a) > 0.

PROPOSITION 2.5. Let T € B(X) and o € C with ®(a) > 0. If E €
B(X) is such that M — E as n — oo then T /n® — 0 as n — oo.

Proof. If « € {1,2,...}, we have
(3 a -
(T —IMS = T (Mo = 1).
Since
o a1 _at+n+l1
n4+1" "M 41

the convergence of M¢ to E yields (T'— I)MS — 0 as n — oo. Moreover

a a
Mn+1 - Mn )

al
m+1)(n+2)...(n+a)

and so the convergence of (T'— I)“MY to 0 yields 7" /n® — 0 as n — 0.
If a ¢ {1,2,...}, set S¢ = SX(T) = Y} _, A°".T*. Then T" can be
expressed as combinations of Sy. In fact, we have

™ = Zn:(—mk@‘) o (T), n>0.

Indeed, we first have
oo n a o .
> (kZ:OH)’f (3) Azt )
= <i(—1)k<g>xk) (iAZ‘_lmk> =1 for|z|<1

k=0

(T - 1" Mg = T~ pr (T - 1),

because

1-2)%(1—2)"* = (g(—l)k(Z)xk) (éAglxk> ~ 1.

0
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Thus

k=0
Then for n > 1 we have

I
-
L —

—~
|
—_
~—
=
ol

o oa— j oa— : .
)An L ]T’ (An_,lﬁ_j:01fk>n—])

j=0 k=0 —j—k

= n—=k
_ kzo( l)k((/:) <]Zo Ag:i_]Tj)
_ kzo<—1>k<z> o

Since M2 = S& /A% and 35 _,(—1)*(?) A2, =0forn =1,2,..., it follows
that for all n > 1,

0 () e - i

«Q [ Ak [ Shk Ak
(et o G )
0 k g An—l%: An—k An—lﬁ

1t () Az aaaz s - )
w0 n
AR (=)

It is not hard to check that

> <z> Ai‘i(%“—l) = nf(—l)’f <‘;> A2 =1 n>1

k=0 k=0

T =

M=

k

I
NE

k

3 |l

Thus T"/n® — 0 as n — oo if and only if

1 n
— (—l)k(a) o w(MS ,—E)—0 asn— oo,
k=0

ne k
that is,
1 n
— (—1)”_k< “ >Ag(M,?—E)—>O as n — oo.
ne — n—=k
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For a given € > 0 there exists NV > 1 such that || M — E|| < e for alln > N.
Then for n > N,

& Se( 2 o)

| /()

ek <—w<n:>Az<Mz—E>u

R A

Since |AY /n%| — |I'(a+1)| ! there exists a constant C' so that sup,, | A% /n|
< C and also sup,, maxo<i<n |AY/n%| < C. We obtain

5, o

k=0

m% | A (M —

e &

1 n
k: n

1
]

n

AF (M — E)H +€C> kzo

< 1 ma @
—— X .
~ \In?| & k

The series Zzozo‘(‘;)‘ converges because the term ‘(z)‘ is equivalent to
1/(|k~*Y - |I'(—a)|) as k — oo and by assumption R(«) > 0. This completes
the proof of Proposition 2.5.

The proof of Theorem 2.1 will be completed via the following proposition
and the previous propositions.

PROPOSITION 2.6. Let T € B(X), o a complex number with R(a) > 0,
and E € B(X) such that MY — E. Then (A —1)R(\,T) — E as A — 1T.

Proof. From what we have seen above, T"/n® — 0 as n — oo, and this
yields o(T') € D(0,1).
Let A > 1. We can check that

1 a+1l oo N a n
(A—l)R(A,T):(l—X> ZA M ( ) .
It follows that

(A—1)R(\,T) - E = <1_ %)Mlizﬁlﬁ(Mﬁ—E)G)n

and the convergence of M to E as n — oo yields the convergence of
(A=1R\T) to Eas A — 1T,
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If we look carefully at Propositions 2.3-2.6 we obtain the following the-
orem.

THEOREM 2.7. Let o be a complex number with ®(«) > 0, T a (C, )
bounded operator on a complex Banach space X, and E € B(X). Then the
following assertions are equivalent:

(1) so-lim M (T) = E.

(a) s)?—liIP()\ —1)R(\,T)=F,
—1
(2) "
(b) SO—lim n_a = 0.

(a) X =R(I-T)® N(I —T),
®) { (b) Sg;l'gl(T — D)'M(T) =0 for some integer | > 1.

Next we mention the corresponding results for the weak operator topol-
ogy. For a given x € X if w-lim,, oo (T"/n%)x = 0 for some a € C with
R(a) > 0 then an easy observation gives

k

w-lim max — z = 0.
n—oo 0<k<n n%

In addition, it can be checked that Lemma 1.1 and Propositions 2.3-2.6
hold with the strong operator topology replaced by the weak operator topol-
ogy. This yields the corresponding theorem in the weak operator topology.

Here we only state the result without proof.

THEOREM 2.8. Let « be a complex number with R(a) > 0, T a (C, )
bounded operator on a complex Banach space X into itself, and E € B(X)
Then

(1) w-lim Myx = Ex  forall z € X

if and only if
(2) \j\v—lilrf()\ —1)R\T)x=Ex forallze X

and
mn

T
(3) w-lim—z =0 forallz € X.

n—oo n

3. Finally, we give some corollaries and an example.
COROLLARY 3.1. If a >0 and T is (C,a) strongly ergodic in a Banach
space X, then T is (C,3) strongly ergodic for any 3 > «.

PROPOSITION 3.2. Let a« > 0 and T a (C,«a) bounded operator in a
reflexive Banach space X satisfying (T" /n®)x — 0 asn — oo for all z € X.
Then T is (C,«) strongly ergodic.
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Proof. Let x € X. Since X is reflexive and T is (C,3) bounded for
any > « (see [D, Lemma 1]), there exists a subsequence (Mfk) & such that
M} x converges weakly to some element in X; call it Ex. Also [D, Lemma 1]
asserts that (T —I)MP —0 as n— oo. It follows that (I -T)E=E(I-T)=0,
N(I —T) = R(E), E* = FE and R(I—T) C N(E). Now, for z € N(E)
clearly x is a weak cluster point of the sequence

{(I-M;{?)x}n:{ - %i ...+T’“)x}.

n

Since every weakly closed convex subset of X is norm closed, it follows that
x € R(I —=T). Then we have the decomposition X = R(I - T)® NI —T)
and by assumption (7" /n%)x — 0, so T satisfies condition S(I, ) for some
integer [ > 1, and we apply Theorem 2.7 to obtain the desired result.

REMARK. There exists a (C, a) bounded operator T' in a reflexive Ba-
nach space which is (C, 3) strongly ergodic for every 3 > « but not (C,«)
strongly ergodic.

To see this, we take X = C? and we consider the operator T defined on
XbyT= [_01__11]. We check easily that

™ — {(—é)" ”<(_—11)21"} form—=1,2, ...

Son < ||[T"|| < n + 2. Obviously T™/n does not converge to 0 as n — oo
and consequently 7' cannot be (C,1) strongly ergodic. However, T is not
power bounded but it is (C, 1) bounded, that is, M! = (n +1)"1 >, _ T*
is bounded and thus it is (C, 3) bounded for every 5 > 1. Hence it follows
from Proposition 3.2 that T is (C, 3) strongly ergodic for every 3 > 1.

PROPOSITION 3.3. Let o > 0 and T be a (C,«) bounded operator in a
reflexive Banach space X satisfying w-lim, (T"/n“)z = 0 for all x € X.
Then T is (C, ) weakly ergodic.

We conclude this paper by the following example of an operator T which
is (C, a) weakly ergodic but not (C, «) strongly ergodic.

ExXAMPLE. Let X be the Hilbert space Il with the canonical basis {ey}.

We consider the operator T defined on X by Tep = wierpy; for every
k > 1 where wy, = 1+ 1/k? k = 1,2,... We check easily that T"e;, =
(W« - Whtn—1)€ksn for k=1,2,... Let

1 1 1
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Obviously P, converges; we denote by P its limit. Then 1 < wg ... wWk4n—1
< P for all k,n > 1. It follows that sup, ||[T"|| < P and ||(T"/n)z| <
(P/n)||z|| — 0 for all z € l5. It is also clear that sup,, ||[M}(T)|| < .

We now consider the operator S defined on the Hilbert space I X I3 by

T T-1
5= [0 . ]
It is not hard to check that
m n _ gmn—1
Sn = H) mr T )} (see [T-2))
e MNT) 24(T" = M}, (T)
1 _ n n+i - Mn—-1
wi = |1 wery ]
Clearly .
S _ i;L TN _ Tnfl
n |0 T?n ’
and
sn 2
[Zeoa)| 2@ - alp 21,

Thus S™/n does not converge strongly to 0 in the operator topology. So S
is not strongly ergodic. However, (5" /n)(x @ y) converges weakly to 0 for
every @y € ly X lo (since T™y is weakly convergent to 0). Moreover, S is
also (C, 1) bounded. We can now apply Proposition 3.3 to conclude that S
is (C, 1) weakly ergodic.

References

[B-G] C. A. Berenstein and R. Gay, Complex Variables. An Introduction, Grad. Texts
in Math. 125, Springer, 1997.

D] Y. Derriennic, On the mean ergodic theorem for Cesaro bounded operators, Colloq.
Math. 84/85 (2000), 443-455.

[D-L] Y. Derriennic and M. Lin, On invariant measures and ergodic theorems for positive
operators, J. Funct. Anal. 13 (1973), 252-267.

[E] E. Ed-dari, On the (C,a) uniform ergodic theorem, Studia Math. 156 (2003),
3-13.

[G-H] J. J. Grobler and C. B. Huijsmans, Doubly Abel bounded operators with single
spectrum, Quaestiones Math. 18 (1995), 397-406.

[H] E. Hille, Remarks on ergodic theorems, Trans. Amer. Math. Soc. 57 (1945), 246—
269.

[H-P] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math.
Soc. Collog. Publ. 31, Amer. Math. Soc., 1957.

[L-M] K. B. Laursen and M. Mbekhta, Operators with finite chain length and the ergodic
theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448.



Cesaro bounded operators 175

[M-S] F. J. Martin-Reyes and M. D. Sarrién Gavilan, Almost everywhere convergence
and boundedness of Cesaro-a ergodic averages, Illinois J. Math. 43 (1999), 592—
611.

[T-Z] Y. Tomilov and J. Zemének, A new way of constructing examples in operator
ergodic theory, Math. Proc. Cambridge Philos. Soc., to appear.

[Y] T. Yoshimoto, Uniform and strong ergodic theorems in Banach spaces, Illinois J.
Math. 42 (1998), 525-543; Correction, ibid. 43 (1999), 800-801.

Faculté des sciences Jean Perrin

Université D’Artois

SP 18

62307 Lens Cedex, France

E-mail: Elmouloudi.Eddari@euler.univ-artois.fr

Received November 21, 2002
Revised version April 7, 2003 (5084)



