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Abstract. We introduce and study the Kunen—Shelah properties KS;,7=0,1,...,7.
Let us highlight some of our results for a Banach space X: (1) X™* has a w*-nonseparable
equivalent dual ball iff X has an wy-polyhedron (i.e., a bounded family {x;};<.,, such
that z; & co({z; : ¢ € w1 \ {j}}) for every j € wi) iff X has an uncountable bounded
almost biorthogonal system (UBABS) of type n for some n € [0,1) (i.e., a bounded family
{(#a, fa) Mi<a<w; C X xX™ such that fo(za) =1and |fa(zg)| < nif a # B); (2) if X has
an uncountable w-independent system then X has an UBABS of type n for every n € (0, 1);
(3) if X does not have the property (C) of Corson, then X has an wj-polyhedron; (4) X
has no wi-polyhedron iff X has no convez right-separated wi -family (i.e., a bounded family
{%}i<w, such that z; € co({x; : j < i < wy}) for every j € wy) iff every w*-closed convex
subset of X™* is w*-separable iff every convex subset of X* is w*-separable iff u(X) =1,
1(X) being the Finet—Godefroy index of X (see [1]).

1. Introduction. If X is a Banach space and 6 an ordinal, a family
{zq : < 0} C X is said to be a 0-basic sequence if there exists 1 < K < 0o
such that for every n <m in N, any \; e R, i =1,...,m,and a1 < ... <
Qm < 0 we have || 37 Niza, || < K| D70 Niza, |- A family {z;}ier € X
is a basic sequence if it is a 0-basic sequence for some ordinal 0. If K =1
the basic sequence is said to be monotone. A biorthogonal system in X is a
family {(z;,2}) :i € I} C X x X* such that z}(z;) = 1 and z(x;) = 0 for
i,7 € 1,1 # j. A Markushevich system (for short, an M-system) in X is a
biorthogonal system {(x;,x}) : i € I'} in X such that {z] : i € I} is total on
[{x; 13 € I}] (see [14]).

It is well known (see [14, p. 599]) that if the density of a Banach space
X satisfies Dens(X) > Ny, then X has a monotone wy-basic sequence. Also
if Dens(X) > ¢, then X has a monotone wi-basic sequence, because in
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this case an easy calculation shows that w*-Dens(X*) > N;. However, if
N; < Dens(X) < ¢ and w*-Dens(X*) < Ng, then X can fail to have an
uncountable basic sequence, even an uncountable biorthogonal system. In-
deed, under the axiom <y, (which implies the continuum hypothesis (CH)),
Shelah [13] constructed a nonseparable Banach space S that fails to have
an uncountable biorthogonal system. Later Kunen [8, p. 1123] constructed
under (CH) a Hausdorff compact space K such that C'(K) is nonsepar-
able and has no uncountable biorthogonal system, among other interesting
pathological properties.

A Banach space X is said to have the Kunen—Shelah property KSy
(resp. KS;) if X has no uncountable basic sequence (resp. uncountable
Markushevich system). A Banach space X is said to have the Kunen—
Shelah property KSo if X has no uncountable biorthogonal system. Clearly,
KS; = KS; = KSy.

The first example of a Banach space X such that X € KSg but X ¢ KSo
was given in [9]; it is the space of Johnson-Lindenstrauss JLa (see [5]).
The properties KSo and KS; were separated in [2] (see also [1]), where it
was proved that if a Banach space X has the property (C) of Corson and
w*-Dens(X™*) < Vg, then X € KS;.

QUESTION 1. Does there exist a Banach space X such that X € KSy
but X ¢ KS;7

In this paper we study some structures similar to uncountable biorthog-
onal systems, namely: uncountable w-independent families, wi-polyhedrons,
uncountable bounded almost biorthogonal systems (UBABS), etc. The lack
of these structures defines the Kunen—Shelah properties KS3, KSy, etc.

In Section 2 we prove that a Banach space X has an wi-polyhedron
iff X has an UBABS iff X* has a w*-nonseparable dual equivalent ball.
Section 3 deals with uncountable w-independent families. In Section 4 it is
proved that X has no wi-polyhedron iff every w*-closed convex subset of
X* is w*-separable. In Section 5 we answer some questions posed by Finet
and Godefroy [1] concerning the index p(X). In Section 6 we prove that a
space X has no convex right-separated wi-family iff every w*-closed convex
subset of X* is w*-separable. Finally, in Section 7 we show that X has an
wi-polyhedron iff X has a convex right-separated wi-family, whence every
w*-closed convex subset of X* is w*-separable iff every convex subset of X*
is so.

Let us introduce some notation. wj is the first uncountable ordinal, |A|
the cardinality of the set A, and ¢ = |R|. If X is a Banach space, X* denotes
its dual, B(X) and S(X) the closed unit ball and sphere of X, resp., and
B(z,r) the closed ball with radius r and center z. If A C X we denote
by [A] the linear subspace spanned by A. Recall that a Banach space X is
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said to have the property (C) of Corson (for short, X € (C)) if (,c;C; # 0
whenever {C; : i € I} is a family of closed bounded convex subsets of X with
the countable intersection property, i.e., 0 # (), ; C; for every countable
subset J C 1.

icJ

2. UBABS and w;-polyhedrons. If X is a Banach space, a bounded
family {(zq, fa)}i<a<w; € X x X* is said to be an uncountable bounded
almost biorthogonal system (for short, an UBABS) if there exists a real
number 0 < n < 1 such that fo(zo) = 1 and fo(zg) < nif o # B. If in
addition |fa(zg)| < n for o # B, then the UBABS is said to be of type 7.
Define the index 7(X) as follows:

7(X) =inf{0 <7 < 1:X has an UBABS of type n},

where inf{(} = 1. Clearly, 7(X) is invariant under isomorphisms and: (1) if
X has an uncountable biorthogonal system, then 7(X) = 0; (2) 7(X) < 1
iff X has an UBABS.

If 7 is a cardinal, a bounded family {z;};c, in a Banach space X is said to
be a T-polyhedron iff x; ¢ &({z;}icr\(;3) for every j € 7. In a dual Banach
space X ™ one can define a w*-7-polyhedron in an analogous way, using the
w*-topology instead of the w-topology.

PROPOSITION 2.1. A Banach space X has an wi-polyhedron iff X* has
a w*-w1-polyhedron.

Proof. Let {x4}a<w, C B(X) be an w;i-polyhedron. By the Hahn—Banach
Theorem there exists f, € S(X*) such that

fa(xa) > sup{fa(zi) : i € w1 \ {a}} =: eq.
By passing to a subsequence, we can suppose that there exist 0 < ¢ < oo
and r € R such that f,(zq) —eq > € > 0 and |[r — fo(zq)| < /4 for all
«a < wi. Hence, if a, § < wy with «a # 3, we have
fa(za) >r—e/d>r—3¢/4> fa(xg) —e > ez > fa(za),

which implies that {f,}a<w, 18 & w*-wi-polyhedron in X*.

The converse implication is analogous. =

In the following proposition we give the relation between wi-polyhedrons
and UBABS.

PROPOSITION 2.2. For a Banach space X the following are equivalent:

(1) X has an wi-polyhedron.
(2) X has an UBABS of type n for some 0 < n < 1.
(3) X has an UBABS.

Proof. (1)=(2). If w*-Dens(X™*) > Ny, then X has an uncountable bi-
orthogonal system and so X has an UBABS of type 0. Now assume that
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w*-Dens(X™*) < Ny. Let {xq}1<a<w; € X be an wj-polyhedron. Assume
that 1 = 0 and ||zo|| < 1. For each 1 < a < wy consider f, € S(X*) such
that

1> foa(xa) > Sup{fa(xi) 1<i<wi, i # a} = Qa-
Observe that g, > 0 if o # 1. By passing to an uncountable subsequence,
it can be assumed that there are real numbers 0 < &, < 1 such that
fa(za) — 00 > € and |1 — fo(xq)| < €/8 for every 2 < a < w;. Since w*-
Dens(X*) < Ny, by passing again to a subsequence, we assume that there
exists z € X* such that z(xz,) > 0 and |2(zg)/2(za) — 1| < £/8 for every
2 <a,f <wip. Then, if g, = fo + 2/2(24), 2 < a < wi, we have

9o(T0) = fa(xa) +1>1r—¢/8+1>r—06/8+ 1> fo(xg) —Te/8+1
> sup{ga(r) : 2 < B <wi, B #a}
> inf{ga(zg) : 2 < B <wi, B #a} > —¢/8.
Define ho, = ga/ga(za). Then, for 2 < o, f < wy, o # B, we have ho(z4) = 1
and
. ¢/8 <_ £/8 Sha(xg)zga(xﬁ) < 7’+1—6€/8'
r—e/8+1 9a(Ta) galza) — T7+1—¢/8
So, {(za,ha) :2 <a<wi} C X x X*is an UBABS of type n such that
€/8 r+1—6¢e/8 <1
r—e/8+1 r+1-¢/8 ’
(2)=-(3) is obvious and (3)=-(1) is clear, because if {(xq, fo)} 1<a<w, C
X x X* is an UBABS, then {z4}a<w, is an wi-polyhedron. m

Let us consider some results on representation of elements in polyhe-
drons, which we need later. If {z; };cs is a w*-7-polyhedron in a dual Banach
space X* with 7 = card(/) and K = " ({x;}icr), then the core of K is
the set

Ogn:max{

Ko = core(K) = [ {©0* ({i}iena) : A C I, A finite}.
Define the function A : K — [0, 1] as follows: for k € K,

A(k) =sup{X € [0,1] : u € K,3i € I such that k = \x; + (1 — A\)u}.
Let H = {z € K : A(xz) = 0}. Since for every finite subset A C I, each
x € K has the expression z = ) ;4 \iz;+(1—p)u with u € @w*({xi}iel\A),
N €[0,1], i € A, =734 A <1, it can be easily seen that H C K.

LEMMA 2.3. Let {z;}ier be a w*-T-polyhedron in the dual Banach space
X* 7 = card(I), K = @ ({x;}icr), Ko = core(K) and H = {z € K :
Az) = 0}. If v € K, then there exist a sequence {j,}n>1 of positive num-
bers with 0 < Zn21 pn = 1 < 1, a sequence {in}n>1 C I of indices (not
necessarily distinct) and u € H such that x =3 < pnxi, + (1 — p)u.
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Proof. Clearly the statement is true if z € H. Assume that © € H, i.e.,
A(z) > 0. Choose 0 < $A(z) < Ay <1, 41 € I, and uy € E’“*({xi}ig\{il})
such that x = Az, +(1—A1)u;. If ug € H, we are done. Otherwise, A(u1) >0
and we choose 0 < FA(u1) < Ay < 1, dp € I, and ug € ©0" ({2 }ien (is})
such that u; = Aax;, + (1 — A2)ug. By reiteration, there are two possibilities:

(A) uy, € H for some m € N. Then we obtain the representation
n

m
(1) T = Z)‘kpk—lxik + P, P, = H(l — )\k), Py=1.
k=1 k=1
(B) Always uy, € H. As P, decreases in (1), the limit lim,,> Py, = P €
[0, 1] exists. We have two cases:

e P > 0. Observe that this happens iff , ., A\ < co. In consequence,
the series Zkzl A Pr—1x;, converges and uy, — u € K as m — 00. So
T = Zkzl Mo Pi—1xi, + Pu. We claim that A\(u) = 0. Indeed, suppose that
p:= A(u) > 0 and pick ¢ € N such that P/P; > 1/2, Ag41 < 11/8. Then

1
=5 ( > AgsiPoaj-12grs + PU>=

17 j>1
which implies that A(uq) > (P/Py)A(u) = (P/Py)p > p/2. Since 0 <
%)\(uq) < Ag+1 < 1, we obtain £1/8 > Ag41 > /4, a contradiction.

e P =0. In this case Py,u,, — 0 as m — oo and we obtain the repre-
sentation x = 2@1 N P—1x;, with Zk21 MPi_1=1. n

In order to connect the existence of an UBABS in a Banach space X with
the w*-nonseparability of dual equivalent unit balls of X*, we introduce the
index o(X). If K C X* is a disc (i.e., a convex symmetric subset of X*),
define

o(K)=max{0<t<1:3AC < Vg, tK Ceo® (AU (- .
(K) { JA C K, [A] <R, tK Y (AU(=A4))}

Observe that 0 < o(K) < 1 iff K is w*-nonseparable and that there exists
a countable subset A C K such that o(K) - K C @o% (AU (—A)).

LEMMA 2.4. Let X be a Banach space, K C X* a w*-nonseparable disc
and o(K) < o < 1. Then there exists ¢ = (o) > 0 (depending on p)
such that for every countable subset A C K there exists k € K satisfying
dist(ok, 0% (AU (—A))) > ¢.

Proof. In the contrary case, there exist a sequence of real numbers ¢, | 0
and a sequence of countable subsets A,, C K, n > 1, such that every k € K
satisfies dist(ok, 0" (4, U (—A4,))) < en. So, if A = (J,>; An we have
oK C @ (AU (—A)), a contradiction. =

Uq

Define the index o(X), X a Banach space, as follows:
o(X)=inf{o(K): K C X* a dual equivalent ball of X*}.
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It is clear that o(X) is invariant under isomorphisms.
PROPOSITION 2.5. For a Banach space X we have
o(X)=inf{o(K): K C X* a w*-compact disc}.

Proof. Obviously o(X) > inf{o(K) : K C X* a w*-compact disc}. In
order to prove the opposite inequality, it is enough to see that o(X) < o(K)
for any w*-compact disc K C X*. Assume that such a K is w*-nonseparable,
pick 0(K) < p < 1 and let ¢ = €(p) > 0 be given by Lemma 2.4. For 0 <
0 < e such that o+ < 1 consider Hs = K +6B(X*), which is an equivalent
dual ball of X*. We claim that o(Hs) < o+ . Indeed, let o+ <t < 1
and A C Hj be a countable subset. Then A C A; + Ay, where A1 C K
and Ay C §B(X*) are countable. Assume that tH; C co% (AU (—A)). As
0V (AU (—A)) Cc ¥ (AU (—A1)) +6B(X*), we get

tK C tHs C @ (A1 U (—A))) + 0B(X*),

which implies that dist(tk,co® (A3 U (—A41))) < 6 for all k € K. But by
Lemma 2.4 there exists k € K such that dist(ok,c0% (A1 U (—A41))) > e.
Thus dist(tk,c0" (A3 U (—A;))) > J, a contradiction. Therefore, we have
tHs ¢ o (AU (—A)) and o(Hs) < o+ 6 for 0 < § < e. Hence, o(X) < o
for every o(K) < p < 1, and we conclude that o(X) < o(K). =

PROPOSITION 2.6. If X is a Banach space then o(X) < 7(X).

Proof. Assume that 7(X) < n < 1 and choose an UBABS {(z4, fa) }a<w:
C X x X* of type n such that ||fo]| = 1 and ||zo|| < M for all a < wy,
for some 0 < M < oco. Clearly, {£fo}a<w, is @ w*-wi-polyhedron. Define
K =" ({£fa}acw,), Ko = core(K) and H = {z € K : \(z) = 0}. It is
easy to see that |z(z4)| < n for every z € Ky and a < wi. We claim that
o(K) < n. Indeed, let A C K be countable. By Lemma 2.3 there exists
v < wy such that

A C O fatasy UH) €50 ({£fatasy U H).
Clearly, co% (AU (—A)) C @0 ({£fa}a<y U H) and for every v < o < wi
and every z € @0% ({£fa}a<y U H) we have |z(z,)| < 7.
Hence, for every v < ¢ < wj andn < t < 1 we have tf, ¢ o (AU(—A)).
So o(K) <n and we conclude that o(X) < 7(X). u
Now we prove for a Banach space X that o(X) =1 iff 7(X) = 1.

PROPOSITION 2.7. A Banach space X has an UBABS of type n for
some n € [0,1) iff X* has a w*-nonseparable equivalent dual unit ball. So,
o(X)=14f r7(X)=1.

Proof. Firstly, if X has an UBABS of type n for some n € [0,1) (i.e.,
7(X) < 1), then by Proposition 2.6 we have o(X) < 1 (i.e., X* has a
w*-nonseparable equivalent dual unit ball).
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Assume now that X is a Banach space with o(X) < 1 equipped with an
equivalent norm such that o(B(X*)) < 1. Fix o > O with o(B(X™)) < 0 < 1.
If AcC S(X) and € > 0 we put

(A,e)t ={z€ X" |2(z)| < e, Vz € A},  S((A,e)T) =S(X*)N(A,e)t.
Clearly e B(X*) + A+ C (4,¢e)*.

Cram 0. If A C S(X) and A+ # {0}, then eS(X*) C co(S((A,¢)1))
for 0 <e<1.

Indeed, let u € eS(X*) and v € A+\ {0}. We can find A, u > 0 such that
u+ v, u— pv € S(X*). Thus, u + M, u — pv € S((A,e)+). Let t € (0,1)
be such that t\ + (1 —¢)(—p) = 0. Then u = t(u + \v) + (1 — t)(u — pv) €
co(S((4,)")).

CLAIM 1. For any countable subsets A C S(X) and F C S(X*) there
exists f € S((A, /o)) such that \/o f ¢ co” (F U (-F)).

The opposite means that /0 S((4, \/0)*) C @* (FU(—F)). By Claim 0
we have /0 S(X*) C co(S((4, /2)1)). So

0B(X*) € " (oS(X*)) € w0 (/2 S((4, /Y1) € T (F U (—F)),
a contradiction because o(B(X*)) < g. So, Claim 1 holds.

CrAIM 2. There exist 0 < 6 < e < 1— /0 such that for any countable

subsets A C S(X) and F C S(X*) there exist fo € S((A,\/0)}) and xo €
S(X) such that fo(xo) >1—0 and f(xo) <1—¢ forall f € F.

Define R = {r = (r;,72) € @ xQ:0<r <rpg <1-,/0}. As R
is countable, we can put R = {r,},>1. If Claim 2 is false, for every pair
rn = (rn1,7m2) € R we can choose countable subsets 4, C S(X), F, C
S(X*), n > 1, such that for every g € S((An,/0)") and every z € S(X),
either g(x) < 1 — rp1 or there exists f € F, with f(z) > 1 — rp2. Let
A = U,>1 An, F = U,>1 Fn. By Claim 1 there exists fo € S((4, /o)")
such that \/o fo & co® (F U (—F)). By the Hahn-Banach Theorem there
exists y € S(X) such that

Ve foly) >sup{[f(y)|: f € F} =70 > 0.
Choose a sequence {z,}n>1 C S(X) such that

(@) fim foe) = Ifoll =1, 1= folen) < = (folw) = 20), n 21

Then .
_ﬁijz>zyﬁ
f°<uzn+ L "
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_ |20 + 5yl = folza) = 2 fo(y) _ 1= fo(zn) + (1 = fo(y))
20 + vl B [2n + 20
Hence, lim;,_—, 6, = 0. On the other hand, for every f € F|

( Zn+ Ly > 1+ Ly
1 = T = 1~ ¢n

[zn + 59l )~ Nl2n + 20l
where

- 2 + 2yl =1 = 370 < 1435 —1—29 _ +(1 =)

[[zn + 59 I T 20 + 59
and
1.0 — _ 1
. |20 + Ly fo(lzn) ~fo(y) — 5, >0
[[zn + 5y

by (2). Pick any n € N such that 2(1—10)/||zn + Ly|| < 1 — /0. Then
0 <6p <en <1-—,/0and there is some m € N such that 6, < 7,1 <
rm2 < €n. Let g = (zn + %y)/Hzn + %y” € S(X) and observe that fo €
S((Am, /o)1), folzo) > 1 =6, and f(z9) < 1 —¢, for all f € F. Then
fo € S((Am, /0)1), fo(zo) > 1 —rm1 and f(z0) <1 —e, < 1 — 1y for all
f € F, a contradiction. So, Claim 2 holds.

Let 0<d<e<1— /0 be from Claim 2. We will construct a transfinite
sequence {(Zq, fa)}a<w; C S(X) x S(X*) so that for every a < wy,
(3) fa(za) 21—,
(4) falg) <1—c ifa#p.
In the first step, we take z; € S(X) and f; € S(X*) such that fi(z1) = 1.
Let 1 < ap < w; and suppose we have constructed a family {(xq, fo) :
a < ap} satisfying (3) and (4). Apply Claim 2, with F' = {f, : @ < ap} and
A ={x4: a < ap}. Denote the resulting elements xy and fy by 24, and fq,.
The inequality (3) for a = « is satisfied by construction. The inequality
(4) for a = ap and B < ay holds because fo € S((4, /0)*) ande < 1— /0.
For 8 = ap and o < ay, it follows because sup{ f(zo) : f € F'} <1—¢. Now
the set {(To, fa) fa<w, Where Ty = 2o, fo = fo/fa(a), 1 < a < wi,is an
uncountable bounded (by (1 — §)~!) almost biorthogonal system. m

PROPOSITION 2.8. Let X be a Banach space such that o(X) < 1/3. Then
7(X) <20(X)/(1 —0(X)). So, for every Banach space X:

(1) o(X)=04ff 7(X) =0.

(2) 0(X) = 0 whenever X has an uncountable biorthogonal system.

Proof. (A) Let || - || be an equivalent norm on X such that the corre-
sponding dual unit ball B(X*) satisfies o(B(X*)) < 1/3. It is enough to
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prove that for every o(B(X*)) < a < 1/3 there exists in X an UBABS of
type n < 2a/(1 — a). So, fix such an a. By induction we choose a family
{(za, fo) ta<w, C S(X) x S(X*) such that

—a

(5) hu@>12 . falzp) <a fa#p

Pick (z1, f1) € S(X) x S(X*) satisfying f1(z1) = 1. Let a < wy and assume
that we have chosen {(z3, fg)}s<a C S(X) x S(X™) satisfying (5). Set
]

Ao=[{azg:B<a}], Fo=7t0" ({£fs:8<a}UGy),

where Gy C B(X*) is a countable symmetric subset 1-norming on A,. By
[15, Lemma 4.3] there exists z, € S(X) such that sup{|f(za)| : f € Fa} < a.
We claim that dist(zqa, Aq) > (1 —a)/2. Indeed, pick z € A, and observe
that if ||z|| < (1+a)/2, then clearly ||z — zo| > (1 —a)/2, and if ||z]| >
(14 a)/2, then

HZ - wa“ > SuP{f(z - xa) fe Fa}
1 + a l1—a
lell = sup{f(wa) : f € Fa} > 0% —a= 2"
This means that if Q : X — X/A, is the canonical quotient mapping, then
1Q(xa)| > (1 —a)/2. So, as (X/As)* = AL there exists f, € S(X*)N AL

such that fu(zq) > (1 —a)/2. Thus we have chosen the pair (z4, fa), and
this completes the induction.

Now put fo = fa/fa(za), consider the family § = {(2a, o) acw, and
observe that:

(a) § is bounded because ||z,| = 1 and

gl R 2
ol = ] “T—02 " Toa ~ 1213

(b) falze) =1 and
|[fa(zp)] a 2
|fa(xﬁ)| fa(xa) < (1 _ a)/z - 1—
So, § is an UBABS of type n < 2a/(1 — a).

(B) (1) follows from (A) and Proposition 2.6; (2) follows from the defi-
nition of 7(X) and (1). =

Y

<1 ifa#pB.
a

3. On w-independence. The Kunen—Shelah property KS;. A fam-
ily {z;}ics in a Banach space X is said to be w-independent if for every se-
quence (in)p>1 C I of distinct indices, and every sequence (An)n,>1 C R, the
series > | A, converges (in norm) to 0 iff A, = 0 for every n > 1 (see
[6], [12]). A Banach space X is said to have the Kunen—Shelah property KSs
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if X has no uncountable w-independent family. Of course, every biorthogo-
nal family is w-independent (i.e., KS3 = KS3), but there are w-independent
families which are not merely biorthogonal systems. Here is an example:
X =C([0,1]“r) and {f2}a<w;,n>1 defined as

Ja((ty)y<wn) =g
for every x = (t,)y<w; € [0,1]. This family is w-independent but not a
biorthogonal system by the Theorem of Miintz—Szasz (see [11, Th. 15.26]).

QUESTION 2. Does a Banach space have an uncountable biorthogonal
system whenever it has an uncountable w-independent family?

Unfortunately, the indices o (X ), 7(X) do not separate the properties KSo
and KS3, because as we prove in the following, if X € KSs, then o(X) = 0.

LEMMA 3.1. Let X be a Banach space, {zi}i<icw, C X an uncount-
able bounded w-independent family, H C X a closed separable subspace and
N € N. Then there exist ordinal numbers o < v < wi such that x, ¢
@(H U {iN$i}7§i<w1)-

Proof. Without loss of generality suppose that ||z;|| < 1 for all i < w;.
Assume that for every pair of ordinal numbers g, such that o0 < v < wy

we have x, € C0(H U {£Nxz;}y<icw,). For n € N and ¢ < v < wy, define
D, = co{£Nz;}y<icw,) and

H(o,7,n)

1
= {(u,)\) € H x(0,1] : Fv € D, with [[Au+ (1 = AN)v —z,] < %}

If o < v <9 <w; and n > 1, then by hypothesis and definition, we have
H(g,v,n)# 0 and H(o,v,n+1) C H(o,7,n) D H(0,7',n).
For 8 < wj and n > 1 define

H(gn) = (| JtH(evm) i B< o<y <w})

where “c]” means closure in H x (0, 1]. Clearly, for § < ' and n > 1 we
have

0+ H(3,n) C H(B,n) > H(B,n+1).

Since H x (0,1] is hereditarily Lindeldf, for each n > 1 there exists 3, < w;
such that for every 3, < 8 < wy we have H(3,n) = H(f3,,n). So, for every
(u,\) € H(fBp,n) and every B, < < w; we have (u,\) € H((,n), which
implies that there exist 8 < ¢ <y < w; and v € D, such that

lz, — v+ (1= \o)|| < 1/n.

Let By = sup,>1 B, and fix By < 0 < v < wp and n > 1. Pick (u,pu) €
H(o,7,n) and w € D, such that ||z, — (pu+ (1 — p)w)|| < 1/(2n). Since
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(u,p) € H(Bp,n) = H(vy,n), there exist v < 0 < < w1 and v € Dy such
that ||zy — (pu+ (1 — p)v)|| < 1/n.
Set T'= x5 — (pu+ (1 — p)v). Then pu =z, — T — (1 — p)v and
1
lze = (2o =T = (1 = po+ (1 - pw)| < 5.
Since ||T']| < 1/n, we obtain

2o = (25 — (1 = p)v+ (1 = pJw)||
= [[zg = (2o =T = (1 = po+ (1 = pw) =T

1 1 3
< ey (a0 =T = (L= po+ (1= )| + 1T < 5+ = = >
Since zq,v,w € Ey = [{i}y<i<w,], letting n — oo (with g, fixed)

we deduce that x, € E, (in particular, this implies that Eg, = Eg for all
Bo< B <wi). Set S=z,— (s — (1 —p)v+ (1 —p)w). Then
zo=9S+pv+ (1 —pw+z, —v.
Taking into account that pv + (1 — p)w, —v € D, x5, € (1/N)D, and that
IIS]] < 3/(2n), we finally get z, € cl((1+1/N)D,+ D) = cl((2+1/N)D,).
So, , is an accumulation point of F, := (2+1/N)D,, (because z, € F.,\ F).
In consequence, we can conclude that every x;, Gy < ¢ < wi, is an
accumulation point of every F, for v < wy.
Let (an)n>1 be a sequence of positive numbers such that lim,, .~ a, = 0,
Y n>10n = 00, and let b, = sup,,-, am. Fix o < 7 < wi. Using the
proof of [6, Th. 3|, as in [12], we can construct inductively a sequence
{en}n>1 of signs, a sequence {A]'},>1 1<y<i(n) Of real numbers and a se-
quence {7, }n>1,1<r<k(n) Of ordinals such that:

(1) Zf(:l) |IA7| < 2N + 1 for every n > 1.

(2)T<7{L<...<7}§(n)<'y’f+1<...<w1 for every n > 1.

k
(3) Tr + anl annYn = 0, where y, = Zr(:nl) )‘:}‘T’ﬂf
Let us see the first two steps of this argument. Set K = {z;}r<icw, -

STEP 1. By the proof of [6, Th. 3] we can find p; € N, a finite sequence
{hn}1<n<p, of (not necessarily distinct) elements of K and a finite sequence
{en}i1<n<p, of signs such that

P1
’:L‘-,— + E ancnhn
n=1

J
T, + g anenhn,
n=1

<27

<bi+1+271 for1<j<p.

|
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Since hy, € cl(Fp) for By < f < wi, we can find, for 1 <n < pq, real numbers
(A <rckny with S A2 < 2N 4+ 1, and ordinals {47}5") such that:

(@) T<AP <. .<Ar <A < < wy.
1 k(n) 1

k _
(b) flar + 2Ly anen(Sr0) M)l < 27
j k _ .

(©) llr + Sy nen (S0 M) | < b +14+27" for 1< <y,

STEP 2. Let u3 = z, + Y bb, ansn(Zf(:nl) Afxyn). By the proof of [6,
Th. 3] we can find p; < p2 € N, a finite sequence {hy}p,+1<n<p, Of (nOt
necessarily distinct) elements of K and a finite sequence {ey, }p,+1<n<p, Of
signs such that

P2

Hul—i- Z anEnhn

n=p1+1

<272,

J

Hu1+ Z ancnhn

n=p1+1

<bp1—}—2_1—|-2_2 for p1 +1 <5 < po.

Since h,, € cl(Fp) for fy < B < wi, we can find, for p1 < n < po, real
numbers {\}'}1<,<k(n) With Zf(:"l) |A}| < 2N +1, and ordinals {fyﬁ}ff(:"l) such
that:

(a) 7£%p1) <M< <M <A<l <wr.

k(n) \n —
() llur + S22y anen (SR Apa)|| < 272,

j k _ _ .
(c) Hu1+22:p1+1 anen(zr(:nl) ANzan)|| < bp, +271+272 for py < j < po.

Now by reiteration we obtain the complete construction. It is easy to
see that the series z, + ) anf—:n(Zf(:nl) Afxyn) converges to zero. This

proves that {z;};<., is not w-independent, a contradiction. So, we can choose
0 <7 < wi such that z, € co(H U {£Nz;}y<icw,). =

PROPOSITION 3.2. Let a Banach space X have an uncountable w-in-
dependent family {xq}i1<a<w,. Then for every 0 < n < 1, there exist an
uncountable subsequence {a}ticw, C w1 and an UBABS {(z, fi)}icw, C
X x X* of type n such that z; = x4, and fi(z;) = 0 for j < i < wy. So,
7(X) =0 and X has an wi-polyhedron.

Proof. Let {x;}1<icwy € X be an uncountable w-independent family
and suppose, without loss of generality, that ||z;|| < 1 for every ¢ < w;. Let
N € N be such that 1/N < 7. In the following we choose by induction two
subsequences {iq, ja}a<w, of ordinal numbers, with i, < jo <ig < jg < w1
for a < B < w1, such that

(6) i, € ([{ziy 1 B < a}JU{ENT;}j, <j<wnr)-
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Indeed, let & < wy and assume that we have chosen {ig, j3}3<q satisfying
(6). Put H = [{zi;}p<a] and v = supg,{jg} (if @« = 1, put H = {0}
and v = 1). By Lemma 3.1 there exist v < p < 7 < w; such that z, ¢
€0 (HU{£Nzi}y<icw,). So, we put iq, = 0, jo =y, and this completes the
induction. Let z, = z;, for @ < wi. By (6) we have z, € ¢o([{z35: 5 < a}]U
{£Nzj}a<jcw;). So, by the Hahn-Banach Theorem there exists f, € X*
such that

1 = fal(za) > sup{fa(z) 1z €To([{2z5: B < a}] U{£Nzj}acjcu)}-

Clearly, fa(z3) = 0if 8 < «, and |fo(Nzg)| < 1, ie., |fa(23)] < 1/N, if
a < 8 < wi. Finally, if we choose an uncountable subsequence A C wy with
{||fall : @ € A} bounded, then {(zq4, fo) : @ € A} is the UBABS of type n
we are looking for. m

4. The Kunen—Shelah property KS;. A Banach space X is said
to have the Kunen—Shelah property KSy if X has no wj-polyhedron. The
implication KS4 = KS3 was proved in [3]. It also follows from Proposition 3.2
and from Proposition 7.3 and a result of Sersouri [12].

PROPOSITION 4.1. Let Z be a Banach space and X C Z a closed sub-
space such that Z/X is separable. Then the following are equivalent:

(a) Z € KSy.
(b) X € KS,.

Proof. (a)=(b). This is obvious.

(b)=(a). Assume that Z ¢ KS4; we will prove that X ¢ KS4. By
Proposition 2.2 there exists in Z an UBABS {(zq4, fa) : @ < w1} of type
n € [0,1) with ||fo]| < M for all & < wy, for some 0 < M < wi. Set
e := 1 —1n. Since Z/X 1is separable, there exists an uncountable subset
I C wy such that if Q : Z — Z/X is the canonical quotient mapping,
then ||Qzo — Qz|| < €/(4M) for every o, € I. Fix 7 € I and define
Yo = Za — 2 for a € I. Since ||Qua| < €/(4M), there exists z, € X such
that ||zo — yal| < €/(4M) for all a € I. Then for any o, € I, a # 3,
we have

fa(za) = fa(¥a) + fa(Ta — Ya) = fa(ya) — M ﬁ = fa(2a) = falzr) — Z
=1 falzm) = 3 > 0= faler) + 5 > falz) = faler) + 5

= fa(ys) + Z = falys) + M ﬁ > fa(zp),

which implies that {z, : € I} is an uncountable polyhedron in X, i.e.,
X ¢KSy. n
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In the following we obtain some characterizations of the property KS,.
We first prove some lemmas.

LEMMA 4.2. Let X be a locally convex topological space, T = o(X, X™*),
feX*\{0}, Cc (1) a bounded convex subset and B = co(C' U (—C)).
Then C' is T-separable iff B is T-separable.

Proof. Clearly, B is T-separable whenever C'is. For the converse, suppose
that B is 7-separable and choose a countable subset A C C such that D :=
{tr—(1—t)y : z,y € A, t € [0,1]} is 7-dense in B. Now it is an easy exercise
to prove that C' C 7-cl(A), i.e., C' is T-separable. m

LEMMA 4.3. Let X be a locally convex topological space, T = o(X, X™),
and C C X a conver subset such that for some f € X* there exists a
countable subset R C R satisfying:

(1) 0 # (inf{f(x): 2z € C},sup{f(z) :x € C}) CR.
(2) Cp :=={z € C: f(x) =r} is T-separable for each r € R.

Then C' is T-separable.

Proof. By hypothesis inf{f(z) : x € C} < sup{f(z) : x € C}. For each
r € R, choose a countable subset A, C C, such that C, C 7-cl(A,). Let
A = |J,er Ar, a countable subset of C. We claim that A is 7-dense in C'
Indeed, pick zg € C arbitrarily and let U be a T-neighborhood of zy in C'. By
hypothesis, there exists some r € R such that C,, NU # 0. So, A, NU # 0,
whence ANU # (). =

PROPOSITION 4.4. Let X be a Banach space. The following are equiva-
lent:

(1) X e KSy.

(2) K C X* is w*-separable whenever K is a w*-compact convex sym-
metric subset such that || - ||-int(K) # 0.

(3) K C X* is w*-separable whenever K is a w*-compact convex sym-
metric subset, i.e., 0(X)=1=71(X).

(4) K C X* is w*-separable whenever K is a w*-closed convex symmetric
subset.

(5) K C X* is w*-separable whenever K is a w*-closed convex subset.

Proof. (1)=(2). This follows from Propositions 2.7 and 2.2, because if
K C X*isaw*-compact convex symmetric subset such that ||-||-int(K) # 0,
then K is the dual unit ball of X* when X is equipped with the equivalent
norm | - | such that |z| = sup{z*(z) : z* € K} for every z € X.

(2)=-(3). Let K C X* be aw*-compact convex symmetric subset and set
K, = K + LB(X*), which is a w*-compact convex symmetric subset of X*
with nonempty interior. By (2) there is a countable family {zy, , }m>1 C K,
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such that K, = {@ym 1 m > l}uj for every n > 1. Pick kj, ,n, € K such that

lknm — Tnml|l < 1/n. Then it is easy to see that K = {ky, : n,m > 1.

(3)=(4). Let K C X* be a w*-closed convex symmetric subset and
define K,, = K NnB(X*). By (3), K, is w*-separable and hence so is K,
because K =~ Kn.

(4)=(5). Tt is enough to prove that if K C X* is a w*-compact convex
subset, then K is w*-separable. Without loss of generality, assume that
0 ¢ K. Let f € X be such that 0 < min{f(k) : ¥ € K} < max{f(k) :
ke K} <oo. Ift € [min{f(k): k € K},max{f(k) : k € K}], define
K;={ke€ K: f(k)=t}and C; = co®" (K;U(—K;)). By (4) and Lemma 4.2
each C; is w*-separable. So, from Lemma 4.3 we conclude that K is w™*-
separable.

(5)=(1). Suppose that there exists in X a bounded wi-polyhedron
{2 }i<cw, - By Proposition 2.2, there exists in X an UBABS {(zq, fa) fa<w C
X x X* such that ||fo|| =1, ||zal| < M, fa(za) =1 and fo(zg) < 1—¢
for every o, < wi, @ # (3, and some 1 > ¢ > 0, 1 < M < oo. Let
K = @ ({fa : @ < wi}). Consider the w*-open slices U, = {k € K :
k(xo) > 1—¢/3} for all @ < wy. Then U, is a w*-open neighborhood of f,
in K and we can easily see that U, N Ug = () whenever a # 3. Thus K is
w*-nonseparable, a contradiction to (5). So, X € KSy. =

QUESTION 3. Let X be a Banach space. If 7(X) < 1, is 7(X) = 0?7 If
7(X) = 0, does X have an uncountable w-independent family?

5. The Finet—Godefroy indices. If X is a Banach space, the Finet—
Godefroy indices doo(X) and p(X) were introduced in [1] and defined as
follows:

doo(X) = inf{d(X,Y) : Y a subspace of {+(N)},
where d(X,Y) is the Banach-Mazur distance. Clearly, do (X ) depends upon
the norm || - || of X and we see easily that: (i) doo(X) € [1,00]; (ii) doo(X) <
oo iff X is isomorphic to a subspace of (o (N); (iii) doo(X, || - ||) = 1 iff
(X, ]| -||) is isometric to a subspace of £ (N) iff the dual unit ball B(X™*) is
w*-separable. The corresponding isomorphic invariant index is
where the supremum is computed over the set of equivalent norms on X.

PROPOSITION 5.1. Let X be a Banach space. Then:

(1) p(X) =o(X)7 (07! = 00).
(2) If X has an uncountable w-independent system, then u(X) = oo.

Proof. (1) This follows from [1, Lemma III.1] and a simple calculation.
(2) By Proposition 3.2 and 2.8 we find that ¢(X) = 0. Now apply (1). =
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The following questions are proposed in [1]:

(1) It is clear that p(X) = 1 if X is separable. Is the converse true?
(2) Does there exist a nonseparable Banach space X such that every
quotient of X is isometric to a subspace of £o(N)?

In the following we answer these questions.

PROPOSITION 5.2. Let X be a Banach space. The following are equiva-
lent:

(1) X e KSy.

(2) Every quotient of (X,|-|) is isometric to a subspace of lx(N), for
every equivalent norm | -| on X.

(3) u(X) = 1.

(4) Every quotient of X has the property KSy.

Proof. (1)=(2). Let | - | be an equivalent norm on X, Y C X a closed
subspace and Z = (X/Y,|-|) the corresponding quotient space. Clearly,
(B(Z*),w*) = (B(Y"1),w*). But (B(Y1),w") is w*-separable by Proposi-
tion 4.4. So, Z is isometric to a subspace of o (N).

(2)=(3). By (2), do(X,|-|) = 1 for every equivalent norm |- | on X.
So, u(X) = 1.

(3)=(4). Since u(X/Y) < pu(X) for every quotient X/Y (see [1, Th.
I11-2]), (3) implies that u(X/Y) = 1, ie., o(X/Y) = 1. So, by Proposi-
tion 4.4 we infer that X/Y € KSy.

(4)=-(1). This is obvious. =

COROLLARY 5.3. If X is either the space C(K), under CH and K being
the Kunen compact space, or the space S of Shelah, under Oy, , then X is
nonseparable, u(X) = 1 and every quotient of (X,|-|) is isometric to a
subspace of loo(N), for every equivalent norm | -| of X.

Proof. This follows from Proposition 5.2 since in both cases X € KSy
(see Section 6). m

REMARKS. (1) The fact that every quotient of (X, | -|) is isometric to a
subspace of /o (N) for every equivalent norm |- | of X, when X = C(K), K
being the Kunen compact, was shown in [4, Cor. 4.5].

(2) In [1] it is asked if ©(X) = co whenever the Banach space X satisfies
u(X) > 1. In fact, no Banach space X with 1 < u(X) < oo is known.
Observe that 1 < u(X) < oo implies that X € KS3 but X ¢ KSy, because:
(i) 1 < p(X) < 0 iff 1 > o(X) > 0 by Proposition 5.1; (ii) 1 > o(X)
iff X ¢ KS4 by Proposition 4.4; and (iii) o(X) > 0 implies X € KS3 by
Propositions 3.2 and 2.8.
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6. The Kunen—Shelah property KSs. Let 6 be an ordinal. A convex
right-separated 0-family in a Banach space X is a bounded family {x;};<9 C
X such that z; & co({z; : j < i < 0}) for every j € 6. A family {Cq}a<o
of convex closed bounded subsets in X is said to be a contractive (resp.
ezpansive) §-onion iff Co, C Cp (resp. Cg € Cq) whenever § < o < 6. It
is easy to prove that X has a contractive #-onion iff X has a convex right-
separated f-family. In the dual Banach space X* one can define a contractive
(resp. expansive) w*-f-onion in an analogous way, using the w*-topology
instead of the w-topology.

A Banach space X is said to have the Kunen—Shelah property KSs if X
has no contractive uncountable onion. If X has a 7-polyhedron {z, : a <7},
it is clear that {Cy : o< 7}, where C, =Co({zg : a <3< T}), is a contrac-
tive 7-onion. So, the property KSs implies KSy4, whence by Proposition 3.2
we get KS5 = KSs, a result proved by Sersouri in [12].

PROPOSITION 6.1. Let X be a Banach space. Then:

(1) X has a contractive wy-onion iff X* has an expansive w*-wi-onion.
(2) X has an expansive wi-onion iff X* has a contractive w*-wi-onion.
(3) X is nonseparable iff X* has a contractive w*-wi-onion.

Proof. (1) Assume that X has a contractive wi-onion, i.e., there exists a
sequence {Zq }a<w, C B(X) such that zo € €06({23}a<ps<w, ). By the Hahn-
Banach Theorem there exists f, € X* such that

fa(za) > sup{fa(zg) 1 < B <wi} =: eq.
By passing to a subsequence, we can suppose that there exist 0 < e, M < oo

and r € R such that || fo|| < M, fa(za) —eq >e>0and |r— fo(za)| <e/4
for all @ < wq. Hence, if 8 < a < wy, we have

fa(@a) 21 —e/d>r—3c/4 > fa(ag) —c = eg = f(za),

which implies that f, & 0% ({fs: B < a}) =: Kq, i.e., {Kq : @ <wi} is an
expansive w*-wi-onion in X*.

The converse implication is analogous.

(2) Use the same argument as in (1).

(3) Apply (2) and the fact that X has an expansive wj-onion iff X is
nonseparable. m

A Banach space has the property HL(1) (for short, X € HL(1)) whenever
for every family {U;};cr of open semi-spaces of X there exists a countable
subset {i,}n>1 C I such that (J,~, Ui, = U;c; Ui, i.e., every closed convex
subset of X is the intersection of a countable family of closed semi-spaces
of X.
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PROPOSITION 6.2. Let X be a Banach space. Then the following are
equivalent:

(1) X € KSs.
(2) Every convex subset of X* is w*-separable.
(3) X € HL(1).

Proof. (1)<(2). By Proposition 6.1, X has no contractive uncountable
onion iff X™* has no expansive uncountable w*-onion, and it is trivial to prove
that this occurs iff every convex subset of X* is w*-separable.

(2)=-(3). Suppose that X ¢ HL(1) and let § = {U; }i<w, be an uncount-
able family of open semi-spaces of X such that § has no countable subcover.
Assume that U; = {x € X : 2f(x) < a;} with a; # 0 for all i < w; (ifa; =0
for some ¢ < wy, we replace U; by the family Uy, = {z € X : zf(z) <
—1/n}, n > 1). Dividing by |a;|, we can suppose that each U; has the ex-
pression U; = {z € X : yf(z) < g} with &5 = £1 and yf = x/|a;|. Set
$1={U; €F:¢; =41} and Fo = {U; € §: &; = —1}. It is clear that either
§1 or §9 has no countable subcover.

Assume that §; does not admit a countable subcover (the argument for
§2 is similar). So, there exists an uncountable family {V, : o < w1} C F1,
Vo ={z € X : z3(x) <1}, such that there exist zo € Vo \ Uz, Vj for each
a < wy. Put A = co{z]}icw,, which is w*-separable by hypothesis. Thus,
we can find ¢ < w; such that A C @Y ({2} }i<,). Pick 0 < @ < wi. As
Ta € Va \Ug<q Vi, we see that z3(za) <1 and zj(zq) > 1 for every 8 < a.
Let C = {z* € X* : 2*(xq) > 1}, which is a convex w*-closed subset of X*.
Since z; € C for all ¢ < p, it follows that A C C. So, 2, ¢ C' and 2}, € A, a
contradiction which proves (3).

(3)=-(1). Suppose that X has a contractive wi-onion {Cy}a<w,. We
choose vectors x,, € Cy\ Cot1 and a sequence {Uy }o<w, 0f open semi-spaces
such that z, € Uy and U, N Cyui1 = (0. Clearly, no countable subfamily of
{Ua}a<w, covers {xq}a<w,, which contradicts (3). m

REMARK. If X is a Banach space, we write X € L(1) if from every cover
of X by open semi-spaces we can choose a countable subcover. Clearly, X
has the property (C) of Corson iff X € L(1). Since X € HL(1) = X € L(1),
we find that X € KSs implies X € (C).

PROPOSITION 6.3. If X is either the space C(K), under CH and K
being the Kunen compact space, or the space S of Shelah, under Oy, then
X € KSs.

Proof. The space C(K), K being the Kunen compact space, satisfies
C(K) € KSj because for every uncountable family {z; : i € I} C C(K),
there exists j € I such that z; € wel({x; : i € I\{j}}) (wcl = weak closure).
It is clear that a space with this property cannot have an wj-onion.
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The space S of Shelah has the property (see [13, Lemma 5.2]) that if
{yi}icw, C S is an uncountable sequence, then for every € > 0 and n > 1,
there exist ig < i1 < ... < i, < wi such that

1
(7) Yio — (Yi, + -+ yin)

1
< il +

Assume that S has an wi-onion {Cy : 1 < a < wy }, with € € B(S). Choose
o € Cy \ Cot1 and let 1y = dist(zq, Cat1), which satisfies 7, > 0. By
passing to a subsequence, it can be assumed that n, > n > 0 for all o < wy.
Let m € N satisfy 1/m < n/2. By (7) there exist ip < i1 < ... < iy < w1
such that

1
l‘io—a(xil—l—...%—xim)

1 n
<l + 3 <o

Since %(9:“ +...+x;,) € Ciy41 and dist(x;,, Cig+1) > 1, we get a contra-
diction which proves that S € KS5. =

7. KS; and KSs; are equivalent. If X is Asplund or has the property
(C) of Corson, it is easy to prove that X € KS; < X € KSs. In the
following we prove the equivalence KS5 < KSy in general. A sequence {C, :
a < wi} of convex closed bounded subsets of a Banach space X is said to
be a generalized wi-onion if ) # C, C Cg for § < «a, and there exists a
subsequence {ag}g<,, C wi, with ag, < ag, if 81 < fa, such that Coay, #
Cag,, 1€, {Cay 1 B < wi} is an wi-onion. For C' C X, denote by cone(C)
the closed convex cone generated by C. Observe that if C' is convex, then

cone(C) = cl(Uy>o AO).

LEMMA 7.1. Let X be a Banach space, C C X a convex closed separable
subset and {Cy : 1 < a < w1} a generalized wy-onion in X.

(1) If dist(C, Cy) = 0 for every a < wy, then for every e > 0 there exists
ce € C such that dist(ce, Cy) < € for every a < wy.

(2) There are two mutually exclusive alternatives: either

(A) there exist two ordinals B < o < wy and z € Cg such that
z ¢ ©o([C] U cone(Cy)) or

(B) for every pair of ordinals 8 < o < wy we have Cg C To([C] U
cone(Cy)). In this case,

@ ([C] U cone(Cy)) = @([C] U cone(C)), Ve, B < wi,

and for every € > 0 there exists c. € X such that dist(ce, Cy) < €
for every a < wq.
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Proof. (1) For every a < wy and n > 1 consider C(a,n) = {x € C :
dist(z,Cy) < 1/n}. Then {C(a,n) : @ < wi} is a family of nonempty
closed convex subsets such that C(a,n) D C(B,n) if a < (, with the
countable intersection property. Since C is separable, we conclude that
Na<cw, Cla,n)#0 for every n > 1. So, if for every n > 1 we pick ¢, €
Na<w, Cla,n), then dist(c,, Co) < 1/n for every o < wy.

(2) Clearly, the alternatives (A) and (B) are mutually exclusive. Suppose
that (B) holds. Since [C] is separable there exist two ordinals Gy < ap < wi
and zg € Cj, \ Ca, such that zo ¢ [C] but 29 € ([C] U cone(C,,)) for every
a < wi.

CrLAamM. If H = [C U{z0}], then dist(H,Cy) = 0 for every o < wi.

Indeed, let g9 = dist(zg, [C]) and ng > 1 be such that 2/n¢ < €g. Observe
that for every a < wy and € > 0 we can choose A € [0,1), u > 0, w € [C]
and v € C such that

(8) w4 (1 = Ao — 2o < e.

Let M > 0 be such that C; C B(0,M). We claim that if we pick a <wy,
n>mng, A€[0,1), p >0, we [C] and v € C, satisfying (8) with ¢ = 1/n,
then (1 — \N)p > 1/(noM). Indeed, otherwise
g0 < IAw — zo|| = [[Aw + (1 = N pv — zo — (1 — N po||
< [ Aw 4+ (1 = ANpv = 2o + [|(1 = A
1 1
< —4+—< €0,
ng Mo
which is a contradiction. So, for every «, n, A, u, w and v as above we have
H 20 _ A < 1 < nOM7
(L=Xp 1 =A)p (L=Xun = n

and this proves that dist(H,Cy) = 0 for every a < wj.

w—v

As H is separable, given ¢ > 0, applying (1) we can choose ¢. € X such
that dist(ce, Cy) < € for every a < wy, and this completes the proof. m

PROPOSITION 7.2. Let X be a Banach space without the property (C) of
Corson. Then there exists a sequence {(ya,yh) : @ < w1} C X x X* such
that ¥} (ya) = 1 for all a < wy but y)(ys) =0 if B < a, and y)(ys) < 0 if
8> «a. So, X has an wi-polyhedron and X & KSy.

Proof. Since X fails (C), it is easy to see that there exists in X an wi-
onion {Cy : @ < wi} such that N Cy = (). Using transfinite induction
with wq steps we construct:

a<wi]
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(1) A sequence {ny : @ < w1} C {0,1} such that if p(a) = [{# < « :
ng = 1}| then p(a) < Ro.

(2) Two sequences {0, 7y : 7 < w1} of ordinals such that 1 < o, < 7y <
0 <wp ify < B <wr.

(3) For each o < wl, a generalized wi-onion {C(a) D 0a < B < wi} such
that C, DC’(Q)DC #0ifa < <wand gg <y < wi.

(4) For each a with n, = 0, an element y, € C’A(;a) such that if H, =
Hyg: B <a ng = 0}] then y, & co(Hy U cone(C(a))) Also, in this case we
demand that C =Ng<a 5 c'? for every 0o < < wi.

p(a) € X such that C’éa) C
B(ap(a), 2_1’(0‘)) for every 7, < 8 < wy, which will imply that

(5) For each o with ny, = 1, a vector a

diam(C§Y) < 277+ dist(ay(a), C5Y) <277, Wi, < B <wr.

STEP 1. We choose nq1 =0, o1 = 1, 1 = 2, C’( ) =Cg forevery 1 < 8 <
w1, y1 € C1\ Cy arbitrary and H; = {0}.

STEP o + 1 < wy. Suppose all the steps § < « satisfying the above
requirements are constructed. By hypothesis {Céa) P Ta < 0B < wi}is a
generalized wi-onion. By Lemma 7.1 there are two mutually exclusive alter-
natives:

(A) There exist two ordinals 7, < fy < ap < w1 and a vector zg € Céi‘)

such that zyp ¢ co(Hy U cone(C’(()g))). Then we set 0441 = B0, Tat+1 = Q0,

(a+1)

Na+1 =0, Yat1 = 20 and Cj = C’(a) for every go+1 < 0 < wy.

(B) If (A) does not hold, there exists ¢ € X such that dist(c, C

)

2~ (P(@)+2) for every T, < 3 < wi. In this case we set nor1 = 1, p( +

C(aJrl)
B

IN

—_
~—

= p(Oé) + 17 Oat+l = Ta, Tat+l = Ta + 1, p(a+1) = C and

B(ap(a+1),2_p(°‘+1)) N C’éa) for every 0o4+1 < B < wi. Since ngy1 = 1 we
do not choose yq41.

STEP a < w1, a a limit ordinal. Let o < wy be a limit ordinal, and sup-
pose all the steps 8 < « satisfying the above requirements are constructed.

CLamM. {f < a:ng=1} <.

Indeed, otherwise we would have a sequence of ordinals {3, }m>1 T @,
with 8, < Bm+1 < a, such that ng, = 1 for every m > 1. Obviously
p(Bm) T +00 as m — oo. The sequence {ap(ﬁm)}mzl is a Cauchy sequence.

)

Indeed, if 7 < s are two integers, then for every 75, < 8 < wy, since C’é’gs C

CéﬁT), we have
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PP

dist(ap(ﬁT) a (55)) < dist(ap(ﬁr), Céﬁr)) + diam(Céﬁr)) + dist(ap(ﬁs), CéﬂT))

< 97 P(Br) 4 9=p(B)+1 4 9=p(8) 27X
Let ag := limy,—o0 ap(g,,) and 7o = sup{7s : f < a}. Then ay € C, for every
Y0 < v < wi because
m—oQ

diSt(ao, C’V) < diSt(a(b ap(ﬁm)) + dist(ap(ﬁm), C,(yﬁm)) — 0.

Hence N Cy # 0, a contradiction which proves the Claim.

a<wi

Define as above 7o = sup{7s : f < a} and let D, :=(5_, C5 '\ for every
Y0 < v < wi. By the Claim and the construction of the prev1ous steps we
have:

(a) There exists an ordinal 09 < « such that ns = 0 for every dp < 6 < a.
So, p(0) = p(dp) for every § € [do, @).

(b) For every 79 < v < wy we have Dy = C’,(fo), which by the induction
hypothesis implies that {D : 79 <7 < w1} is a generalized wq-onion.

If Hy, == [{yg: B < a, ng=0}], by Lemma 7.1 we have the following
mutually exclusive alternatives:

(A) There are two ordinals v9 < fp < o < wy and a vector zg € Dag,
such that zp & ¢6(Hy U cone(D,,)). In this case we set oo = [, 7o = o,
ng =0, Yo = 20 and Céa) = Dg for every g, < 8 < wi.

(B) If (A) does not hold, there exists ¢ € X such that dist(c, )
2720042 for every vy < v < wi. In this case we set n, = 1, p(«a)

p(60) +1, 00 =0, Ta = 0a + 1, ap(a)—candcg)— B(a, )N D
for 79 < < wy. Since n, = 1 we do not choose y,.

I IA

2

This completes the induction.
Obviously, there exists o0 < wi such that n, = 0 for every 0 < a < wq,
which gives us the sequence {y, : 0 < a < w1} such that

Yo €0({yg:0< B <a}Ucone({yg:a < f <wi})) =: K,
for every ¢ < o < wyq. Therefore, by the Hahn—Banach Theorem there exists
yr € X* such that v} (yn) = 1 but sup{y}(y) : y € Ko} < 1. In particular,
ya(yg) =0if p < B <o, and Yy} (yp) <Oifa<f<wi. m

PRoOPOSITION 7.3. Let X be a Banach space. We have:
(1) If X € KSy, then X € (C).
(2) X € KSy iff X € KSs.

Proof. (1) This follows from Proposition 7.2 where it is proved that if
X ¢ (C) then X has an w;-polyhedron.
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(2) Clearly, X € KSs implies X € KS,. Assume that X € KS4. By (1)
we see that X € (C). In order to prove that X € KSs, by Proposition 6.2
it is enough to prove that every convex subset C' C X* is w*-separable.

Since X € KSy, c" s w*—separable* by Proposition 4*.4. So, there exists a
countable family {z, : n > 1} € C" w*-dense in C" . Since X € (C), by
[10, p. 147] there exists a countable family {zpm : n,m > 1} C C such that
2, € 60" ({2nm : m > 1}) for every n > 1. So, C is w*-separable. m

REMARKS. A nonseparable Banach space X has the Kunen—Shelah prop-
erty KSg if for every uncountable family {x;};c; C X there exists j € I
such that z; € wcl({Zi}iep gj))- Clearly, KS¢ = KS;. It seems that the
only known example of a Banach space X such that X € KSg is the space
X = C(K), K being the Kunen compact space ([8, p. 1123]) constructed by
Kunen under CH. This space C(K) of Kunen has more interesting patho-
logical properties. For example, ((C(K))", w") is hereditarily Lindel6f for
every n € N.

In view of this situation, we can introduce the property KS7. A Banach
space X is said to have the Kunen—Shelah property KS7 if (X™,w™) is hered-
itarily Lindelof for every n € N. It can be easily proved that KS; = KSg.
We know neither if the Shelah space S has the property KSg nor if the
properties KSs5, KSg and KS7 are inequivalent.
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