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On the topological reflexivity of the isometry
group of the suspension of B(H)

by

Máté Győry (Debrecen)

Abstract. We describe the topological reflexive closure of the isometry group of the
suspension of B(H).

1. Introduction. The study of reflexive linear subspaces of the algebra
B(H) of all bounded linear operators on a Hilbert space H represents one of
the most active research areas in operator theory (see [6] for a nice general
view of reflexivity of this kind). In the last decades, similar questions con-
cerning certain important sets of transformations acting on Banach algebras
rather than on Hilbert spaces have also attracted considerable attention. The
initiators of the research in this direction are Kadison, Larson and Sourour.
In [10] Kadison studied local derivations from a von Neumann algebra R
into a dual R-bimoduleM. He called a continuous linear map from R into
M a local derivation if it agrees with a derivation at each point in the al-
gebra R (the derivation may differ from point to point). The main result,
Theorem A, in [10] states that in the above setting, every local derivation is
a derivation. Independently, Larson and Sourour [12] proved that the same
conclusion holds for the local derivations of B(X), where X is a Banach
space. Since then, a considerable amount of work has been done concerning
local derivations of various algebras (see e.g. [2, 5, 7, 9, 19, 20, 22–26]).

Besides derivations, there are at least two other important classes of
transformations on operator algebras which deserve attention from this point
of view, namely, the group of automorphisms and the group of surjective
isometries. Larson [11, Some concluding remarks (5), p. 298] initiated the
study of local automorphisms (the definition should be self-explanatory) of

2000 Mathematics Subject Classification: Primary 46L40, 47B48, 46E40; Secondary
46E25.

Key words and phrases: reflexivity, automorphisms, surjective isometries, suspension,
operator algebras.

This research was supported by the Hungarian National Foundation for Scientific
Research (OTKA), Grant No. F038326.

[287]



288 M. Győry

Banach algebras. In his joint paper with Sourour [12] that we have already
mentioned they proved that if X is an infinite-dimensional Banach space,
then every surjective local automorphism of B(X) is an automorphism (see
also the paper [2] of Brešar and Šemrl). For further results on local automor-
phisms, we refer to [3, 18, 20]. The common feature of all those results is that
they show that the local derivations, local automorphisms, local isometries,
etc. of the underlying structures are (global) derivations, automorphisms,
isometries, etc., respectively. Clearly, this is a remarkable property of the
underlying structure. For function algebras, results of this kind concern-
ing local automorphisms and local isometries were obtained e.g. by Cabello
Sánchez and Molnár in [4], and by Molnár and Zalar in [17].

We now define the concept of reflexivity that we shall use. Let X be
a Banach space (in fact, in the cases we are interested in, X is usually a
Banach algebra) and for any subset E ⊂ B(X) let

refalg E = {T ∈ B(X) : Tx ∈ Ex for all x ∈ X},
reftop E = {T ∈ B(X) : Tx ∈ Ex for all x ∈ X},

where the bar denotes norm-closure. The above sets are called the algebraic
reflexive closure and the topological reflexive closure of E, respectively. The
collection E of transformations is called algebraically reflexive if refalg E = E,
and topologically reflexive if reftop E = E.

Obviously, topological reflexivity is a stronger property than algebraic re-
flexivity. Shulman [21] showed that the derivation algebra of any C∗-algebra
is topologically reflexive. For the topological reflexivity of derivation alge-
bras, automorphism groups and isometry groups we refer to [1, 8, 13, 14].

For the automorphism group or the isometry group of C∗-algebras, a gen-
eral result as in [21] does not hold. If X is a Banach space, let iso(X) denote
the set of all linear (not necessarily surjective) isometries of X. The isome-
try group, i.e. the group of all surjective linear isometries of X, is denoted
by Iso(X). If A is a ∗-algebra then let Aut(A) and Aut∗(A) denote the
group of all automorphisms (i.e. multiplicative linear bijections) and the
group of all ∗-automorphisms of A, respectively. Now, if X is an uncount-
able discrete topological space, then it is not difficult to verify that the
groups Aut(C0(X)) and Iso(C0(X)) of the C∗-algebra C0(X) of all con-
tinuous complex-valued functions on X vanishing at infinity are not re-
flexive even algebraically. Concerning topological reflexivity, there are even
von Neumann algebras whose automorphism and isometry groups are not
topologically reflexive. For example, Batty and Molnár [1] showed that the
infinite-dimensional commutative von Neumann algebras acting on a sepa-
rable Hilbert space have this non-reflexivity property.

In the present paper we deal with the reflexivity of the isometry group of
the suspension of B(H). The concept of the suspension of a C∗-algebra plays
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an important role in the K-theory of operator algebras. If A is a C∗-algebra
then its suspension is the C∗-tensor product C0(R)⊗A, which is well known
to be isomorphic to C0(R,A), the algebra of all continuous functions from R
into A which vanish at infinity. We know that the automorphism group and
the isometry group of B(H) are topologically reflexive if H is a separable
infinite-dimensional Hilbert space [13]. In [16] it was shown that Aut(C0(R))
and Iso(C0(R)) are algebraically (but not topologically) reflexive. The main
result in [16] was that the automorphism group and the isometry group of
the suspension C0(R) ⊗ B(H) of B(H) are algebraically (but not topolog-
ically) reflexive. The referee of that paper raised the interesting problem
whether it is possible to describe explicitly the topological reflexive closures
of Aut(C0(R) ⊗ B(H)) and Iso(C0(R) ⊗ B(H)). The present paper gives a
solution to this problem.

2. Statement of the results. From now on, let H stand for an infinite-
dimensional separable Hilbert space. Here we shall describe the elements of
the sets reftop(Aut∗(C0(R)⊗B(H))) and reftop(Iso(C0(R)⊗B(H))).

The proof of the main result of this paper is based on the following
auxiliary theorem.

Theorem 1. Let X be a Banach space, S ⊆ iso(X) a topologically
reflexive subset and φ : C0(R,X) → C0(R,X) a linear map. For any f ∈
C0(R,X) there exist homeomorphisms ϕn : R → R (n ∈ N) and functions
τn : R→ S (n ∈ N) with

τnf ◦ ϕn → φ(f)

if and only if there exists an open interval U ⊆ R, a surjective, monotone,
continuous function ϕ : U → R, and a function τ : U → S such that for any
f ∈ C0(R,X) we have

(1) φ(f)(y) =

{
τ(y)(f(ϕ(y))) if y ∈ U ,

0 if y ∈ R \ U .

Moreover , if φ is of the form (1), then τ : U → S is strongly continuous.

The ∗-automorphisms of C0(R, B(H)) are both automorphisms and sur-
jective linear isometries. The paper [16] provides the forms of the surjective
linear isometries and the automorphisms of C0(R, B(H)). In view of the
topological reflexivity of the isometry group and the automorphism group
of B(H) (see [13]), Theorem 1 implies immediately the main result of this
paper which reads as follows.

Theorem 2. Let φ : C0(R, B(H)) → C0(R, B(H)) be a linear map.
We have φ ∈ reftop Iso(C0(R, B(H))), resp. φ ∈ reftop Aut∗(C0(R, B(H))),
if and only if there exist an open interval U ⊆ R, a surjective, monotone,
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continuous function ϕ : U → R, and τ : U → Iso(B(H)), resp. τ : U →
Aut∗(B(H)), such that for any f ∈ C0(R, B(H)), φ is of the form (1).

Moreover , if φ is of the form (1), then τ is strongly continuous.

In [16] it was proved that the isometry group of C0(R, B(H)) is alge-
braically reflexive. We show that this conclusion can be deduced fairly easily
from Theorem 1 as well. We first prove the following auxiliary result, which
turns out to be an easy corollary of Theorem 1.

Theorem 3. Let X be a Banach space, P ⊆ iso(X) an algebraically
reflexive subset and φ : C0(R,X) → C0(R,X) a linear map. If for any
f ∈ C0(R,X) there exist a homeomorphism ϕf : R → R and a function
τf : R→ P such that

(2) φ(f) = τff ◦ ϕf ,
then there exist a homeomorphism ϕ : R → R and a function τ : R → P
such that for any f ∈ C0(R,X) we have

φ(f) = τf ◦ ϕ,
and in this case τ : R→ P is strongly continuous.

Now we immediately obtain the following theorem, which was the main
result of [16].

Theorem 4. The groups Iso(C0(R, B(H))) and Aut∗(C0(R, B(H))) are
algebraically reflexive.

3. Proofs

Proof of Theorem 1. First suppose that φ is of the form (1), where U =
]u1, u2[ with u1, u2 ∈ R ∪ {−∞,∞}, ϕ : U → R and τ : U → S are as in
Theorem 1. Extend τ : U → S to a function τ : R→ S. Let u1 < an ∈ U and
u2 > bn ∈ U be real sequences with an → u1 and bn → u2. Now for any n ∈ N
there exists a homeomorphism ϕn : R → R for which |ϕ(y)− ϕn(y)| < 1/n
for any y ∈ [an, bn], and ϕ([an, bn]) ⊆ ϕn([an, bn]).

We show that for any f ∈ C0(R,X),

τf ◦ ϕn → φ(f).

Let ε > 0. Then there exists a compact set K ⊆ R such that ‖f(y)‖ < ε/2
(y ∈ R\K). Since an → u1, bn → u2 and ϕ : U → R is surjective, there exists
n1 ∈ N such that K ⊆ ϕ([an, bn])◦ for any n ≥ n1. Since f ∈ C0(R,X) is uni-
formly continuous, there exists δ > 0 such that for any x, y ∈ K, |x− y| < δ
implies ‖f(x)− f(y)‖ < ε. Let n2 ∈ N with 1/n2 < δ and n0 = max(n1, n2).
Further, let y ∈ U and n≥ n0. If y ∈ [an, bn] then |ϕ(y)− ϕn(y)|< 1/n< δ,
and thus ‖f(ϕ(y)) − f(ϕn(y))‖ < ε. If y ∈ U \ [an, bn] then, by the mono-
tonicity of ϕn and ϕ, we have ϕn(y) 6∈ ϕn([an, bn])◦ ⊇ ϕ([an, bn])◦ ⊇ K
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and ϕ(y) 6∈ ϕ([an, bn])◦ ⊇ K, so ‖f(ϕ(y))‖, ‖f(ϕn(y))‖ < ε/2, which implies
‖f(ϕ(y))−f(ϕn(y))‖ < ε. Then, as τ(y) ∈ iso(X), for any y ∈ U and n ≥ n0

we have

‖(τf ◦ ϕn)(y)− φ(f)(y)‖ = ‖τ(y)f(ϕn(y))− τ(y)f(ϕ(y))‖
= ‖f(ϕn(y))− f(ϕ(y))‖ < ε.

For any y ∈ R \ U we obtain y 6∈ [an, bn], thus ϕn(y) 6∈ ϕn([an, bn])◦ ⊇
ϕ([an, bn])◦ ⊇ K, which implies

‖(τf ◦ ϕn)(y)− φ(f)(y)‖ = ‖(τf ◦ ϕn)(y)‖ = ‖f(ϕn(y))‖ < ε/2.

Hence τf ◦ϕn → τf ◦ϕ = φ(f), which completes the proof in one direction.
Consider now the other direction. Suppose that for any f ∈ C0(R,X)

there are homeomorphisms ϕf,n : R→ R (n ∈ N) and functions τf,n : R→ S
(n ∈ N) such that

τf,nf ◦ ϕf,n → φ(f).

In what follows, for brevity, ϕf,n and τf,n will denote the functions corre-
sponding to f ∈ C0(R,X). Now φ is obviously an isometry. For any x ∈ R
and A ∈ X with A 6= 0, set

S0(x,A) = {f ∈ C0(R,X) : ‖f(x)‖ = ‖f‖ > 0, f(x)/‖f(x)‖ = A/‖A‖,
∀y ∈ R, y 6= x : ‖f(y)‖ < ‖f‖},

S(x,A) = {f ∈ C0(R,X) : ‖f(x)‖ = ‖f‖ > 0, f(x)/‖f(x)‖ = A/‖A‖},
which are clearly non-empty sets.

Real sequences tending to −∞ or +∞ will be considered convergent.
Further, for any f ∈ C0(R,X) define f(−∞) = 0 and f(+∞) = 0.

Step 1. For any x ∈ R and A ∈ X with A 6= 0, the set

(3) G(x,A) =
⋂

f∈S(x,A)

{y ∈ R : ‖φ(f)(y)‖ = ‖f‖}

is non-empty and compact.

Let f ∈ S(x,A). As φ(f) ∈ C0(R,X), the set {y ∈ R : ‖φ(f)(y)‖ = ‖f‖}
is compact, so to prove that G(x,A) 6= ∅, it is sufficient to show that the
system of these sets has the finite intersection property.

Let n ∈ N and f1, . . . , fn ∈ S(x,A). Then

‖f1 + · · ·+ fn‖ ≥ ‖(f1 + · · ·+ fn)(x)‖ = ‖f1(x) + · · ·+ fn(x)‖

=

∥∥∥∥
‖f1(x)‖
‖A‖ ·A+ · · ·+ ‖fn(x)‖

‖A‖ ·A
∥∥∥∥

=

∥∥∥∥(‖f1‖+ · · ·+ ‖fn‖)
1

‖A‖ ·A
∥∥∥∥ = ‖f1‖+ · · ·+ ‖fn‖,
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thus
‖f1 + · · ·+ fn‖ = ‖f1‖+ · · ·+ ‖fn‖.

Since φ(f1 + · · ·+ fn) ∈ C0(R,X), there exists z ∈ R for which ‖φ(f1 + . . .
+ fn)(z)‖ = ‖φ(f1 + · · ·+ fn)‖. Hence

‖φ(f1)(z)‖+ . . .+‖φ(fn)(z)‖ ≥ ‖φ(f1 + . . .+fn)(z)‖ = ‖φ(f1 + . . .+fn)‖
= ‖f1 + . . .+fn‖= ‖f1‖+ . . .+‖fn‖
= ‖φ(f1)‖+ . . .+‖φ(fn)‖
≥ ‖φ(f1)(z)‖+ . . .+‖φ(fn)(z)‖,

which implies

‖φ(fi)(z)‖ = ‖φ(fi)‖ = ‖fi‖ (1 ≤ i ≤ n),

thus

z ∈
n⋂

i=1

{y ∈ R : ‖φ(fi)(y)‖ = ‖fi‖}.

Consequently, G(x,A) is indeed a non-empty compact set.

We note that for any x ∈ R, A ∈ X with A 6= 0 and λ > 0, we obviously
have

(4) G(x, λA) = G(x,A).

Step 2. If x ∈ R, A ∈ X, A 6= 0, f ∈ C0(R,X) and

f(x) = (‖f(x)‖/‖A‖)A
then

‖φ(f)(y)‖ ≥ ‖f(x)‖ (y ∈ G(x,A)).

By (4), we may assume that ‖A‖ = 1. Let y ∈ G(x,A). If ‖f(x)‖ = ‖f‖
then by Step 1 we are done. So we may assume that ‖f(x)‖ < ‖f‖. Now
it is easy to verify that there exists an f0 ∈ S(x,A) such that ‖f0‖ =
‖f‖− ‖f(x)‖ > 0, f + f0 ∈ S(x,A) and ‖f + f0‖ = ‖f‖. Let h = f + f0. By
Step 1, we have

‖φ(h)(y)‖ = ‖h‖ = ‖f‖,
which implies

‖f‖ = ‖φ(h)(y)‖ = ‖φ(f)(y) + φ(f0)(y)‖
≤ ‖φ(f)(y)‖+ ‖φ(f0)‖ = ‖φ(f)(y)‖+ (‖f‖ − ‖f(x)‖),

thus ‖φ(f)(y)‖ ≥ ‖f(x)‖.
Step 3. For any x ∈ R, A ∈ X with A 6= 0, and any f ∈ S0(x,A), the

set
{y ∈ R : ‖φ(f)(y)‖ = ‖f‖}

is a compact interval which contains G(x,A).
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Let f ∈ S0(x,A), and set

y1 = inf{y ∈ R : ‖φ(f)(y)‖ = ‖f‖}, y2 = sup{y ∈ R : ‖φ(f)(y)‖ = ‖f‖}.
Then

(5) lim
n→∞

‖f(ϕf,n(y1))‖ = ‖f‖, lim
n→∞

‖f(ϕf,n(y2))‖ = ‖f‖.

Let un be a subsequence of ϕf,n(y1) or ϕf,n(y2). By (5) and since 0 6=
f ∈ C0(R,X), the sequence un has an accumulation point y0 ∈ R. Then
(5) implies ‖f(y0)‖ = ‖f‖. As f ∈ S0(x,A), we have y0 = x. So every
subsequence of ϕf,n(y1) or ϕf,n(y2) has a subsequence converging to x, which
implies

(6) lim
n→∞

ϕf,n(y1) = lim
n→∞

ϕf,n(y2) = x.

Let y ∈ [y1, y2]. Since ϕf,n : R→ R (n ∈ N) is a homeomorphism (which
is clearly monotone), from (6) and y1 ≤ y ≤ y2 we have ϕf,n(y)→ x, thus

‖φ(f)(y)‖ = lim
n→∞

‖τf,n(y)f(ϕf,n(y))‖ = lim
n→∞

‖f(ϕf,n(y))‖ = ‖f(x)‖ = ‖f‖.

Hence {y ∈ R : ‖φ(f)(y)‖ = ‖f‖} = [y1, y2], and we are done.

Step 4. If x ∈ R and A ∈ X with A 6= 0, then G(x,A) ⊂ R is a
compact interval.

Let y ∈ [inf G(x,A), supG(x,A)] and f ∈ S(x,A). Then there exist
functions fn ∈ S0(x,A) (n ∈ N) with fn → f . For any fn ∈ S0(x,A)
we have G(x,A) ⊆ {z ∈ R : ‖φ(fn)(z)‖ = ‖fn‖}, thus, by Step 3, we
obtain [inf G(x,A), supG(x,A)] ⊆ {z ∈ R : ‖φ(fn)(z)‖ = ‖fn‖}. Hence
‖φ(f)(y)‖ = limn→∞ ‖φ(fn)(y)‖ = limn→∞ ‖fn‖ = ‖f‖. Thus y ∈ G(x,A),
and we are done.

Step 5. Let f ∈ C0(R,X) and suppose there exist ε ∈ ]0, 1/100[, el-
ements A1, A2, A3 ∈ X of norm 1, real numbers p < x1 < z1 < x2 <
z2 < x3 < z3 < x4 and disjoint closed intervals J0 < I1 < J1 < I2 <
J2 < I3 < J3 < I4 with J0 = ]−∞, p], xi ∈ Ii (1 ≤ i ≤ 4), zi ∈ Ji
(1 ≤ i ≤ 3), f(x1) = A1, f(x2) = A2, f(x3) = A3, ‖f(x4)‖ = 1/2, f(z1) = 0,
‖f(z2)‖ < ε, ‖f(z3)‖ < ε, ‖f‖ = 1, and with

(7) ‖f(x)‖

∈





[0, 4ε] if x ∈ J0 ∪ J1 ∪ J2 ∪ J3,

]4ε, 1− 4ε[ if x ∈ ]supJ0, inf J3[ \ (I1 ∪ J1 ∪ I2 ∪ J2 ∪ I3),

[1− 4ε, 1] if x ∈ I1 ∪ I2 ∪ I3,

]4ε, 1/2− 4ε[ if supJ3 < x < inf I4,

[1/2− 4ε, 1/2] if x ∈ I4,

[0, 1/2− 4ε[ if sup I4 < x.
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Then there is y∈ [inf G(x1, A1), supG(x3, A3)]∪[inf G(x3, A3), supG(x1, A1)]
such that φ(f)(y) = 0. Moreover ,

G(x1, A1)<G(x2, A2)<G(x3, A3) or G(x1, A1)>G(x2, A2)>G(x3, A3).

Let

K1 = {y ∈R : @a, b ∈ R : a < b < y, ‖φ(f)(a)‖ ≥ 1/2− 2ε, ‖φ(f)(b)‖ ≤ 2ε,

∃a, b ∈ R : y < a < b, ‖φ(f)(a)‖ ≤ 2ε, ‖φ(f)(b)‖ ≥ 1− 2ε},
K ′1 = {y ∈R : @a, b ∈ R : a < b < y, ‖φ(f)(a)‖ ≥ 1− 2ε, ‖φ(f)(b)‖ ≤ 2ε,

∃a, b ∈ R : a < b < y, ‖φ(f)(a)‖ ≥ 1/2− 2ε, ‖φ(f)(b)‖ ≤ 2ε,

∃a, b ∈ R : y < a < b, ‖φ(f)(a)‖ ≤ 2ε, ‖φ(f)(b)‖ ≥ 1− 2ε},
K2 = {y ∈R : ∃a1, a2, b1, b2 ∈ R : a1 < a2 < y < b1 < b2,

‖φ(f)(a1)‖, ‖φ(f)(b2)‖≥ 1−2ε, ‖φ(f)(a2)‖, ‖φ(f)(b1)‖≤ 2ε},
K3 = {y ∈R : @a, b ∈ R : y < a < b, ‖φ(f)(a)‖ ≤ 2ε, ‖φ(f)(b)‖ ≥ 1/2− 2ε,

∃a, b ∈ R : a < b < y, ‖φ(f)(a)‖ ≥ 1− 2ε, ‖φ(f)(b)‖ ≤ 2ε},
K ′3 = {y ∈R : @a, b ∈ R : y < a< b, ‖φ(f)(a)‖≤ 2ε, ‖φ(f)(b)‖≥ 1−2ε,

∃a, b ∈ R : y < a < b, ‖φ(f)(a)‖ ≤ 2ε, ‖φ(f)(b)‖ ≥ 1/2− 2ε,

∃a, b ∈ R : a < b < y, ‖φ(f)(a)‖ ≥ 1− 2ε, ‖φ(f)(b)‖ ≤ 2ε}.
It is easy to see that K1, K ′1, K2, K3 and K ′3 are pairwise disjoint inter-
vals. Let f1 ∈ S0(x1, A1), f2 ∈ S0(x2, A2), f3 ∈ S0(x3, A3) be functions with
disjoint supports for which ‖f1‖, ‖f2‖, ‖f3‖ = ε and fi(zj) = 0 (i = 1, 2, 3;
j = 1, 2). Then f + f2 ∈ S0(x2, A2) and ‖f + f2‖ = 1 + ε. We may assume
that there are y1, y2, y3, u1, u2 ∈ R ∪ {+∞,−∞} for which

ϕ−1
f+f2,n

(x1)→ y1, ϕ−1
f+f2,n

(x2)→ y2, ϕ−1
f+f2,n

(x3)→ y3,

ϕ−1
f+f2,n

(z1)→ u1, ϕ−1
f+f2,n

(z2)→ u2.

Then τf+f2,n · (f + f2) ◦ ϕf+f2,n → φ(f + f2) implies

(8)

‖φ(f + f2)(y1)‖ = ‖(f + f2)(x1)‖ = 1,

‖φ(f + f2)(u1)‖ = ‖(f + f2)(z1)‖ = 0,

‖φ(f + f2)(y2)‖ = ‖(f + f2)(x2)‖ = 1 + ε,

‖φ(f + f2)(u2)‖ = ‖(f + f2)(z2)‖ < ε,

‖φ(f + f2)(y3)‖ = ‖(f + f2)(x3)‖ = 1.

Thus y1, y2, y3 ∈ R. By the monotonicity of ϕf+f2,n (n ∈ N), we have y1 <
u1 < y2 < u2 < y3 or y3 < u2 < y2 < u1 < y1. Hence (8) and ‖φ(f2)‖ =
‖f2‖ = ε imply
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‖φ(f)(y1)‖ ≥ 1− ε, ‖φ(f)(y2)‖ ≥ 1, ‖φ(f)(y3)‖ ≥ 1− ε,
‖φ(f)(u1)‖ ≤ ε, ‖φ(f)(u2)‖ ≤ 2ε.

Thus y2 ∈ K2. Now since f + f2 ∈ S0(x2, A2), Step 3 implies that {y ∈ R :
‖φ(f + f2)(y)‖ = ‖f + f2‖ = 1 + ε} is a compact interval which contains y2.
Then, by the definition of K2, y2 ∈ K2 clearly yields

{y ∈ R : ‖φ(f + f2)(y)‖ = ‖f + f2‖ = 1 + ε} ⊆ K2,

which implies
G(x2, A2) ⊆ K2.

We have f + f1 ∈ S0(x1, A1) and ‖f + f1‖ = 1 + ε. We may assume that
there are y1, y2, u1 ∈ R ∪ {+∞,−∞} such that

(9) ϕ−1
f+f1,n

(x1)→ y1, ϕ−1
f+f1,n

(x2)→ y2, ϕ−1
f+f1,n

(z1)→ u1.

Now, as above, we deduce that

(10)

‖φ(f + f1)(y1)‖ = ‖(f + f1)(x1)‖ = 1 + ε,

‖φ(f + f1)(u1)‖ = ‖(f + f1)(z1)‖ = 0,

‖φ(f + f1)(y2)‖ = ‖(f + f1)(x2)‖ = 1,

and either y1 <u1 <y2 or y2 <u1 <y1. Hence, by (10), we have y1, y2, u2 ∈R.
Again, as above, since ‖φ(f1)‖ = ‖f1‖ = ε, (10) implies

(11) ‖φ(f)(y1)‖ ≥ 1, ‖φ(f)(u1)‖ ≤ ε, ‖φ(f)(y2)‖ ≥ 1− ε.
Suppose that y1 < u1 < y2. Further, suppose on the contrary that there

are a, b ∈ R such that a < b < y1, ‖φ(f)(a)‖ ≥ 1/2−2ε and ‖φ(f)(b)‖ ≤ 2ε.
We may assume that there exist ua, ub ∈ R ∪ {+∞,−∞} for which

ϕf+f1,n(a)→ ua, ϕf+f1,n(b)→ ub.

Then ‖f1‖ = ε implies

‖(f + f1)(ua)‖ = ‖φ(f + f1)(a)‖ ≥ | ‖φ(f)(a)‖ − ‖φ(f1)(a)‖ |
≥ 1/2− 2ε− ε = 1/2− 3ε,

‖(f + f1)(ub)‖ = ‖φ(f + f1)(b)‖ ≤ ‖φ(f)(b)‖+ ‖φ(f1)(b)‖ ≤ 2ε+ ε = 3ε,

thus

(12) ‖f(ua)‖ ≥ 1/2− 3ε− ε = 1/2− 4ε, ‖f(ub)‖ ≤ 3ε+ ε = 4ε.

By (9) and since a < b < y1 < y2, except for a finite number of n ∈ N,
we have a < b < ϕ−1

f+f1,n
(x1) < ϕ−1

f+f1,n
(x2), which implies that ϕ−1

f+f1,n
is

increasing. Thus ua ≤ ub ≤ x1, which contradicts (12), (7) and x1 ∈ I1. This
means that there do not exist a, b ∈ R such that a < b < y1, ‖φ(f)(a)‖ ≥
1/2− 2ε and ‖φ(f)(b)‖ ≤ 2ε. Hence (11) and y1 < u1 < y2 imply y1 ∈ K1.
Similarly, if y2 < u1 < y1 then y1 ∈ K3. Consequently, y1 ∈ K1 or y1 ∈ K3.
Since f + f1 ∈ S0(x1, A1), by Step 3, the set {y ∈ R : ‖φ(f + f1)(y)‖ =
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‖f +f1‖ = 1+ε} is a compact interval which contains y1. By the definitions
of K1 and K3, it is now clear that either

{y ∈ R : ‖φ(f + f1)(y)‖ = ‖f + f1‖ = 1 + ε} ⊆ K1 or K3,

which implies

G(x1, A1) ⊆ K1 or G(x1, A1) ⊆ K3.

In a similar way it can be proved that

G(x3, A3) ⊆ K ′1 or G(x3, A3) ⊆ K ′3.
Now let v1 ∈ G(x1, A1) and v3 ∈ G(x3, A3). Suppose on the contrary

that G(x1, A1) ⊆ K1 and G(x3, A3) ⊆ K ′1. Then v1 ∈ K1, v3 ∈ K ′1, and

‖φ(f)(v1)‖ = ‖φ(f)(v3)‖ = 1.

Suppose that v1 < v3. Then, as v3 ∈ K ′1, there exist a < b < v3 for which
‖φ(f)(a)‖ ≥ 1/2 − 2ε and ‖φ(f)(b)‖ ≤ 2ε. Since ‖φ(f)(v1)‖ = 1, the in-
equality v1 < b < v3 would contradict v3 ∈ K ′1. Thus a < b < v1, hence
‖φ(f)(a)‖ ≥ 1/2 − 2ε and ‖φ(f)(b)‖ ≤ 2ε contradicts v1 ∈ K1. Similarly
we get a contradiction in the case v3 < v1. Thus G(x1, A1) ⊆ K1 and
G(x3, A3) ⊆ K ′1 cannot hold simultaneously. Similarly, G(x1, A1) ⊆ K3 and
G(x3, A3) ⊆ K ′3 cannot both hold. Thus

G(x1, A1) ⊆ K1, G(x3, A3) ⊆ K ′3 or G(x1, A1) ⊆ K3, G(x3, A3) ⊆ K ′1.
It is easy to see that K1 < K2 < K ′3 and K ′1 < K2 < K3, whence

G(x1, A1)<G(x2, A2)<G(x3, A3) or G(x1, A1)>G(x2, A2)>G(x3, A3).

Finally, we may assume that there are y1, y2, y3, u1, u2 ∈ R∪{+∞,−∞}
with

ϕ−1
f,n(xi)→ yi (1 ≤ i ≤ 3), ϕ−1

f,n(zj)→ uj (1 ≤ j ≤ 2).

Now since τf,n · f ◦ ϕf,n → φ(f), the monotonicity of ϕf,n (n ∈ N) im-
plies ‖φ(f)(y1)‖ = ‖f(x1)‖ = 1, ‖φ(f)(y2)‖ = ‖f(x2)‖ = 1, ‖φ(f)(u1)‖ =
‖f(z1)‖ = 0 and y1 < u1 < y2 or y2 < u1 < y1. Then y1, y2 ∈ R, and so
u1 ∈ R. Moreover, u1 ∈ K2. Then, since K1 < K2 < K ′3 and K ′1 < K2 < K3,
we are done.

Step 6. For any A,B ∈ X with A,B 6= 0, and for x, y ∈ R with x 6= y,
we have

G(x,A) ∩G(y,B) = ∅.
Moreover , G is “monotone” in the sense that either

G(x1, A) < G(x2, B) for every x1, x2 ∈ R with x1 < x2, or

G(x1, A) > G(x2, B) for every x1, x2 ∈ R with x1 < x2

where the relations “<” and “>” are understood pointwise.
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Let x1, x2, x3 and A1, A2, A3 ∈ X satisfy x1 < x2 < x3 and ‖A1‖ =
‖A2‖ = ‖A3‖ = 1. It is easy to see that there exists a function f ∈ C0(R,X)
such that f satisfies the conditions of Step 5. Then, by Step 5, we are done.

Step 7. G is “continuous” in the following sense: for any xn → x0 and
A ∈ X we have G(xn, A)→ G(x0, A), i.e.

sup{d(y,G(x0, A)) : y ∈ G(xn, A)} → 0,

where
d(y,G(x0, A)) = inf{|y − z| : z ∈ G(x0, A)}.

Let xn ∈ R be a decreasing sequence with xn → x0 ∈ R. (If xn is increas-
ing then the proof is similar.) For simplicity, assume that G is increasing.
Suppose

y0 = lim
n→∞

supG(xn, A) ≥ supG(x0, A)

and let f ∈ S(x0, A). Then there exist fn ∈ S(xn, A) (n ∈ N) for which
‖fn‖ = ‖f‖ (n ∈ N) and fn → f . Since supG(xn, A) → y0 and φ(f) is
continuous, we have

‖φ(f)(y0)‖ = lim
n→∞

‖φ(fn)(supG(xn, A))‖ = lim
n→∞

‖fn‖ = ‖f‖.
Hence y0 ∈ G(x0, A), thus y0 = supG(x0, A). Since G is monotone, we are
done.

Step 8. Let G(x) = G(x, I) for any x ∈ R, where I ∈ X is fixed. Then
for any A ∈ X with A 6= 0, we have

G(x) = G(x,A).

Let A,B ∈ X with A,B 6= 0, and let xn be a decreasing sequence with
x < xn → x. For simplicity, assume that G is increasing. Then Steps 6 and 7
imply that

supG(x,A) < inf G(xn, B)→ supG(x,B),

thus
supG(x,A) ≤ supG(x,B).

In a similar way we get supG(x,B) ≤ supG(x,A), thus supG(x,A) =
supG(x,B). Similarly inf G(x,A) = inf G(x,B), and, by Step 4, we are
done.

Step 9. Let
U =

⋃

x∈R
G(x).

Then U is an open interval. For any u ∈ U denote by ϕ(u) ∈ R the uniquely
determined real number for which u ∈ G(ϕ(u)). Then ϕ : U → R is surjec-
tive, continuous and monotone. Moreover ,

(13) ‖φ(f)(y)‖ ≥ ‖f(ϕ(y))‖ (y ∈ U).
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By Steps 2 and 8 and the definition of ϕ, we immediately get (13).
The definition of ϕ and Step 6 imply that ϕ is monotone. It is clear that

ϕ is surjective. We show that ϕ is also continuous. Let un ∈ U (n ∈ N) and
u ∈ U be such that un → u. Further, let

x1 = lim inf
n→∞

ϕ(un), x2 = lim sup
n→∞

ϕ(un).

Then x1, x2 ∈ R, and there exists a subsequence vn of un for which

x1 = lim
n→∞

ϕ(vn).

Then, by Step 7 and the definition of ϕ, we have

vn ∈ G(ϕ(vn))→ G(x1),

whence
u = lim

n→∞
vn ∈ G(x1).

Similarly
u ∈ G(x2).

Hence x1 = x2 = ϕ(u), so ϕ(un)→ ϕ(u). Thus ϕ is indeed continuous.
We now show that U is an interval. Suppose on the contrary that there

exist a0, b0 ∈ U and z ∈ R \ U such that a0 < z < b0. Let

z1 = sup(]−∞, z[ ∩ U), z2 = inf(]z,∞[ ∩ U).

There exists an increasing sequence an ∈ ]−∞, z[∩U (n ∈ N) and a decreas-
ing sequence bn ∈ ]z,∞[ ∩ U (n ∈ N) such that an → z1 and bn → z2. Since
ϕ is monotone and a1 ≤ an < z < bn ≤ b1 (n ∈ N), there exist a, b ∈ R
for which ϕ(an) → a and ϕ(bn) → b. By the “continuity” of G, we have
an ∈ G(ϕ(an))→ G(a) and bn ∈ G(ϕ(bn))→ G(b), from which we obtain

z1 = lim
n→∞

an ∈ G(a), z2 = lim
n→∞

an ∈ G(b).

If a 6= b then there is a z0 ∈ ]a, b[, thus G(a) < G(z0) < G(b) or G(b) <
G(z0) < G(a), whence U ⊇ G(z0) ⊆ ]z1, z2[. So U ∩ ]z1, z2[ 6= ∅, which
is a contradiction. Hence a = b, which implies z1, z2 ∈ G(a). Therefore
z ∈ [z1, z2] ⊆ G(a) ⊆ U . This is again a contradiction, so U is an interval
indeed. Hence, by the definition of U and the monotonicity of G, we conclude
that U is an open interval, which completes the proof of Step 9.

Step 10. Let f ∈ C0(R,X) and z1 ∈ R be such that f satisfies the
conditions of Step 5 and f−1(0) = {z1}. Then there exists y ∈ G(z1) for
which

φ(f)(y) = f(z1) = 0.

By Steps 5 and 9, there exists y ∈ U such that φ(f)(y) = 0. Then
Step 2 implies ‖f(ϕ(y))‖ ≤ ‖φ(f)(y)‖ = 0. Since f−1(0) = {z1}, we obtain
ϕ(y) = z1, thus y ∈ G(z1) and φ(f)(y) = f(z1) = 0.



Topological reflexivity of the isometry group 299

Step 11. Let f ∈ C0(R,X) and z1 ∈ R be such that f satisfies the
conditions of Step 5 and f(z1) = 0. Then for any y ∈ G(z1) we have

φ(f)(y) = f(z1) = 0.

Let a = inf G(z1), b = supG(z1), and let x ∈ [a, b] and ε ∈ ]0, ε0[. By the
continuity of f , there is a δ > 0 such that for any y ∈ R with |y− z1| ≤ δ we
have ‖f(y)‖ < ε0. Let za, zb ∈ R with z1 − δ < za < z1 < zb < z + δ. Then
there exists f0 ∈ C0(R,X) such that ‖f0‖ < ε0 and f1 = f − f0 vanishes
exactly at za, zb and z1. It is easy to see that there are gn ∈ C0(R,X)
(n ∈ N) which satisfy the conditions of Step 5 and for which gn → f1 and
g−1
n (0) = {z1} (n ∈ N). There are hn,a ∈ C0(R,X) (n ∈ N) which satisfy

the conditions of Step 5 with za instead of z1 and for which hn,a → f1

and h−1
n,a(0) = {za} (n ∈ N). Similarly, there are hn,b ∈ C0(R,X) (n ∈ N)

which satisfy the conditions of Step 5 with zb instead of z1 and for which
hn,b → f1 and h−1

n,b(0) = {zb} (n ∈ N). Then, by Step 10, for any n ∈ N
there are rn ∈ G(z1), sn,a ∈ G(za) and sn,b ∈ G(zb) such that φ(gn)(rn) = 0,
φ(hn,a)(sn,a) = 0 and φ(hn,b)(sn,b) = 0. Since G(z1), G(za) and G(zb) are
compact intervals, we may assume that there are y1 ∈ G(z1), ya ∈ G(za)
and yb ∈ G(zb) for which rn → y1, sn,a → ya and sn,b → yb. Since gn →
f1, hn,a → f1 and hn,b → f1, we deduce that φ(f1)(y1) = φ(f1)(ya) =
φ(f1)(yb) = 0. For simplicity, assume that G is increasing. Then ya < a ≤
y1 ≤ b < yb.

We may assume that there are ua, u, ub ∈ R ∪ {+∞,−∞} such that
ϕf1,n(ya) → ua, ϕf1,n(x) → u and ϕf1,n(yb) → ub. Now ‖f1(ϕf1,n(ya))‖ →
‖φ(f1)(ya)‖ = 0 and ‖f1(ϕf1,n(yb))‖ → ‖φ(f1)(yb)‖ = 0. Hence f1(ua) =
f1(ub) = 0, which implies ua, ub ∈ {za, z1, zb} ⊆ [za, zb]. Then since ya <
x < yb, the monotonicity of ϕf1,n (n ∈ N) implies u ∈ [ua, ub] ⊆ [za, zb] ⊆
[z1−δ, z1+δ], thus ‖f(u)‖ < ε0, and so ‖f1(u)‖ < 2ε0. Hence f1(ϕf1,n(x))→
f1(u) and ‖f1(ϕf1,n(x))‖ → ‖φ(f1)(x)‖ imply ‖φ(f1)(x)‖ < 2ε0, from which
we infer that ‖φ(f)(x)‖ < 3ε0. Since ε0 ∈ ]0, ε[ is arbitrary, we obtain
φ(f)(x) = 0. Thus φ(f) is 0 on the interval [a, b] = G(z1), as claimed.

Step 12. Let f ∈ C0(R,X) and x ∈ R. Then for any y ∈ G(x) we have

‖φ(f)(y)‖ = ‖f(x)‖.

It is clear that there exists a function f0 ∈ C0(R,X) such that
(f − f0)(x) = 0 and ‖f0‖ = ‖f0(x)‖ = ‖f(x)‖. Let g = f − f0. It is not
difficult to see that there exist n ∈ N, λi ∈ R and fn ∈ C0(R,X) (1 ≤ i ≤ n)
such that g = λ1f1 + · · · + λnfn, where the functions f1, . . . , fn satisfy the
conditions of Step 5 with z1 = x. By Step 11, for any y ∈ G(x) = G(z1)
we have φ(fi)(y) = 0, whence φ(g)(y) =

∑n
i=1 λiφ(fi)(y) = 0, and thus

‖φ(f)(y)‖ = ‖φ(f0)(y)‖ = ‖f0(x)‖ = ‖f(x)‖.
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Step 13. For any y ∈ R \ U we have φ(f)(y) = 0.

Let u1 = inf U , u2 = supU , and let f ∈ C0(R,X) be nowhere vanish-
ing. First let y ∈ R be such that ‖f(y)‖ = ‖f‖ and let x ∈ G(y). Then
‖f(ϕ(x))‖ = ‖f(y)‖ = ‖f‖. By Step 12, we easily obtain φ(f)(u1) =
φ(f)(u2) = 0. Thus ‖f(ϕf,n(u1))‖ → 0 and ‖f(ϕf,n(u2))‖ → 0, hence
f(y) 6= 0 (y ∈ R) implies

|ϕf,n(u1)| → ∞, |ϕf,n(u2)| → ∞.
If ϕf,n(u1) → ∞ and ϕf,n(u2) → ∞, then since u1 < x < u2, the mono-
tonicity of ϕf,n (n ∈ N) implies ϕf,n(x) → ∞, from which we deduce that
φ(f)(x) = 0. Then 0 = ‖φ(f)(x)‖ = ‖f(ϕ(x))‖ = ‖f‖ > 0, which is a
contradiction. Similarly, we obtain a contradiction if ϕf,n(u1) → −∞ and
ϕf,n(u2)→ −∞. Thus either

ϕf,n(u1)→−∞ and ϕf,n(u2)→∞ or ϕf,n(u2)→−∞ and ϕf,n(u1)→∞.
Now let y ∈ R \ ]u1, u2[. Then the monotonicity of ϕf,n (n ∈ N) implies
ϕf,n(y) 6∈ ]ϕf,n(u1), ϕf,n(u2)[. Hence |ϕf,n(y)| → ∞, and so

‖φ(f)(y)‖ = lim
n→∞

‖f(ϕf,n(y))‖ = 0.

Now let f ∈ C0(R,X) be arbitrary. Then there exist nowhere vanishing
functions fn ∈ C0(R,X) (n ∈ N) with fn → f . It follows from the above
that

φ(f)(y) = lim
n→∞

φ(fn)(y) = 0.

As y ∈ R \ U is arbitrary, the proof of Step 13 is complete.

Step 14. For any f ∈ C0(R,X), we have

‖φ(f)(y)‖ =

{ ‖f(ϕ(y))‖ if y ∈ U ,

0 if y ∈ R \ U .

This is a consequence of Steps 9, 12 and 13.

Step 15. There exists a strongly continuous function τ : U → S such
that

φ(f)(y) = τ(y)(f(ϕ(y))) (y ∈ U).

Let y ∈ U and A ∈ X. Further, let f ∈ C0(R,X) with f(ϕ(y)) = A, and
let

τ(y)(A) = φ(f)(y).

We show that τ(y) is well defined. Let f1, f2 ∈ C0(R,X) for which f1(ϕ(y)) =
f2(ϕ(y)) = A. Then, by Step 14, we have ‖φ(f1−f2)(y)‖ = ‖(f1−f2)(ϕ(y))‖
= 0, thus φ(f1)(y) = φ(f2)(y). Now τ(y) : X → X is clearly a linear
isometry.
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Let y ∈ U and A ∈ X with A 6= 0. Further, let f ∈ S0(ϕ(y), A) be such
that f(ϕ(y)) = A and f(x) = (‖f(x)‖/‖A‖)A (x ∈ R). Since τf,nf ◦ ϕf,n
→ φ(f), we have

τf,n(y)f(ϕf,n(y))→ φ(f)(y) = τ(y)(A),

thus

τf,n(y)

(‖f(ϕf,n(y))‖
‖A‖ ·A

)
→ τ(y)(A).

Since τf,n(y) and τ(y) are isometries, we have ‖f(ϕf,n(y))‖ → ‖A‖ and so

τf,n(y)(A)→ τ(y)(A).

By the topological reflexivity of S, we obtain τ(y) ∈ S.
We now show that τ is strongly continuous. Let A ∈ X, x ∈ R and

xn ∈ R (n ∈ N) with A 6= 0 and xn → x. Then the continuity of ϕ implies
ϕ(xn) → ϕ(x) ∈ R, thus there exists f ∈ C0(R,X) for which f(ϕ(xn)) =
f(ϕ(x)) = A (n ∈ N). Then the continuity of φ(f) yields

τ(xn)(A) = τ(xn)(f(ϕ(xn))) = φ(f)(xn)→ φ(f)(x) = τ(x)(A).

Theorem 1 is now a consequence of Steps 9, 13 and 15.

Proof of Theorem 3. Assume that φ satisfies the conditions of Theorem 3,
and let S = iso(X). Then φ also satisfies the conditions of Theorem 1. Thus,
by Theorem 1, there is an open interval U ⊆ R, a monotone, continuous,
surjective function ϕ : U → R, and a strongly continuous function τ :
U → iso(X) such that for any f ∈ C0(R,X) the equation (1) holds. Let
x ∈ R, and let f ∈ C0(R,X) be a nowhere vanishing function for which
{x} = {y ∈ R : ‖f(y)‖ = ‖f‖}. Since φ satisfies the conditions of Theorem 3,
φ(f) vanishes nowhere and {y ∈ R : ‖φ(f)(y)‖ = ‖φ(f)‖ = ‖f(x)‖} is a
singleton. By (1), U = R and ϕ−1(x) is also a singleton. Hence ϕ is injective.
Thus ϕ : R→ R is a continuous bijection, and so it is a homeomorphism.

Now let y ∈ R and A ∈ B(X), and let f ∈ S0(ϕ(y), A) with f(ϕ(y)) = A.
By the conditions of Theorem 3, there is a homeomorphism ϕ0 : R→ R and
a function τ0 : R→ P for which (2) holds. Then

‖f(ϕ(y))‖ = ‖φ(f)(y)‖ = ‖f(ϕ0(y))‖,
which together with f ∈ S0(ϕ(y), A) imply ϕ(y) = ϕ0(y). Thus

τ(y)(A) = τ(y)(f(ϕ(y))) = φ(f)(y)

= τ0(y)(f(ϕ0(y))) = τ0(y)(f(ϕ(y))) = τ0(y)(A).

Now the algebraic reflexivity of P implies τ(y) ∈ P, which completes the
proof.
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