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Abstract. We introduce and study the Kunen–Shelah properties KSi, i = 0, 1, . . . , 7.
Let us highlight some of our results for a Banach space X: (1) X∗ has a w∗-nonseparable
equivalent dual ball iff X has an ω1-polyhedron (i.e., a bounded family {xi}i<ω1 such
that xj 6∈ co({xi : i ∈ ω1 \ {j}}) for every j ∈ ω1) iff X has an uncountable bounded
almost biorthogonal system (UBABS) of type η for some η ∈ [0, 1) (i.e., a bounded family
{(xα, fα)}1≤α<ω1 ⊂ X×X∗ such that fα(xα) = 1 and |fα(xβ)| ≤ η if α 6= β); (2) if X has
an uncountable ω-independent system then X has an UBABS of type η for every η ∈ (0, 1);
(3) if X does not have the property (C) of Corson, then X has an ω1-polyhedron; (4) X
has no ω1-polyhedron iff X has no convex right-separated ω1-family (i.e., a bounded family
{xi}i<ω1 such that xj 6∈ co({xi : j < i < ω1}) for every j ∈ ω1) iff every w∗-closed convex
subset of X∗ is w∗-separable iff every convex subset of X∗ is w∗-separable iff µ(X) = 1,
µ(X) being the Finet–Godefroy index of X (see [1]).

1. Introduction. If X is a Banach space and θ an ordinal, a family
{xα : α < θ} ⊂ X is said to be a θ-basic sequence if there exists 1 ≤ K <∞
such that for every n < m in N, any λi ∈ R, i = 1, . . . ,m, and α1 < . . . <
αm < θ we have ‖∑n

i=1 λixαi‖ ≤ K‖∑m
i=1 λixαi‖. A family {xi}i∈I ⊂ X

is a basic sequence if it is a θ-basic sequence for some ordinal θ. If K = 1
the basic sequence is said to be monotone. A biorthogonal system in X is a
family {(xi, x∗i ) : i ∈ I} ⊂ X ×X∗ such that x∗i (xi) = 1 and x∗i (xj) = 0 for
i, j ∈ I, i 6= j. A Markushevich system (for short, an M-system) in X is a
biorthogonal system {(xi, x∗i ) : i ∈ I} in X such that {x∗i : i ∈ I} is total on
[{xi : i ∈ I}] (see [14]).

It is well known (see [14, p. 599]) that if the density of a Banach space
X satisfies Dens(X) ≥ ℵ1, then X has a monotone ω1-basic sequence. Also
if Dens(X) > c, then X has a monotone ω1-basic sequence, because in
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this case an easy calculation shows that w∗-Dens(X∗) ≥ ℵ1. However, if
ℵ1 ≤ Dens(X) ≤ c and w∗-Dens(X∗) ≤ ℵ0, then X can fail to have an
uncountable basic sequence, even an uncountable biorthogonal system. In-
deed, under the axiom 3ℵ1 (which implies the continuum hypothesis (CH)),
Shelah [13] constructed a nonseparable Banach space S that fails to have
an uncountable biorthogonal system. Later Kunen [8, p. 1123] constructed
under (CH) a Hausdorff compact space K such that C(K) is nonsepar-
able and has no uncountable biorthogonal system, among other interesting
pathological properties.

A Banach space X is said to have the Kunen–Shelah property KS0
(resp. KS1) if X has no uncountable basic sequence (resp. uncountable
Markushevich system). A Banach space X is said to have the Kunen–
Shelah property KS2 if X has no uncountable biorthogonal system. Clearly,
KS2 ⇒ KS1 ⇒ KS0.

The first example of a Banach space X such that X ∈ KS0 but X 6∈ KS2
was given in [9]; it is the space of Johnson–Lindenstrauss JL2 (see [5]).
The properties KS2 and KS1 were separated in [2] (see also [1]), where it
was proved that if a Banach space X has the property (C) of Corson and
w∗-Dens(X∗) ≤ ℵ0, then X ∈ KS1.

Question 1. Does there exist a Banach space X such that X ∈ KS0
but X 6∈ KS1?

In this paper we study some structures similar to uncountable biorthog-
onal systems, namely: uncountable ω-independent families, ω1-polyhedrons,
uncountable bounded almost biorthogonal systems (UBABS), etc. The lack
of these structures defines the Kunen–Shelah properties KS3,KS4, etc.

In Section 2 we prove that a Banach space X has an ω1-polyhedron
iff X has an UBABS iff X∗ has a w∗-nonseparable dual equivalent ball.
Section 3 deals with uncountable ω-independent families. In Section 4 it is
proved that X has no ω1-polyhedron iff every w∗-closed convex subset of
X∗ is w∗-separable. In Section 5 we answer some questions posed by Finet
and Godefroy [1] concerning the index µ(X). In Section 6 we prove that a
space X has no convex right-separated ω1-family iff every w∗-closed convex
subset of X∗ is w∗-separable. Finally, in Section 7 we show that X has an
ω1-polyhedron iff X has a convex right-separated ω1-family, whence every
w∗-closed convex subset of X∗ is w∗-separable iff every convex subset of X∗

is so.
Let us introduce some notation. ω1 is the first uncountable ordinal, |A|

the cardinality of the set A, and c = |R|. If X is a Banach space, X∗ denotes
its dual, B(X) and S(X) the closed unit ball and sphere of X, resp., and
B(x, r) the closed ball with radius r and center x. If A ⊂ X we denote
by [A] the linear subspace spanned by A. Recall that a Banach space X is
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said to have the property (C) of Corson (for short, X ∈ (C)) if
⋂
i∈I Ci 6= ∅

whenever {Ci : i ∈ I} is a family of closed bounded convex subsets of X with
the countable intersection property, i.e., ∅ 6= ⋂

i∈J Ci for every countable
subset J ⊂ I.

2. UBABS and ω1-polyhedrons. If X is a Banach space, a bounded
family {(xα, fα)}1≤α<ω1 ⊂ X × X∗ is said to be an uncountable bounded
almost biorthogonal system (for short, an UBABS) if there exists a real
number 0 ≤ η < 1 such that fα(xα) = 1 and fα(xβ) ≤ η if α 6= β. If in
addition |fα(xβ)| ≤ η for α 6= β, then the UBABS is said to be of type η.
Define the index τ(X) as follows:

τ(X) = inf{0 ≤ η < 1 : X has an UBABS of type η},
where inf{∅} = 1. Clearly, τ(X) is invariant under isomorphisms and: (1) if
X has an uncountable biorthogonal system, then τ(X) = 0; (2) τ(X) < 1
iff X has an UBABS.

If τ is a cardinal, a bounded family {xi}i∈τ in a Banach space X is said to
be a τ -polyhedron iff xj 6∈ co({xi}i∈τ\{j}) for every j ∈ τ . In a dual Banach
space X∗ one can define a w∗-τ -polyhedron in an analogous way, using the
w∗-topology instead of the w-topology.

Proposition 2.1. A Banach space X has an ω1-polyhedron iff X∗ has
a w∗-ω1-polyhedron.

Proof. Let {xα}α<ω1 ⊂B(X) be an ω1-polyhedron. By the Hahn–Banach
Theorem there exists fα ∈ S(X∗) such that

fα(xα) > sup{fα(xi) : i ∈ ω1 \ {α}} =: eα.

By passing to a subsequence, we can suppose that there exist 0 < ε < ∞
and r ∈ R such that fα(xα) − eα ≥ ε > 0 and |r − fα(xα)| ≤ ε/4 for all
α < ω1. Hence, if α, β < ω1 with α 6= β, we have

fα(xα) ≥ r − ε/4 > r − 3ε/4 ≥ fβ(xβ)− ε ≥ eβ ≥ fβ(xα),

which implies that {fα}α<ω1 is a w∗-ω1-polyhedron in X∗.
The converse implication is analogous.

In the following proposition we give the relation between ω1-polyhedrons
and UBABS.

Proposition 2.2. For a Banach space X the following are equivalent :

(1) X has an ω1-polyhedron.
(2) X has an UBABS of type η for some 0 ≤ η < 1.
(3) X has an UBABS.

Proof. (1)⇒(2). If w∗-Dens(X∗) ≥ ℵ0, then X has an uncountable bi-
orthogonal system and so X has an UBABS of type 0. Now assume that
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w∗-Dens(X∗) ≤ ℵ0. Let {xα}1≤α<ω1 ⊂ X be an ω1-polyhedron. Assume
that x1 = 0 and ‖xα‖ ≤ 1. For each 1 ≤ α < ω1 consider fα ∈ S(X∗) such
that

1 ≥ fα(xα) > sup{fα(xi) : 1 ≤ i < ω1, i 6= α} =: %α.

Observe that %α ≥ 0 if α 6= 1. By passing to an uncountable subsequence,
it can be assumed that there are real numbers 0 < ε, r ≤ 1 such that
fα(xα) − %α ≥ ε and |r − fα(xα)| < ε/8 for every 2 ≤ α < ω1. Since w∗-
Dens(X∗) ≤ ℵ0, by passing again to a subsequence, we assume that there
exists z ∈ X∗ such that z(xα) > 0 and |z(xβ)/z(xα) − 1| < ε/8 for every
2 ≤ α, β < ω1. Then, if gα = fα + z/z(xα), 2 ≤ α < ω1, we have

gα(xα) = fα(xα) + 1 ≥ r − ε/8 + 1 > r − 6ε/8 + 1 ≥ fα(xα)− 7ε/8 + 1

≥ sup{gα(xβ) : 2 ≤ β < ω1, β 6= α}
≥ inf{gα(xβ) : 2 ≤ β < ω1, β 6= α} ≥ −ε/8.

Define hα = gα/gα(xα). Then, for 2 ≤ α, β < ω1, α 6= β, we have hα(xα) = 1
and

− ε/8
r − ε/8 + 1

≤ − ε/8
gα(xα)

≤ hα(xβ) =
gα(xβ)
gα(xα)

≤ r + 1− 6ε/8
r + 1− ε/8 .

So, {(xα, hα) : 2 ≤ α < ω1} ⊂ X ×X∗ is an UBABS of type η such that

0 ≤ η = max
{

ε/8
r − ε/8 + 1

,
r + 1− 6ε/8
r + 1− ε/8

}
< 1.

(2)⇒(3) is obvious and (3)⇒(1) is clear, because if {(xα, fα)}1≤α<ω1 ⊂
X ×X∗ is an UBABS, then {xα}α<ω1 is an ω1-polyhedron.

Let us consider some results on representation of elements in polyhe-
drons, which we need later. If {xi}i∈I is a w∗-τ -polyhedron in a dual Banach
space X∗ with τ = card(I) and K = cow

∗
({xi}i∈I), then the core of K is

the set

K0 = core(K) =
⋂
{cow

∗
({xi}i∈I\A) : A ⊂ I, A finite}.

Define the function λ : K → [0, 1] as follows: for k ∈ K,

λ(k) = sup{λ ∈ [0, 1] : ∃u ∈ K,∃i ∈ I such that k = λxi + (1− λ)u}.
Let H = {x ∈ K : λ(x) = 0}. Since for every finite subset A ⊂ I, each
x ∈ K has the expression x =

∑
i∈A λixi+(1−µ)u with u ∈ cow

∗
({xi}i∈I\A),

λi ∈ [0, 1], i ∈ A, µ =
∑

i∈A λi ≤ 1, it can be easily seen that H ⊂ K0.

Lemma 2.3. Let {xi}i∈I be a w∗-τ -polyhedron in the dual Banach space
X∗, τ = card(I), K = cow

∗
({xi}i∈I), K0 = core(K) and H = {x ∈ K :

λ(x) = 0}. If x ∈ K, then there exist a sequence {µn}n≥1 of positive num-
bers with 0 ≤ ∑n≥1 µn = µ ≤ 1, a sequence {in}n≥1 ⊂ I of indices (not
necessarily distinct) and u ∈ H such that x =

∑
n≥1 µnxin + (1− µ)u.
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Proof. Clearly the statement is true if x ∈ H. Assume that x 6∈ H, i.e.,
λ(x) > 0. Choose 0 < 1

2λ(x) ≤ λ1 ≤ 1, i1 ∈ I, and u1 ∈ cow
∗
({xi}i∈I\{i1})

such that x= λ1xi1 +(1−λ1)u1. If u1 ∈H, we are done. Otherwise, λ(u1)> 0
and we choose 0 < 1

2λ(u1) ≤ λ2 ≤ 1, i2 ∈ I, and u2 ∈ cow
∗
({xi}i∈I\{i2})

such that u1 = λ2xi2 +(1−λ2)u2. By reiteration, there are two possibilities:

(A) um ∈ H for some m ∈ N. Then we obtain the representation

x =
m∑

k=1

λkPk−1xik + Pmum, Pn =
n∏

k=1

(1− λk), P0 = 1.(1)

(B) Always um 6∈ H. As Pm decreases in (1), the limit limm≥1 Pm = P ∈
[0, 1] exists. We have two cases:

• P > 0. Observe that this happens iff
∑

k≥1 λk < ∞. In consequence,
the series

∑
k≥1 λkPk−1xik converges and um → u ∈ K as m → ∞. So

x =
∑

k≥1 λkPk−1xik + Pu. We claim that λ(u) = 0. Indeed, suppose that
µ := λ(u) > 0 and pick q ∈ N such that P/Pq > 1/2, λq+1 < µ/8. Then

uq =
1
Pq

(∑

j≥1

λq+jPq+j−1xq+j + Pu
)
,

which implies that λ(uq) ≥ (P/Pq)λ(u) = (P/Pq)µ > µ/2. Since 0 <
1
2λ(uq) ≤ λq+1 ≤ 1, we obtain µ/8 > λq+1 ≥ µ/4, a contradiction.
• P = 0. In this case Pmum → 0 as m → ∞ and we obtain the repre-

sentation x =
∑

k≥1 λkPk−1xik with
∑

k≥1 λkPk−1 = 1.

In order to connect the existence of an UBABS in a Banach space X with
the w∗-nonseparability of dual equivalent unit balls of X∗, we introduce the
index σ(X). If K ⊂ X∗ is a disc (i.e., a convex symmetric subset of X∗),
define

σ(K) = max{0 ≤ t ≤ 1 : ∃A ⊂ K, |A| ≤ ℵ0, tK ⊆ cow
∗
(A ∪ (−A))}.

Observe that 0 ≤ σ(K) < 1 iff K is w∗-nonseparable and that there exists
a countable subset A ⊂ K such that σ(K) ·K ⊂ cow

∗
(A ∪ (−A)).

Lemma 2.4. Let X be a Banach space, K ⊂ X∗ a w∗-nonseparable disc
and σ(K) < % ≤ 1. Then there exists ε = ε(%) > 0 (depending on %)
such that for every countable subset A ⊂ K there exists k ∈ K satisfying
dist(%k, cow

∗
(A ∪ (−A))) ≥ ε.

Proof. In the contrary case, there exist a sequence of real numbers εn ↓ 0
and a sequence of countable subsets An ⊂ K, n ≥ 1, such that every k ∈ K
satisfies dist(%k, cow

∗
(An ∪ (−An))) < εn. So, if A =

⋃
n≥1An we have

%K ⊂ cow
∗
(A ∪ (−A)), a contradiction.

Define the index σ(X), X a Banach space, as follows:

σ(X) = inf{σ(K) : K ⊂ X∗ a dual equivalent ball of X∗}.
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It is clear that σ(X) is invariant under isomorphisms.

Proposition 2.5. For a Banach space X we have

σ(X) = inf{σ(K) : K ⊂ X∗ a w∗-compact disc}.
Proof. Obviously σ(X) ≥ inf{σ(K) : K ⊂ X∗ a w∗-compact disc}. In

order to prove the opposite inequality, it is enough to see that σ(X) ≤ σ(K)
for any w∗-compact disc K ⊂ X∗. Assume that such a K is w∗-nonseparable,
pick σ(K) < % < 1 and let ε = ε(%) > 0 be given by Lemma 2.4. For 0 <
δ < ε such that %+δ < 1 consider Hδ = K+δB(X∗), which is an equivalent
dual ball of X∗. We claim that σ(Hδ) ≤ % + δ. Indeed, let % + δ < t ≤ 1
and A ⊂ Hδ be a countable subset. Then A ⊂ A1 + A2, where A1 ⊂ K
and A2 ⊂ δB(X∗) are countable. Assume that tHδ ⊂ cow

∗
(A ∪ (−A)). As

cow
∗
(A ∪ (−A)) ⊂ cow

∗
(A1 ∪ (−A1)) + δB(X∗), we get

tK ⊂ tHδ ⊂ cow
∗
(A1 ∪ (−A1)) + δB(X∗),

which implies that dist(tk, cow
∗
(A1 ∪ (−A1))) ≤ δ for all k ∈ K. But by

Lemma 2.4 there exists k ∈ K such that dist(%k, cow
∗
(A1 ∪ (−A1))) ≥ ε.

Thus dist(tk, cow
∗
(A1 ∪ (−A1))) > δ, a contradiction. Therefore, we have

tHδ * cow
∗
(A ∪ (−A)) and σ(Hδ) ≤ % + δ for 0 < δ < ε. Hence, σ(X) ≤ %

for every σ(K) < % < 1, and we conclude that σ(X) ≤ σ(K).

Proposition 2.6. If X is a Banach space then σ(X) ≤ τ(X).

Proof. Assume that τ(X) < η < 1 and choose an UBABS {(xα, fα)}α<ω1

⊂ X × X∗ of type η such that ‖fα‖ = 1 and ‖xα‖ ≤ M for all α < ω1,
for some 0 < M < ∞. Clearly, {±fα}α<ω1 is a w∗-ω1-polyhedron. Define
K = cow

∗
({±fα}α<ω1), K0 = core(K) and H = {z ∈ K : λ(z) = 0}. It is

easy to see that |z(xα)| ≤ η for every z ∈ K0 and α < ω1. We claim that
σ(K) ≤ η. Indeed, let A ⊂ K be countable. By Lemma 2.3 there exists
γ < ω1 such that

A ⊂ co({±fα}α≤γ ∪H) ⊂ cow
∗
({±fα}α≤γ ∪H).

Clearly, cow
∗
(A ∪ (−A)) ⊂ cow

∗
({±fα}α≤γ ∪H) and for every γ < % < ω1

and every z ∈ cow
∗
({±fα}α≤γ ∪H) we have |z(x%)| ≤ η.

Hence, for every γ < % < ω1 and η < t ≤ 1 we have tf% 6∈ cow
∗
(A∪(−A)).

So σ(K) ≤ η and we conclude that σ(X) ≤ τ(X).

Now we prove for a Banach space X that σ(X) = 1 iff τ(X) = 1.

Proposition 2.7. A Banach space X has an UBABS of type η for
some η ∈ [0, 1) iff X∗ has a w∗-nonseparable equivalent dual unit ball. So,
σ(X) = 1 iff τ(X) = 1.

Proof. Firstly, if X has an UBABS of type η for some η ∈ [0, 1) (i.e.,
τ(X) < 1), then by Proposition 2.6 we have σ(X) < 1 (i.e., X∗ has a
w∗-nonseparable equivalent dual unit ball).
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Assume now that X is a Banach space with σ(X) < 1 equipped with an
equivalent norm such that σ(B(X∗)) < 1. Fix % > 0 with σ(B(X∗)) < % < 1.
If A ⊂ S(X) and ε ≥ 0 we put

(A, ε)⊥ = {z ∈ X∗ : |z(x)| ≤ ε, ∀x ∈ A}, S((A, ε)⊥) = S(X∗) ∩ (A, ε)⊥.

Clearly εB(X∗) + A⊥ ⊂ (A, ε)⊥.

Claim 0. If A ⊂ S(X) and A⊥ 6= {0}, then εS(X∗) ⊂ co(S((A, ε)⊥))
for 0 ≤ ε < 1.

Indeed, let u ∈ εS(X∗) and v ∈ A⊥ \{0}. We can find λ, µ > 0 such that
u + λv, u − µv ∈ S(X∗). Thus, u + λv, u − µv ∈ S((A, ε)⊥). Let t ∈ (0, 1)
be such that tλ+ (1− t)(−µ) = 0. Then u = t(u+ λv) + (1− t)(u− µv) ∈
co(S((A, ε)⊥)).

Claim 1. For any countable subsets A ⊂ S(X) and F ⊂ S(X∗) there
exists f ∈ S((A,

√
%)⊥) such that

√
% f 6∈ cow

∗
(F ∪ (−F )).

The opposite means that
√
%S((A,

√
%)⊥) ⊂ cow

∗
(F ∪(−F )). By Claim 0

we have
√
% S(X∗) ⊂ co(S((A,

√
%)⊥)). So

%B(X∗) ⊂ cow
∗
(%S(X∗)) ⊂ cow

∗
(
√
%S((A,

√
%)⊥)) ⊂ cow

∗
(F ∪ (−F )),

a contradiction because σ(B(X∗)) < %. So, Claim 1 holds.

Claim 2. There exist 0 ≤ δ < ε ≤ 1 − √% such that for any countable
subsets A ⊂ S(X) and F ⊂ S(X∗) there exist f0 ∈ S((A,

√
%)⊥) and x0 ∈

S(X) such that f0(x0) ≥ 1− δ and f(x0) ≤ 1− ε for all f ∈ F .

Define R = {r = (r1, r2) ∈ Q × Q : 0 < r1 < r2 ≤ 1 − √%}. As R
is countable, we can put R = {rn}n≥1. If Claim 2 is false, for every pair
rn = (rn1, rn2) ∈ R we can choose countable subsets An ⊂ S(X), Fn ⊂
S(X∗), n ≥ 1, such that for every g ∈ S((An,

√
%)⊥) and every x ∈ S(X),

either g(x) < 1 − rn1 or there exists f ∈ Fn with f(x) > 1 − rn2. Let
A =

⋃
n≥1An, F =

⋃
n≥1 Fn. By Claim 1 there exists f0 ∈ S((A,

√
%)⊥)

such that
√
% f0 6∈ cow

∗
(F ∪ (−F )). By the Hahn–Banach Theorem there

exists y ∈ S(X) such that
√
% f0(y) > sup{|f(y)| : f ∈ F} =: γ0 ≥ 0.

Choose a sequence {zn}n≥1 ⊂ S(X) such that

lim
n→∞

f0(zn) = ‖f0‖ = 1, 1− f0(zn) <
1
n

(f0(y)− γ0), n ≥ 1.(2)

Then

f0

(
zn + 1

ny∥∥zn + 1
ny
∥∥
)

= 1− δn
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with

0 ≤ δn =

∥∥zn + 1
ny
∥∥− f0(zn)− 1

nf0(y)∥∥zn + 1
ny
∥∥ ≤ 1− f0(zn) + 1

n(1− f0(y))∥∥zn + 1
ny
∥∥ .

Hence, limn→∞ δn = 0. On the other hand, for every f ∈ F ,

f

(
zn + 1

ny∥∥zn + 1
ny
∥∥
)
≤ 1 + 1

nγ0∥∥zn + 1
ny
∥∥ = 1− εn,

where

εn =

∥∥zn + 1
ny
∥∥− 1− 1

nγ0∥∥zn + 1
ny
∥∥ ≤ 1 + 1

n − 1− 1
nγ0∥∥zn + 1

ny
∥∥ =

1
n(1− γ0)∥∥zn + 1

ny
∥∥

and

εn >

∥∥zn + 1
ny
∥∥− f0(zn)− 1

nf0(y)∥∥zn + 1
ny
∥∥ = δn ≥ 0

by (2). Pick any n ∈ N such that 1
n(1− γ0)/‖zn + 1

ny‖ ≤ 1 − √%. Then
0 ≤ δn < εn ≤ 1 − √% and there is some m ∈ N such that δn ≤ rm1 <
rm2 ≤ εn. Let x0 =

(
zn + 1

ny
)
/
∥∥zn + 1

ny
∥∥ ∈ S(X) and observe that f0 ∈

S((Am,
√
%)⊥), f0(x0) ≥ 1 − δn and f(x0) ≤ 1 − εn for all f ∈ F . Then

f0 ∈ S((Am,
√
%)⊥), f0(x0) ≥ 1− rm1 and f(x0) ≤ 1− εn ≤ 1− rm2 for all

f ∈ Fm, a contradiction. So, Claim 2 holds.

Let 0 ≤ δ < ε ≤ 1−√% be from Claim 2. We will construct a transfinite
sequence {(xα, fα)}α<ω1 ⊂ S(X)× S(X∗) so that for every α < ω1,

fα(xα) ≥ 1− δ,(3)

fα(xβ) ≤ 1− ε if α 6= β.(4)

In the first step, we take x1 ∈ S(X) and f1 ∈ S(X∗) such that f1(x1) = 1.
Let 1 < α0 < ω1 and suppose we have constructed a family {(xα, fα) :
α < α0} satisfying (3) and (4). Apply Claim 2, with F = {fα : α < α0} and
A = {xα : α < α0}. Denote the resulting elements x0 and f0 by xα0 and fα0 .
The inequality (3) for α = α0 is satisfied by construction. The inequality
(4) for α = α0 and β < α0 holds because f0 ∈ S((A,

√
%)⊥) and ε ≤ 1−√%.

For β = α0 and α < α0, it follows because sup{f(x0) : f ∈ F} ≤ 1− ε. Now
the set {(xα, fα)}α<ω1, where xα = xα, fα = fα/fα(xα), 1 ≤ α < ω1, is an
uncountable bounded (by (1− δ)−1) almost biorthogonal system.

Proposition 2.8. Let X be a Banach space such that σ(X) < 1/3. Then
τ(X) ≤ 2σ(X)/(1− σ(X)). So, for every Banach space X:

(1) σ(X) = 0 iff τ(X) = 0.
(2) σ(X) = 0 whenever X has an uncountable biorthogonal system.

Proof. (A) Let ‖ · ‖ be an equivalent norm on X such that the corre-
sponding dual unit ball B(X∗) satisfies σ(B(X∗)) < 1/3. It is enough to
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prove that for every σ(B(X∗)) < a < 1/3 there exists in X an UBABS of
type η ≤ 2a/(1− a). So, fix such an a. By induction we choose a family
{(xα, fα)}α<ω1 ⊂ S(X)× S(X∗) such that

fα(xα) >
1− a

2
, |fα(xβ)| < a if α 6= β.(5)

Pick (x1, f1) ∈ S(X)×S(X∗) satisfying f1(x1) = 1. Let α < ω1 and assume
that we have chosen {(xβ, fβ)}β<α ⊂ S(X)× S(X∗) satisfying (5). Set

Aα = [{xβ : β < α}], Fα = cow
∗
({±fβ : β < α} ∪G0),

where G0 ⊂ B(X∗) is a countable symmetric subset 1-norming on Aα. By
[15, Lemma 4.3] there exists xα ∈ S(X) such that sup{|f(xα)| : f ∈ Fα} < a.
We claim that dist(xα, Aα) > (1− a)/2. Indeed, pick z ∈ Aα and observe
that if ‖z‖ < (1 + a)/2, then clearly ‖z − xα‖ > (1− a)/2, and if ‖z‖ ≥
(1 + a)/2, then

‖z − xα‖ ≥ sup{f(z − xα) : f ∈ Fα}

≥ ‖z‖ − sup{f(xα) : f ∈ Fα} >
1 + a

2
− a =

1− a
2

.

This means that if Q : X → X/Aα is the canonical quotient mapping, then
‖Q(xα)‖ > (1− a)/2. So, as (X/Aα)∗ = A⊥α there exists fα ∈ S(X∗) ∩ A⊥α
such that fα(xα) > (1− a)/2. Thus we have chosen the pair (xα, fα), and
this completes the induction.

Now put f̃α = fα/fα(xα), consider the family F = {(xα, f̃α)}α<ω1 and
observe that:

(a) F is bounded because ‖xα‖ = 1 and

‖f̃α‖ =
‖fα‖
|fα(xα)| <

1
(1− a)/2

=
2

1− a <
2

1− 1/3
= 3.

(b) f̃α(xα) = 1 and

|f̃α(xβ)| = |fα(xβ)|
fα(xα)

<
a

(1− a)/2
=

2a
1− a < 1 if α 6= β.

So, F is an UBABS of type η ≤ 2a/(1− a).

(B) (1) follows from (A) and Proposition 2.6; (2) follows from the defi-
nition of τ(X) and (1).

3. On ω-independence. The Kunen–Shelah property KS3. A fam-
ily {xi}i∈I in a Banach space X is said to be ω-independent if for every se-
quence (in)n≥1 ⊂ I of distinct indices, and every sequence (λn)n≥1 ⊂ R, the
series

∑∞
n=1 λnxin converges (in norm) to 0 iff λn = 0 for every n ≥ 1 (see

[6], [12]). A Banach space X is said to have the Kunen–Shelah property KS3
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if X has no uncountable ω-independent family. Of course, every biorthogo-
nal family is ω-independent (i.e., KS3 ⇒ KS2), but there are ω-independent
families which are not merely biorthogonal systems. Here is an example:
X = C([0, 1]ω1) and {fnα}α<ω1, n≥1 defined as

fnα ((tγ)γ<ω1) = tnα

for every x = (tγ)γ<ω1 ∈ [0, 1]ω1. This family is ω-independent but not a
biorthogonal system by the Theorem of Müntz–Szasz (see [11, Th. 15.26]).

Question 2. Does a Banach space have an uncountable biorthogonal
system whenever it has an uncountable ω-independent family?

Unfortunately, the indices σ(X), τ(X) do not separate the properties KS2
and KS3, because as we prove in the following, if X ∈ KS3, then σ(X) = 0.

Lemma 3.1. Let X be a Banach space, {xi}1≤i<ω1 ⊂ X an uncount-
able bounded ω-independent family , H ⊂ X a closed separable subspace and
N ∈ N. Then there exist ordinal numbers % < γ < ω1 such that x% 6∈
co(H ∪ {±Nxi}γ≤i<ω1).

Proof. Without loss of generality suppose that ‖xi‖ ≤ 1 for all i < ω1.
Assume that for every pair of ordinal numbers %, γ such that % < γ < ω1
we have x% ∈ co(H ∪ {±Nxi}γ≤i<ω1). For n ∈ N and % < γ < ω1, define
Dγ = co({±Nxi}γ≤i<ω1) and

H(%, γ, n)

=
{

(u, λ) ∈ H × (0, 1] : ∃v ∈ Dγ with ‖λu+ (1− λ)v − x%‖ <
1

2n

}
.

If % < γ < γ′ < ω1 and n ≥ 1, then by hypothesis and definition, we have
H(%, γ, n) 6= ∅ and H(%, γ, n+ 1) ⊂ H(%, γ, n) ⊃ H(%, γ ′, n).

For β < ω1 and n ≥ 1 define

H(β, n) = cl
(⋃
{H(%, γ, n) : β ≤ % < γ < ω1}

)

where “cl” means closure in H × (0, 1]. Clearly, for β < β ′ and n ≥ 1 we
have

∅ 6= H(β′, n) ⊂ H(β, n) ⊃ H(β, n+ 1).

Since H × (0, 1] is hereditarily Lindelöf, for each n ≥ 1 there exists βn < ω1
such that for every βn ≤ β < ω1 we have H(β, n) = H(βn, n). So, for every
(u, λ) ∈ H(βn, n) and every βn ≤ β < ω1 we have (u, λ) ∈ H(β, n), which
implies that there exist β ≤ % < γ < ω1 and v ∈ Dγ such that

‖x% − (λu+ (1− λ)v)‖ < 1/n.

Let β0 = supn≥1 βn and fix β0 ≤ % < γ < ω1 and n ≥ 1. Pick (u, µ) ∈
H(%, γ, n) and w ∈ Dγ such that ‖x% − (µu + (1 − µ)w)‖ < 1/(2n). Since
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(u, µ) ∈ H(β0, n) = H(γ, n), there exist γ ≤ σ < θ < ω1 and v ∈ Dθ such
that ‖xσ − (µu+ (1− µ)v)‖ < 1/n.

Set T = xσ − (µu+ (1− µ)v). Then µu = xσ − T − (1− µ)v and

‖x% − (xσ − T − (1− µ)v + (1− µ)w)‖ < 1
2n
.

Since ‖T‖ < 1/n, we obtain

‖x% − (xσ − (1− µ)v + (1− µ)w)‖
= ‖x% − (xσ − T − (1− µ)v + (1− µ)w)− T‖

≤ ‖x% − (xσ − T − (1− µ)v + (1− µ)w)‖+ ‖T‖ < 1
2n

+
1
n

=
3

2n
.

Since xσ, v, w ∈ Eγ := [{xi}γ≤i<ω1], letting n → ∞ (with %, γ fixed)
we deduce that x% ∈ Eγ (in particular, this implies that Eβ0 = Eβ for all
β0 ≤ β < ω1). Set S = x% − (xσ − (1− µ)v + (1− µ)w). Then

x% = S + µv + (1− µ)w + xσ − v.
Taking into account that µv + (1− µ)w,−v ∈ Dγ, xσ ∈ (1/N)Dγ and that
‖S‖ < 3/(2n), we finally get x% ∈ cl((1 + 1/N)Dγ +Dγ) = cl((2 + 1/N)Dγ).
So, x% is an accumulation point of Fγ := (2+1/N)Dγ (because x% ∈ F γ\Fγ).

In consequence, we can conclude that every xi, β0 ≤ i < ω1, is an
accumulation point of every Fγ for γ < ω1.

Let (an)n≥1 be a sequence of positive numbers such that limn→∞ an = 0,∑
n≥1 an = ∞, and let bn = supm>n am. Fix β0 < τ < ω1. Using the

proof of [6, Th. 3], as in [12], we can construct inductively a sequence
{εn}n≥1 of signs, a sequence {λnr }n≥1, 1≤r≤k(n) of real numbers and a se-
quence {γnr }n≥1, 1≤r≤k(n) of ordinals such that:

(1)
∑k(n)

r=1 |λnr | ≤ 2N + 1 for every n ≥ 1.
(2) τ < γn1 < . . . < γnk(n) < γn+1

1 < . . . < ω1 for every n ≥ 1.

(3) xτ +
∑

n≥1 anεnyn = 0, where yn =
∑k(n)

r=1 λ
n
rxγnr .

Let us see the first two steps of this argument. Set K = {xi}τ<i<ω1 .

Step 1. By the proof of [6, Th. 3] we can find p1 ∈ N, a finite sequence
{hn}1≤n≤p1 of (not necessarily distinct) elements of K and a finite sequence
{εn}1≤n≤p1 of signs such that

∥∥∥xτ +
p1∑

n=1

anεnhn

∥∥∥ < 2−1,

∥∥∥xτ +
j∑

n=1

anεnhn

∥∥∥ < b1 + 1 + 2−1 for 1 ≤ j ≤ p1.



108 A. S. Granero et al.

Since hn ∈ cl(Fβ) for β0 ≤ β < ω1, we can find, for 1 ≤ n ≤ p1, real numbers

{λnr }1≤r≤k(n) with
∑k(n)

r=1 |λnr | ≤ 2N + 1, and ordinals {γnr }k(n)
r=1 such that:

(a) τ < γn1 < . . . < γnk(n) < γn+1
1 < . . . < ω1.

(b) ‖xτ +
∑p1

n=1 anεn(
∑k(n)

r=1 λ
n
rxγnr )‖ < 2−1.

(c) ‖xτ +
∑j

n=1 anεn(
∑k(n)

r=1 λ
n
rxγnr )‖ < b1 + 1 + 2−1 for 1 ≤ j ≤ p1.

Step 2. Let u1 = xτ +
∑p1

n=1 anεn(
∑k(n)

r=1 λ
n
rxγnr ). By the proof of [6,

Th. 3] we can find p1 < p2 ∈ N, a finite sequence {hn}p1+1≤n≤p2 of (not
necessarily distinct) elements of K and a finite sequence {εn}p1+1≤n≤p2 of
signs such that

∥∥∥u1 +
p2∑

n=p1+1

anεnhn

∥∥∥ < 2−2,

∥∥∥u1 +
j∑

n=p1+1

anεnhn

∥∥∥ < bp1 + 2−1 + 2−2 for p1 + 1 ≤ j ≤ p2.

Since hn ∈ cl(Fβ) for β0 ≤ β < ω1, we can find, for p1 < n ≤ p2, real

numbers {λnr }1≤r≤k(n) with
∑k(n)

r=1 |λnr | ≤ 2N+1, and ordinals {γnr }k(n)
r=1 such

that:

(a) γp1
k(p1) < γn1 < . . . < γnk(n) < γn+1

1 < . . . < ω1.

(b) ‖u1 +
∑p2

n=p1+1 anεn(
∑k(n)

r=1 λ
n
rxγnr )‖ < 2−2.

(c) ‖u1 +
∑j

n=p1+1 anεn(
∑k(n)

r=1 λ
n
rxγnr )‖ < bp1 +2−1 +2−2 for p1 < j ≤ p2.

Now by reiteration we obtain the complete construction. It is easy to
see that the series xτ +

∑
n≥1 anεn(

∑k(n)
r=1 λ

n
rxγnr ) converges to zero. This

proves that {xi}i<ω1 is not ω-independent, a contradiction. So, we can choose
% < γ < ω1 such that x% 6∈ co(H ∪ {±Nxi}γ≤i<ω1).

Proposition 3.2. Let a Banach space X have an uncountable ω-in-
dependent family {xα}1≤α<ω1. Then for every 0 < η < 1, there exist an
uncountable subsequence {αi}i<ω1 ⊂ ω1 and an UBABS {(zi, fi)}i<ω1 ⊂
X × X∗ of type η such that zi = xαi and fi(zj) = 0 for j < i < ω1. So,
τ(X) = 0 and X has an ω1-polyhedron.

Proof. Let {xi}1≤i<ω1 ⊂ X be an uncountable ω-independent family
and suppose, without loss of generality, that ‖xi‖ ≤ 1 for every i < ω1. Let
N ∈ N be such that 1/N ≤ η. In the following we choose by induction two
subsequences {iα, jα}α<ω1 of ordinal numbers, with iα < jα ≤ iβ < jβ < ω1
for α < β < ω1, such that

xiα 6∈ co([{xiβ : β < α}] ∪ {±Nxj}jα≤j<ω1).(6)
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Indeed, let α < ω1 and assume that we have chosen {iβ, jβ}β<α satisfying
(6). Put H = [{xiβ}β<α] and ν = supβ<α{jβ} (if α = 1, put H = {0}
and ν = 1). By Lemma 3.1 there exist ν ≤ % < γ < ω1 such that x% 6∈
co (H ∪ {±Nxi}γ≤i<ω1). So, we put iα = %, jα = γ, and this completes the
induction. Let zα = xiα for α < ω1. By (6) we have zα 6∈ co([{zβ : β < α}]∪
{±Nzj}α<j<ω1). So, by the Hahn–Banach Theorem there exists fα ∈ X∗

such that

1 = fα(zα) > sup{fα(x) : x ∈ co([{zβ : β < α}] ∪ {±Nzj}α<j<ω1)}.
Clearly, fα(zβ) = 0 if β < α, and |fα(Nzβ)| < 1, i.e., |fα(zβ)| < 1/N , if
α < β < ω1. Finally, if we choose an uncountable subsequence A ⊂ ω1 with
{‖fα‖ : α ∈ A} bounded, then {(zα, fα) : α ∈ A} is the UBABS of type η
we are looking for.

4. The Kunen–Shelah property KS4. A Banach space X is said
to have the Kunen–Shelah property KS4 if X has no ω1-polyhedron. The
implication KS4 ⇒ KS3 was proved in [3]. It also follows from Proposition 3.2
and from Proposition 7.3 and a result of Sersouri [12].

Proposition 4.1. Let Z be a Banach space and X ⊂ Z a closed sub-
space such that Z/X is separable. Then the following are equivalent :

(a) Z ∈ KS4.
(b) X ∈ KS4.

Proof. (a)⇒(b). This is obvious.
(b)⇒(a). Assume that Z 6∈ KS4; we will prove that X 6∈ KS4. By

Proposition 2.2 there exists in Z an UBABS {(zα, fα) : α < ω1} of type
η ∈ [0, 1) with ‖fα‖ ≤ M for all α < ω1, for some 0 < M < ω1. Set
ε := 1 − η. Since Z/X is separable, there exists an uncountable subset
I ⊂ ω1 such that if Q : Z → Z/X is the canonical quotient mapping,
then ‖Qzα − Qzβ‖ < ε/(4M) for every α, β ∈ I. Fix τ ∈ I and define
yα = zα − zτ for α ∈ I. Since ‖Qyα‖ < ε/(4M), there exists xα ∈ X such
that ‖xα − yα‖ < ε/(4M) for all α ∈ I. Then for any α, β ∈ I, α 6= β,
we have

fα(xα) = fα(yα) + fα(xα − yα) ≥ fα(yα)−M ε

4M
= fα(zα)− fα(zτ )−

ε

4

= 1− fα(zτ )−
ε

4
> η − fα(zτ ) +

ε

4
≥ fα(zβ)− fα(zτ ) +

ε

4

= fα(yβ) +
ε

4
= fα(yβ) +M

ε

4M
≥ fα(xβ),

which implies that {xα : α ∈ I} is an uncountable polyhedron in X, i.e.,
X 6∈ KS4.
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In the following we obtain some characterizations of the property KS4.
We first prove some lemmas.

Lemma 4.2. Let X be a locally convex topological space, τ = σ(X,X∗),
f ∈ X∗ \ {0}, C ⊂ f−1(1) a bounded convex subset and B = co(C ∪ (−C)).
Then C is τ -separable iff B is τ -separable.

Proof. Clearly, B is τ -separable whenever C is. For the converse, suppose
that B is τ -separable and choose a countable subset A ⊂ C such that D :=
{tx−(1− t)y : x, y ∈ A, t ∈ [0, 1]} is τ -dense in B. Now it is an easy exercise
to prove that C ⊂ τ -cl(A), i.e., C is τ -separable.

Lemma 4.3. Let X be a locally convex topological space, τ = σ(X,X∗),
and C ⊂ X a convex subset such that for some f ∈ X∗ there exists a
countable subset R ⊂ R satisfying :

(1) ∅ 6= (inf{f(x) : x ∈ C}, sup{f(x) : x ∈ C}) ⊂ R.
(2) Cr := {x ∈ C : f(x) = r} is τ -separable for each r ∈ R.

Then C is τ -separable.

Proof. By hypothesis inf{f(x) : x ∈ C} < sup{f(x) : x ∈ C}. For each
r ∈ R, choose a countable subset Ar ⊂ Cr such that Cr ⊂ τ -cl(Ar). Let
A =

⋃
r∈RAr, a countable subset of C. We claim that A is τ -dense in C.

Indeed, pick z0 ∈ C arbitrarily and let U be a τ -neighborhood of z0 in C. By
hypothesis, there exists some r ∈ R such that Cr ∩ U 6= ∅. So, Ar ∩ U 6= ∅,
whence A ∩ U 6= ∅.

Proposition 4.4. Let X be a Banach space. The following are equiva-
lent :

(1) X ∈ KS4.
(2) K ⊂ X∗ is w∗-separable whenever K is a w∗-compact convex sym-

metric subset such that ‖ · ‖-int(K) 6= ∅.
(3) K ⊂ X∗ is w∗-separable whenever K is a w∗-compact convex sym-

metric subset , i.e., σ(X) = 1 = τ(X).
(4) K ⊂ X∗ is w∗-separable whenever K is a w∗-closed convex symmetric

subset.
(5) K ⊂ X∗ is w∗-separable whenever K is a w∗-closed convex subset.

Proof. (1)⇒(2). This follows from Propositions 2.7 and 2.2, because if
K ⊂ X∗ is a w∗-compact convex symmetric subset such that ‖·‖-int(K) 6= ∅,
then K is the dual unit ball of X∗ when X is equipped with the equivalent
norm | · | such that |x| = sup{x∗(x) : x∗ ∈ K} for every x ∈ X.

(2)⇒(3). LetK ⊂ X∗ be a w∗-compact convex symmetric subset and set
Kn = K + 1

nB(X∗), which is a w∗-compact convex symmetric subset of X∗

with nonempty interior. By (2) there is a countable family {xn,m}m≥1 ⊂ Kn
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such that Kn = {xn,m : m ≥ 1}w
∗

for every n ≥ 1. Pick kn,m ∈ K such that

‖kn,m − xn,m‖ ≤ 1/n. Then it is easy to see that K = {kn,m : n,m ≥ 1}w
∗
.

(3)⇒(4). Let K ⊂ X∗ be a w∗-closed convex symmetric subset and
define Kn = K ∩ nB(X∗). By (3), Kn is w∗-separable and hence so is K,
because K =

⋃
n≥1Kn.

(4)⇒(5). It is enough to prove that if K ⊂ X∗ is a w∗-compact convex
subset, then K is w∗-separable. Without loss of generality, assume that
0 6∈ K. Let f ∈ X be such that 0 < min{f(k) : k ∈ K} ≤ max{f(k) :
k ∈ K} < ∞. If t ∈ [min{f(k) : k ∈ K},max{f(k) : k ∈ K}], define
Kt = {k ∈ K : f(k) = t} and Ct = cow

∗
(Kt∪(−Kt)). By (4) and Lemma 4.2

each Ct is w∗-separable. So, from Lemma 4.3 we conclude that K is w∗-
separable.

(5)⇒(1). Suppose that there exists in X a bounded ω1-polyhedron
{xi}i<ω1 . By Proposition 2.2, there exists in X an UBABS {(xα, fα)}α<ω1 ⊂
X × X∗ such that ‖fα‖ = 1, ‖xα‖ ≤ M, fα(xα) = 1 and fα(xβ) ≤ 1 − ε
for every α, β < ω1, α 6= β, and some 1 ≥ ε > 0, 1 ≤ M < ∞. Let
K = cow

∗
({fα : α < ω1}). Consider the w∗-open slices Uα = {k ∈ K :

k(xα) > 1− ε/3} for all α < ω1. Then Uα is a w∗-open neighborhood of fα
in K and we can easily see that Uα ∩ Uβ = ∅ whenever α 6= β. Thus K is
w∗-nonseparable, a contradiction to (5). So, X ∈ KS4.

Question 3. Let X be a Banach space. If τ(X) < 1, is τ(X) = 0? If
τ(X) = 0, does X have an uncountable ω-independent family?

5. The Finet–Godefroy indices. If X is a Banach space, the Finet–
Godefroy indices d∞(X) and µ(X) were introduced in [1] and defined as
follows:

d∞(X) = inf{d(X,Y ) : Y a subspace of `∞(N)},
where d(X,Y ) is the Banach–Mazur distance. Clearly, d∞(X) depends upon
the norm ‖ · ‖ of X and we see easily that: (i) d∞(X) ∈ [1,∞]; (ii) d∞(X) <
∞ iff X is isomorphic to a subspace of `∞(N); (iii) d∞(X, ‖ · ‖) = 1 iff
(X, ‖ · ‖) is isometric to a subspace of `∞(N) iff the dual unit ball B(X∗) is
w∗-separable. The corresponding isomorphic invariant index is

µ(X) = sup{d∞(X, | · |)},
where the supremum is computed over the set of equivalent norms on X.

Proposition 5.1. Let X be a Banach space. Then:

(1) µ(X) = σ(X)−1 (0−1 =∞).
(2) If X has an uncountable ω-independent system, then µ(X) =∞.

Proof. (1) This follows from [1, Lemma III.1] and a simple calculation.
(2) By Proposition 3.2 and 2.8 we find that σ(X) = 0. Now apply (1).
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The following questions are proposed in [1]:

(1) It is clear that µ(X) = 1 if X is separable. Is the converse true?
(2) Does there exist a nonseparable Banach space X such that every

quotient of X is isometric to a subspace of `∞(N)?

In the following we answer these questions.

Proposition 5.2. Let X be a Banach space. The following are equiva-
lent :

(1) X ∈ KS4.
(2) Every quotient of (X, | · |) is isometric to a subspace of `∞(N), for

every equivalent norm | · | on X.
(3) µ(X) = 1.
(4) Every quotient of X has the property KS4.

Proof. (1)⇒(2). Let | · | be an equivalent norm on X, Y ⊂ X a closed
subspace and Z = (X/Y, | · |) the corresponding quotient space. Clearly,
(B(Z∗), w∗) = (B(Y ⊥), w∗). But (B(Y ⊥), w∗) is w∗-separable by Proposi-
tion 4.4. So, Z is isometric to a subspace of `∞(N).

(2)⇒(3). By (2), d∞(X, | · |) = 1 for every equivalent norm | · | on X.
So, µ(X) = 1.

(3)⇒(4). Since µ(X/Y ) ≤ µ(X) for every quotient X/Y (see [1, Th.
III-2]), (3) implies that µ(X/Y ) = 1, i.e., σ(X/Y ) = 1. So, by Proposi-
tion 4.4 we infer that X/Y ∈ KS4.

(4)⇒(1). This is obvious.

Corollary 5.3. If X is either the space C(K), under CH and K being
the Kunen compact space, or the space S of Shelah, under 3ℵ1 , then X is
nonseparable, µ(X) = 1 and every quotient of (X, | · |) is isometric to a
subspace of `∞(N), for every equivalent norm | · | of X.

Proof. This follows from Proposition 5.2 since in both cases X ∈ KS4

(see Section 6).

Remarks. (1) The fact that every quotient of (X, | · |) is isometric to a
subspace of `∞(N) for every equivalent norm | · | of X, when X = C(K), K
being the Kunen compact, was shown in [4, Cor. 4.5].

(2) In [1] it is asked if µ(X) =∞ whenever the Banach space X satisfies
µ(X) > 1. In fact, no Banach space X with 1 < µ(X) < ∞ is known.
Observe that 1 < µ(X) <∞ implies that X ∈ KS3 but X 6∈ KS4, because:
(i) 1 < µ(X) < ∞ iff 1 > σ(X) > 0 by Proposition 5.1; (ii) 1 > σ(X)
iff X 6∈ KS4 by Proposition 4.4; and (iii) σ(X) > 0 implies X ∈ KS3 by
Propositions 3.2 and 2.8.
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6. The Kunen–Shelah property KS5. Let θ be an ordinal. A convex
right-separated θ-family in a Banach space X is a bounded family {xi}i<θ ⊂
X such that xj 6∈ co({xi : j < i < θ}) for every j ∈ θ. A family {Cα}α<θ
of convex closed bounded subsets in X is said to be a contractive (resp.
expansive) θ-onion iff Cα ( Cβ (resp. Cβ ( Cα) whenever β < α < θ. It
is easy to prove that X has a contractive θ-onion iff X has a convex right-
separated θ-family. In the dual Banach space X∗ one can define a contractive
(resp. expansive) w∗-θ-onion in an analogous way, using the w∗-topology
instead of the w-topology.

A Banach space X is said to have the Kunen–Shelah property KS5 if X
has no contractive uncountable onion. If X has a τ -polyhedron {xα : α< τ},
it is clear that {Cα : α< τ}, where Cα = co({xβ : α<β < τ}), is a contrac-
tive τ -onion. So, the property KS5 implies KS4, whence by Proposition 3.2
we get KS5 ⇒ KS3, a result proved by Sersouri in [12].

Proposition 6.1. Let X be a Banach space. Then:

(1) X has a contractive ω1-onion iff X∗ has an expansive w∗-ω1-onion.
(2) X has an expansive ω1-onion iff X∗ has a contractive w∗-ω1-onion.
(3) X is nonseparable iff X∗ has a contractive w∗-ω1-onion.

Proof. (1) Assume that X has a contractive ω1-onion, i.e., there exists a
sequence {xα}α<ω1 ⊂ B(X) such that xα 6∈ co({xβ}α<β<ω1). By the Hahn–
Banach Theorem there exists fα ∈ X∗ such that

fα(xα) > sup{fα(xβ) : α < β < ω1} =: eα.

By passing to a subsequence, we can suppose that there exist 0 < ε,M <∞
and r ∈ R such that ‖fα‖ ≤M, fα(xα)− eα ≥ ε > 0 and |r− fα(xα)| ≤ ε/4
for all α < ω1. Hence, if β < α < ω1, we have

fα(xα) ≥ r − ε/4 > r − 3ε/4 ≥ fβ(xβ)− ε ≥ eβ ≥ fβ(xα),

which implies that fα 6∈ cow
∗
({fβ : β < α}) =: Kα, i.e., {Kα : α < ω1} is an

expansive w∗-ω1-onion in X∗.
The converse implication is analogous.
(2) Use the same argument as in (1).
(3) Apply (2) and the fact that X has an expansive ω1-onion iff X is

nonseparable.

A Banach space has the property HL(1) (for short, X ∈ HL(1)) whenever
for every family {Ui}i∈I of open semi-spaces of X there exists a countable
subset {in}n≥1 ⊂ I such that

⋃
n≥1Uin =

⋃
i∈I Ui, i.e., every closed convex

subset of X is the intersection of a countable family of closed semi-spaces
of X.
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Proposition 6.2. Let X be a Banach space. Then the following are
equivalent :

(1) X ∈ KS5.
(2) Every convex subset of X∗ is w∗-separable.
(3) X ∈ HL(1).

Proof. (1)⇔(2). By Proposition 6.1, X has no contractive uncountable
onion iff X∗ has no expansive uncountable w∗-onion, and it is trivial to prove
that this occurs iff every convex subset of X∗ is w∗-separable.

(2)⇒(3). Suppose that X 6∈ HL(1) and let F = {Ui}i<ω1 be an uncount-
able family of open semi-spaces of X such that F has no countable subcover.
Assume that Ui = {x ∈ X : x∗i (x) < ai} with ai 6= 0 for all i < ω1 (if ai = 0
for some i < ω1, we replace Ui by the family Uin = {x ∈ X : x∗i (x) <
−1/n}, n ≥ 1). Dividing by |ai|, we can suppose that each Ui has the ex-
pression Ui = {x ∈ X : y∗i (x) < εi} with εi = ±1 and y∗i = x∗i /|ai|. Set
F1 = {Ui ∈ F : εi = +1} and F2 = {Ui ∈ F : εi = −1}. It is clear that either
F1 or F2 has no countable subcover.

Assume that F1 does not admit a countable subcover (the argument for
F2 is similar). So, there exists an uncountable family {Vα : α < ω1} ⊂ F1,
Vα = {x ∈ X : z∗α(x) < 1}, such that there exist xα ∈ Vα \

⋃
β<α Vβ for each

α < ω1. Put A = co{z∗i }i<ω1 , which is w∗-separable by hypothesis. Thus,
we can find % < ω1 such that A ⊂ cow

∗
({z∗i }i≤%). Pick % < α < ω1. As

xα ∈ Vα \
⋃
β<α Vβ, we see that z∗α(xα) < 1 and z∗β(xα) ≥ 1 for every β < α.

Let C = {x∗ ∈ X∗ : x∗(xα) ≥ 1}, which is a convex w∗-closed subset of X∗.
Since z∗i ∈ C for all i ≤ %, it follows that A ⊂ C. So, z∗α 6∈ C and z∗α ∈ A, a
contradiction which proves (3).

(3)⇒(1). Suppose that X has a contractive ω1-onion {Cα}α<ω1 . We
choose vectors xα ∈ Cα\Cα+1 and a sequence {Uα}α<ω1 of open semi-spaces
such that xα ∈ Uα and Uα ∩ Cα+1 = ∅. Clearly, no countable subfamily of
{Uα}α<ω1 covers {xα}α<ω1 , which contradicts (3).

Remark. If X is a Banach space, we write X ∈ L(1) if from every cover
of X by open semi-spaces we can choose a countable subcover. Clearly, X
has the property (C) of Corson iff X ∈ L(1). Since X ∈ HL(1)⇒ X ∈ L(1),
we find that X ∈ KS5 implies X ∈ (C).

Proposition 6.3. If X is either the space C(K), under CH and K
being the Kunen compact space, or the space S of Shelah, under 3ℵ1 , then
X ∈ KS5.

Proof. The space C(K), K being the Kunen compact space, satisfies
C(K) ∈ KS5 because for every uncountable family {xi : i ∈ I} ⊂ C(K),
there exists j ∈ I such that xj ∈ wcl({xi : i ∈ I \{j}}) (wcl = weak closure).
It is clear that a space with this property cannot have an ω1-onion.
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The space S of Shelah has the property (see [13, Lemma 5.2]) that if
{yi}i<ω1 ⊂ S is an uncountable sequence, then for every ε > 0 and n ≥ 1,
there exist i0 < i1 < . . . < in < ω1 such that

∥∥∥∥yi0 −
1
n

(yi1 + . . .+ yin)

∥∥∥∥ ≤
1
n
‖yi0‖+ ε.(7)

Assume that S has an ω1-onion {Cα : 1 ≤ α < ω1}, with C1 ⊂ B(S). Choose
xα ∈ Cα \ Cα+1 and let ηα := dist(xα, Cα+1), which satisfies ηα > 0. By
passing to a subsequence, it can be assumed that ηα ≥ η > 0 for all α < ω1.
Let m ∈ N satisfy 1/m < η/2. By (7) there exist i0 < i1 < . . . < im < ω1
such that

∥∥∥∥xi0 −
1
m

(xi1 + . . .+ xim)

∥∥∥∥ ≤
1
m
‖xi0‖+

η

2
< η.

Since 1
m(xi1 + . . .+ xim) ∈ Ci0+1 and dist(xi0 , Ci0+1) ≥ η, we get a contra-

diction which proves that S ∈ KS5.

7. KS4 and KS5 are equivalent. If X is Asplund or has the property
(C) of Corson, it is easy to prove that X ∈ KS4 ⇔ X ∈ KS5. In the
following we prove the equivalence KS5 ⇔ KS4 in general. A sequence {Cα :
α < ω1} of convex closed bounded subsets of a Banach space X is said to
be a generalized ω1-onion if ∅ 6= Cα ⊂ Cβ for β < α, and there exists a
subsequence {αβ}β<ω1 ⊂ ω1, with αβ1 < αβ2 if β1 < β2, such that Cαβ1

6=
Cαβ2

, i.e., {Cαβ : β < ω1} is an ω1-onion. For C ⊂ X, denote by cone(C)
the closed convex cone generated by C. Observe that if C is convex, then
cone(C) = cl(

⋃
λ≥0 λC).

Lemma 7.1. Let X be a Banach space, C ⊂ X a convex closed separable
subset and {Cα : 1 ≤ α < ω1} a generalized ω1-onion in X.

(1) If dist(C,Cα) = 0 for every α < ω1, then for every ε > 0 there exists
cε ∈ C such that dist(cε, Cα) ≤ ε for every α < ω1.

(2) There are two mutually exclusive alternatives: either

(A) there exist two ordinals β < α < ω1 and z ∈ Cβ such that
z 6∈ co([C] ∪ cone(Cα)) or

(B) for every pair of ordinals β < α < ω1 we have Cβ ⊂ co([C] ∪
cone(Cα)). In this case,

co([C] ∪ cone(Cα)) = co([C] ∪ cone(Cβ)), ∀α, β < ω1,

and for every ε > 0 there exists cε ∈ X such that dist(cε, Cα) ≤ ε
for every α < ω1.
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Proof. (1) For every α < ω1 and n ≥ 1 consider C(α, n) = {x ∈ C :
dist(x,Cα) ≤ 1/n}. Then {C(α, n) : α < ω1} is a family of nonempty
closed convex subsets such that C(α, n) ⊃ C(β, n) if α < β, with the
countable intersection property. Since C is separable, we conclude that⋂
α<ω1

C(α, n) 6= ∅ for every n ≥ 1. So, if for every n ≥ 1 we pick cn ∈⋂
α<ω1

C(α, n), then dist(cn, Cα) ≤ 1/n for every α < ω1.
(2) Clearly, the alternatives (A) and (B) are mutually exclusive. Suppose

that (B) holds. Since [C] is separable there exist two ordinals β0 < α0 < ω1
and z0 ∈ Cβ0 \Cα0 such that z0 6∈ [C] but z0 ∈ co([C]∪ cone(Cα)) for every
α < ω1.

Claim. If H = [C ∪ {z0}], then dist(H,Cα) = 0 for every α < ω1.

Indeed, let ε0 = dist(z0, [C]) and n0 ≥ 1 be such that 2/n0 < ε0. Observe
that for every α < ω1 and ε > 0 we can choose λ ∈ [0, 1), µ > 0, w ∈ [C]
and v ∈ Cα such that

‖λw + (1− λ)µv − z0‖ ≤ ε.(8)

Let M > 0 be such that C1 ⊂ B(0,M). We claim that if we pick α<ω1,
n ≥ n0, λ ∈ [0, 1), µ > 0, w ∈ [C] and v ∈ Cα satisfying (8) with ε = 1/n,
then (1− λ)µ ≥ 1/(n0M). Indeed, otherwise

ε0 ≤ ‖λw − z0‖ = ‖λw + (1− λ)µv − z0 − (1− λ)µv‖
≤ ‖λw + (1− λ)µv − z0‖+ ‖(1− λ)µv‖

≤ 1
n0

+
1
n0

< ε0,

which is a contradiction. So, for every α, n, λ, µ, w and v as above we have
∥∥∥∥

z0

(1− λ)µ
− λ

(1− λ)µ
w − v

∥∥∥∥ ≤
1

(1− λ)µn
≤ n0M

n
,

and this proves that dist(H,Cα) = 0 for every α < ω1.
As H is separable, given ε > 0, applying (1) we can choose cε ∈ X such

that dist(cε, Cα) ≤ ε for every α < ω1, and this completes the proof.

Proposition 7.2. Let X be a Banach space without the property (C) of
Corson. Then there exists a sequence {(yα, y∗α) : α < ω1} ⊂ X × X∗ such
that y∗α(yα) = 1 for all α < ω1 but y∗α(yβ) = 0 if β < α, and y∗α(yβ) ≤ 0 if
β > α. So, X has an ω1-polyhedron and X 6∈ KS4.

Proof. Since X fails (C), it is easy to see that there exists in X an ω1-
onion {Cα : α < ω1} such that

⋂
α<ω1

Cα = ∅. Using transfinite induction
with ω1 steps we construct:
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(1) A sequence {nα : α < ω1} ⊂ {0, 1} such that if p(α) = |{β ≤ α :
nβ = 1}| then p(α) < ℵ0.

(2) Two sequences {%γ , τγ : γ < ω1} of ordinals such that 1 ≤ %γ < τγ ≤
%β < ω1 if γ < β < ω1.

(3) For each α < ω1, a generalized ω1-onion {C(α)
β : %α ≤ β < ω1} such

that Cγ ⊃ C(α)
γ ⊃ C(β)

γ 6= ∅ if α ≤ β < ω1 and %β ≤ γ < ω1.

(4) For each α with nα = 0, an element yα ∈ C(α)
%α such that if Hα =

[{yβ : β < α, nβ = 0}] then yα 6∈ co(Hα ∪ cone(C(α)
τα )). Also, in this case we

demand that C(α)
γ =

⋂
β<αC

(β)
γ for every %α ≤ γ < ω1.

(5) For each α with nα = 1, a vector ap(α) ∈ X such that C(α)
β ⊂

B(ap(α), 2−p(α)) for every τα ≤ β < ω1, which will imply that

diam(C(α)
β ) ≤ 2−p(α)+1, dist(ap(α), C

(α)
β ) ≤ 2−p(α), ∀τα ≤ β < ω1.

Step 1. We choose n1 = 0, %1 = 1, τ1 = 2, C(1)
β = Cβ for every 1 ≤ β <

ω1, y1 ∈ C1 \ C2 arbitrary and H1 = {0}.
Step α + 1 < ω1. Suppose all the steps β ≤ α satisfying the above

requirements are constructed. By hypothesis {C(α)
β : τα ≤ β < ω1} is a

generalized ω1-onion. By Lemma 7.1 there are two mutually exclusive alter-
natives:

(A) There exist two ordinals τα ≤ β0 < α0 < ω1 and a vector z0 ∈ C(α)
β0

such that z0 6∈ co(Hα ∪ cone(C(α)
α0 )). Then we set %α+1 = β0, τα+1 = α0,

nα+1 = 0, yα+1 = z0 and C
(α+1)
β = C

(α)
β for every %α+1 ≤ β < ω1.

(B) If (A) does not hold, there exists c ∈ X such that dist(c, C (α)
β ) ≤

2−(p(α)+2) for every τα ≤ β < ω1. In this case we set nα+1 = 1, p(α+ 1)
= p(α) + 1, %α+1 = τα, τα+1 = τα + 1, ap(α+1) = c and C

(α+1)
β =

B(ap(α+1), 2−p(α+1)) ∩ C(α)
β for every %α+1 ≤ β < ω1. Since nα+1 = 1 we

do not choose yα+1.

Step α < ω1, α a limit ordinal. Let α < ω1 be a limit ordinal, and sup-
pose all the steps β < α satisfying the above requirements are constructed.

Claim. |{β < α : nβ = 1}| < ℵ0.

Indeed, otherwise we would have a sequence of ordinals {βm}m≥1 ↑ α,
with βm < βm+1 < α, such that nβm = 1 for every m ≥ 1. Obviously
p(βm) ↑ +∞ as m → ∞. The sequence {ap(βm)}m≥1 is a Cauchy sequence.

Indeed, if r < s are two integers, then for every τβs ≤ β < ω1, since C(βs)
β ⊂

C
(βr)
β , we have
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dist(ap(βr), ap(βs)) ≤ dist(ap(βr), C
(βr)
β ) + diam(C(βr)

β ) + dist(ap(βs), C
(βr)
β )

≤ 2−p(βr) + 2−p(βr)+1 + 2−p(βs)
r,s→∞
−−−→ 0.

Let a0 := limm→∞ ap(βm) and γ0 = sup{τβ : β < α}. Then a0 ∈ Cγ for every
γ0 ≤ γ < ω1 because

dist(a0, Cγ) ≤ dist(a0, ap(βm)) + dist(ap(βm), C
(βm)
γ )

m→∞
−−−→ 0.

Hence
⋂
α<ω1

Cα 6= ∅, a contradiction which proves the Claim.

Define as above γ0 = sup{τβ : β < α} and let Dγ :=
⋂
β<αC

(β)
γ for every

γ0 ≤ γ < ω1. By the Claim and the construction of the previous steps we
have:

(a) There exists an ordinal δ0 < α such that nδ = 0 for every δ0 ≤ δ < α.
So, p(δ) = p(δ0) for every δ ∈ [δ0, α).

(b) For every γ0 ≤ γ < ω1 we have Dγ = C
(δ0)
γ , which by the induction

hypothesis implies that {Dγ : γ0 ≤ γ < ω1} is a generalized ω1-onion.

If Hα := [{yβ : β < α, nβ = 0}], by Lemma 7.1 we have the following
mutually exclusive alternatives:

(A) There are two ordinals γ0 ≤ β0 < α0 < ω1 and a vector z0 ∈ Dβ0

such that z0 6∈ co(Hα ∪ cone(Dα0)). In this case we set %α = β0, τα = α0,
nα = 0, yα = z0 and C

(α)
β = Dβ for every %α ≤ β < ω1.

(B) If (A) does not hold, there exists c ∈ X such that dist(c,Dγ) ≤
2−p(δ0)+2 for every γ0 ≤ γ < ω1. In this case we set nα = 1, p(α) =
p(δ0) + 1, %α = γ0, τα = %α + 1, ap(α) = c and C(α)

γ = B(ap(α), 2−p(α))∩Dγ

for γ0 ≤ γ < ω1. Since nα = 1 we do not choose yα.

This completes the induction.
Obviously, there exists % < ω1 such that nα = 0 for every % ≤ α < ω1,

which gives us the sequence {yα : % ≤ α < ω1} such that

yα 6∈ co([{yβ : % ≤ β < α}] ∪ cone({yβ : α < β < ω1})) =: Kα

for every % ≤ α < ω1. Therefore, by the Hahn–Banach Theorem there exists
y∗α ∈ X∗ such that y∗α(yα) = 1 but sup{y∗α(y) : y ∈ Kα} < 1. In particular,
y∗α(yβ) = 0 if % ≤ β < α, and y∗α(yβ) ≤ 0 if α < β < ω1.

Proposition 7.3. Let X be a Banach space. We have:

(1) If X ∈ KS4, then X ∈ (C).
(2) X ∈ KS4 iff X ∈ KS5.

Proof. (1) This follows from Proposition 7.2 where it is proved that if
X 6∈ (C) then X has an ω1-polyhedron.
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(2) Clearly, X ∈ KS5 implies X ∈ KS4. Assume that X ∈ KS4. By (1)
we see that X ∈ (C). In order to prove that X ∈ KS5, by Proposition 6.2
it is enough to prove that every convex subset C ⊂ X∗ is w∗-separable.
Since X ∈ KS4, C

w∗
is w∗-separable by Proposition 4.4. So, there exists a

countable family {zn : n ≥ 1} ⊂ C
w∗

w∗-dense in C
w∗

. Since X ∈ (C), by
[10, p. 147] there exists a countable family {znm : n,m ≥ 1} ⊂ C such that
zn ∈ cow

∗
({znm : m ≥ 1}) for every n ≥ 1. So, C is w∗-separable.

Remarks. A nonseparable Banach spaceX has the Kunen–Shelah prop-
erty KS6 if for every uncountable family {xi}i∈I ⊂ X there exists j ∈ I
such that xj ∈ wcl({xi}i∈I\{j}). Clearly, KS6 ⇒ KS5. It seems that the
only known example of a Banach space X such that X ∈ KS6 is the space
X = C(K), K being the Kunen compact space ([8, p. 1123]) constructed by
Kunen under CH. This space C(K) of Kunen has more interesting patho-
logical properties. For example, ((C(K))n, wn) is hereditarily Lindelöf for
every n ∈ N.

In view of this situation, we can introduce the property KS7. A Banach
space X is said to have the Kunen–Shelah property KS7 if (Xn, wn) is hered-
itarily Lindelöf for every n ∈ N. It can be easily proved that KS7 ⇒ KS6.
We know neither if the Shelah space S has the property KS6 nor if the
properties KS5, KS6 and KS7 are inequivalent.
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