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Abstract. A Banach space X is asymptotically symmetric (a.s.) if for some C < ∞,
for all m ∈ N, for all bounded sequences (xi

j)
∞
j=1 ⊆ X, 1 ≤ i ≤ m, for all permutations σ

of {1, . . . , m} and all ultrafilters U1, . . . ,Um on N,

lim
n1,U1

. . . lim
nm,Um

∥∥∥∥
m∑

i=1

x
i
ni

∥∥∥∥ ≤ C lim
nσ(1),Uσ(1)

. . . lim
nσ(m),Uσ(m)

∥∥∥∥
m∑

i=1

x
i
ni

∥∥∥∥.

We investigate a.s. Banach spaces and several natural variations. X is weakly a.s. (w.a.s.)
if the defining condition holds when restricted to weakly convergent sequences (xi

j)
∞
j=1.

Moreover, X is w.n.a.s. if we restrict the condition further to normalized weakly null
sequences.

If X is a.s. then all spreading models of X are uniformly symmetric. We show that
the converse fails. We also show that w.a.s. and w.n.a.s. are not equivalent properties and
that Schlumprecht’s space S fails to be w.n.a.s. We show that if X is separable and has the
property that every normalized weakly null sequence in X has a subsequence equivalent to
the unit vector basis of c0 then X is w.a.s. We obtain an analogous result if c0 is replaced
by ℓ1 and also show it is false if c0 is replaced by ℓp, 1 < p < ∞.

We prove that if 1 ≤ p < ∞ and ‖
∑n

i=1 xi‖ ∼ n1/p for all (xi)
n
i=1 ∈ {X}n, the nth

asymptotic structure of X, then X contains an asymptotic ℓp, hence w.a.s. subspace.

0. Introduction. In their fundamental paper [KM] J.-L. Krivine and
B. Maurey introduced the notion of a stable Banach space and proved that
such spaces must contain almost isometric copies of ℓp for some 1 ≤ p < ∞.
A space X is stable if for all ultrafilters U1 and U2 on N and all bounded
sequences (xn) and (yn) in X,

(0.1) lim
n,U1

lim
m,U2

‖xn + ym‖ = lim
m,U2

lim
n,U1

‖xn + ym‖.
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A major application of [KM] was to deduce Aldous’ theorem [A] that
every infinite-dimensional subspace of Lp (1 ≤ p < 2) contains almost iso-
metric copies of ℓr for some p ≤ r ≤ 2, by proving that Lp is stable. The
starting point of our investigation is a result on noncommutative Lp spaces.
We first formulate the problem which led to that research.

Problem 0.1. Let 1 ≤ p ≤ 2 and let X be an infinite-dimensional sub-
space of Lp(N), the noncommutative Lp space associated with a von Neu-
mann algebra N . Does X contain an isomorph of ℓr for some p ≤ r ≤ 2?

In general [M-N] noncommutative Lp spaces fail to be stable. However,
if 1 < p < ∞ these spaces Lp(N) satisfy the following inequality for some
universal C < ∞ (see [JR]). For all m, all permutations σ of {1, . . . , m},
all bounded sequences (xi

n)∞n=1 in Lp(N) for i ≤ m, and all ultrafilters
U1, . . . ,Um on N,

(0.2) lim
n1,U1

. . . lim
nm,Um

∥∥∥
m∑

i=1

xi
ni

∥∥∥ ≤ C lim
nσ(1),Uσ(1)

. . . lim
nσ(m),Uσ(m)

∥∥∥
m∑

i=1

xi
ni

∥∥∥.

Every stable space X satisfies (0.2) with C = 1 and if Y is isomorphic to a
stable space, then Y satisfies (0.2) for some C.

X is called asymptotically symmetric (a.s.) if it satisfies (0.2) for some
C < ∞ where the sequences (xi

n) ⊆ X (see [JR]). It is easy to check that
the Tsirelson space T is a.s. and so a.s. need not imply that a space contains
an isomorph of some ℓp or c0. But the following problem remains open.

Problem 0.2. Let X be an infinite-dimensional asymptotically symmet-
ric Banach space. Does X contain an asymptotic ℓp subspace for some p?

A Banach space X with a basis (ei) is called asymptotically ℓp (see [MT])
if for some C < ∞, for all n, every normalized block basis (xi)

n
i=1 of (ei)

∞
i=n

is C-equivalent to the unit vector basis of ℓn
p . In this case (ei) is called an

asymptotic ℓp basis for X.

If X is a.s. then every spreading model (x̃i) of a normalized basic se-
quence (xi) in X is C-symmetric for some fixed C < ∞. As we shall see in
§2, a.s. says much more than this.

Theorem 0.3. There is a reflexive Banach space X such that all spread-

ing models of X are C-symmetric for some fixed C yet X is not asymptoti-

cally symmetric.

In fact given 1 < p < ∞ we can construct the space X in Theorem 0.3
to have the property that every normalized weakly null sequence in X has
a subsequence 4-equivalent to the unit vector basis of ℓp. We show that if
ℓp is replaced by c0 (or ℓ1 under an appropriate restatement) then one has
positive results.
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In §3 we prove

Theorem 0.4. There exists a reflexive space Y which is not asymptot-

ically symmetric and yet for some C < ∞, (0.2) holds for all normalized

weakly null sequences (xi
n)∞n=1, i ≤ m, in Y .

Y is the space Ti(2; 1/2), a subsymmetric version of a space invented by
L. Tzafriri [Tz], as presented in [CS]. We show that Y contains an asymptotic
ℓ2 subspace and hence is not minimal. More generally, we prove that if X
satisfies K−1n1/p ≤ ‖∑n

i=1 xi‖ ≤ Kn1/p for some 1 ≤ p < ∞, K < ∞,
all n ∈ N and all (xi)

n
i=1 ∈ {X}n, then X contains an asymptotic ℓp, hence

w.a.s., subspace. {X}n is the nth asymptotic structure of a space X, defined
in [MMT].

In §4 we show that Tsirelson’s space T is not iteration stable. This notion,
due to H. Rosenthal, is another weakening of the definition of stability.

§1 contains the definitions of certain variants of a.s. and the relations
between them as well as certain preliminaries. The authors wish to thank
H. Rosenthal for many enlightening discussions.

1. Preliminaries. The definition of an asymptotically symmetric Ba-
nach space X can also be formulated in this way: X is asymptotically

symmetric if for some C < ∞, for all m ∈ N, for all bounded sequences
(xi

n)∞n=1 ⊆ X, 1 ≤ i ≤ m, and for all permutations σ of {1, . . . , m},

(1.1) lim
n1→∞

. . . lim
nm→∞

∥∥∥
m∑

i=1

xi
ni

∥∥∥ ≤ C lim
nσ(1)→∞

. . . lim
nσ(m)→∞

∥∥∥
m∑

i=1

xi
ni

∥∥∥,

provided that these iterated limits exist.

Just as stability was weakened to “weak stability” to handle the case of
spaces like c0 (cf. [ANZ]), it is useful to consider certain variants of a.s. We
will say that X is weakly asymptotically symmetric (w.a.s.) if (1.1) holds
when restricted to sequences (xi

n)∞n=1 ⊆ X which are weakly null. This is ac-
tually equivalent to restricting to weakly convergent sequences, although the
constant C could vary. One could restrict (1.1) to normalized sequences in X.
However, we show in Proposition 1.3 that this is the same as a.s. Further,
X is said to be weakly null normalized asymptotically symmetric (w.n.a.s.)
if (1.1) holds for all normalized weakly null sequences (xi

n)∞n=1 ⊆ X. In §3
we show that w.a.s. and w.n.a.s. are not equivalent properties.

If X has a basis (ei) then X is block asymptotically symmetric (b.a.s.)
with respect to (ei) if (1.1) holds for all bounded block bases (xi

n)∞n=1, i ≤ m,
of (ei).

Recall that (x̃i) is a spreading model of a normalized basic sequence (xi)
if for all ε > 0 and k ∈ N there exists n ∈ N so that for all n ≤ i1 < · · · < ik
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and scalars (ai)
k
i=1 with each |ai| ≤ 1,

(1.2)

∣∣∣∣
∥∥∥

k∑

i=1

aixni

∥∥∥ −
∥∥∥

k∑

i=1

aix̃i

∥∥∥
∣∣∣∣ < ε.

Using Ramsey’s theorem it is easy to show that every normalized basic
sequence admits a subsequence (xi) generating a spreading model (for more
on spreading models see [BL]).

If (x̃i) is a spreading model of (xi) then (x̃i) is 1-subsymmetric, i.e.,

∥∥∥
n∑

i=1

aix̃i

∥∥∥ =
∥∥∥

n∑

i=1

aix̃ki

∥∥∥

for all (ai)
n
i=1 and k1 < · · · < kn. (Some authors call this 1-spreading and

reserve the notion of subsymmetric for unconditional spreading sequences.)
The fact that if X is a.s. with constant C then every spreading model (x̃i)
of X generated by (xi) is C-symmetric, i.e., ‖∑m

i=1 aix̃i‖ ≤ C‖∑m
i=1 aix̃σ(i)‖

for all permutations σ of N, follows easily from (1.1) by setting xi
n = aixn for

all i, n. (Some authors call this C-exchangeable and define the C-symmetric
constant via ‖∑m

i=1 ±aix̃i‖, over all choices of signs. A C-symmetric basis
is unconditional, but not necessarily C-unconditional.)

There are several known means of joining the infinite- and finite-dimen-
sional structure of a Banach space in a conceptual manner. In addition
to spreading models, we have the theory of asymptotic structure [MMT]
(see §3), which, in particular, gives rise to the definition of asymptotic ℓp

bases presented above. A similar definition can be made for asymptotically

c0 bases. A third concept is an asymptotic model of X (see [HO]). These
are generated much like spreading models except that one uses a certain
infinite array of normalized basic sequences in X, (xi

j)
∞
j=1, i ∈ N, and one

replaces ‖∑k
i=1 aixni‖ in (1.2) by ‖∑k

i=1 aix
i
ni
‖. The definition and variants

of being asymptotically symmetric constitute a fourth way to join the finite
and infinite geometries of a space. We gather together some of the relation-
ships between these four concepts in our next proposition. For the sake of
completeness we include some of the above observations. The “moreover”
statement requires two of our main results below.

Proposition 1.1. Let X be an infinite-dimensional Banach space.

(a) If X is a.s. then the spreading models of X are uniformly symmetric.

Similarly , if X is b.a.s. with respect to (ei) then the spreading models

of block bases of (ei) are uniformly symmetric.

(b) X is a.s. ⇒ (X is b.a.s. if X has a basis) ⇒ X is w.a.s. ⇒ X is

w.n.a.s.



Asymptotically symmetric Banach spaces 207

(c) If X is reflexive, then X is a.s. ⇔ X is w.a.s ⇔ (X is b.a.s. if X
has a basis).

(d) If (ei) is a boundedly complete basis for X then X is a.s. ⇔ X is

b.a.s. with respect to (ei).
(e) If X is a.s. and not reflexive, then ℓ1 is isomorphic to a spreading

model of X.

(f) If all asymptotic models of X are symmetric then X is w.a.s. (and

b.a.s. if it has a basis).
(g) If X has an asymptotically ℓp or c0 basis (ei), then X is b.a.s. with

respect to (ei).

Moreover , all of the converses of the one-sided implications in (a)–(g) are

false, in general.

Proof. (a)–(c) follow easily from our previous remarks and (d), which
holds by standard gliding hump arguments. To see (e) we note that a nonre-
flexive X contains a non-weakly null normalized basic sequence (xi) having a
spreading model (x̃i), which thus satisfies, for some δ > 0, ‖∑ aix̃i‖ ≥ δ

∑
ai

if the ai’s are nonnegative. If X is a.s. then (x̃i) is symmetric, hence uncon-
ditional, hence equivalent to the unit vector basis of ℓ1.

(f) If all asymptotic models of X are symmetric, then it follows easily
from Krivine’s theorem [K] that for some C < ∞, if (xi) is an asymptotic
model of X generated by either a weakly null array or a block basis array
(if X has a basis), then (xi) is C-equivalent to the unit vector basis of c0 or
ℓp for some fixed p ∈ [1,∞) (independent of (xi); see [HO, 4.7.4]). Thus X
is w.a.s. (or b.a.s.) by much the same easy argument that yields (g).

The converses in (a) are shown to fail in §2. By considering the sum-
ming basis for c0, which is subsymmetric but not symmetric, we see that
the second converse in (b) fails. c0 also provides a counterexample to the
first converse since it is not a.s. but it is b.a.s. with respect to the unit
vector basis. The third converse is proved false in §3. Every normalized un-
conditional basic sequence in Lp is equivalent to an asymptotic model of
Lp, 1 < p < ∞ (see [HO]), and thus the converses in (f) also fail. Lp also
provides a converse to (g).

One can also state variations of Problem 0.2 using these alternate asymp-
totic notions.

Problem 1.2. Assume that for some C < ∞ and 1 ≤ p < ∞, all spread-
ing models of X (or even all asymptotic models of X) are C-equivalent to
the unit vector basis of ℓp. Does X contain an asymptotic ℓp basic sequence?

Replacing normalized weakly null sequences by seminormalized weakly
null sequences does not lead to a new class of spaces:
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Proposition 1.3. Let X be w.n.a.s. with constant C. Then X is semi-

normalized weakly null asymptotically symmetric. More precisely , let 0 <
a < b. Then there exists a constant 0 < C(a, b) < ∞ such that for all m
and all weakly null sequences (yi

n), i = 1, . . . , m, with ‖yi
n‖ ∈ [a, b], n ∈ N,

1 ≤ i ≤ m, the inequality

lim
n1→∞

. . . lim
nm→∞

∥∥∥
m∑

i=1

yi
ni

∥∥∥ ≤ C(a, b) lim
nσ(1)→∞

. . . lim
nσ(m)→∞

∥∥∥
m∑

i=1

yi
ni

∥∥∥(1.3)

holds for any permutation σ of {1, . . . , m} provided these limits exist.

Proof. Let (xn
i )∞n=1 be weakly null. Let 0 ≤ λi ≤ 1. We shall show that

(1.4) lim
n1→∞

. . . lim
nm→∞

∥∥∥
∑

i

λix
i
ni

∥∥∥ ≤ lim
n1→∞

. . . lim
nm→∞

∥∥∥
∑

i

xi
ni

∥∥∥

provided both limits exist. Then (1.3) follows immediately. Indeed, we may
consider xi

n = byi
n/‖yi

n‖. Then two applications of (1.4) yield

lim
n1→∞

. . . lim
nm→∞

∥∥∥
m∑

i=1

yi
ni

∥∥∥ ≤ lim
n1→∞

. . . lim
nm→∞

∥∥∥
m∑

i=1

xi
ni

∥∥∥

≤ C lim
nσ(1)→∞

. . . lim
nσ(m)→∞

∥∥∥
m∑

i=1

xi
ni

∥∥∥ =
Cb

a
lim

nσ(1)→∞
. . . lim

nσ(m)→∞

∥∥∥∥
m∑

i=1

a

b
xi

ni

∥∥∥∥

≤ Cb

a
lim

nσ(1)→∞
. . . lim

nσ(m)→∞

∥∥∥
m∑

i=1

yi
ni

∥∥∥.

(If the middle terms do not converge we could use a limit along a free
ultrafilter for which (1.4) also holds.)

By an easy extreme point argument it suffices to show (1.4) in the special
case

(1.5) lim
n1→∞

. . . lim
nm→∞

∥∥∥
∑

i∈A

xi
ni

∥∥∥ ≤ lim
n1→∞

. . . lim
nm→∞

∥∥∥
∑

i

xi
ni

∥∥∥

where A ⊂ {1, . . . , m} is an arbitrary subset. For each (n1, . . . , nm) we may
choose x∗

(ni)i∈A
in the unit sphere such that

x∗
(ni)i∈A

( ∑

i∈A

xi
ni

)
=

∥∥∥
∑

i∈A

xi
ni

∥∥∥.

By passing to a subsequence in n, which does not affect the above limit, we
may assume that for k /∈ A we have

(1.6) lim
n1→∞

. . . lim
nm→∞

x∗
(ni)i∈A

(xk
nk

) = 0.

Indeed, consider i1 < k < i2 where i1 and i2 are maximal and minimal,
respectively, with this property (an analogous argument holds if no such i1
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or i2 exist). Using the weak∗ compactness of BX∗ and Ramsey’s theorem we
can pass to a subsequence so that

y∗n1,...,ni1
= w∗- lim

ni2
→∞

. . . lim
nm→∞

x∗
(ni)i∈A

exists. Thus we get limni2
→∞ . . . limnm→∞ x∗

(ni)i∈A
(xk

nk
) = y∗n1,...,ni1

(xk
nk

) for

all k. Since (xk
nk

) is weakly null we obtain (1.6). Therefore we get

lim
n1→∞

. . . lim
nm→∞

∥∥∥
∑

i∈A

xi
ni

∥∥∥ = lim
n1→∞

. . . lim
nm→∞

x∗
(ni)i∈A

( m∑

i=1

xi
ni

)

≤ lim
n1→∞

. . . lim
nm→∞

∥∥∥
m∑

i=1

xi
ni

∥∥∥,

which is (1.5).

We end this section with a result promised earlier. Recall that X is
normalized asymptotically symmetric with constant C if (1.1) holds for all
m ∈ N and all normalized sequences (xi

n)∞n=1, i ≤ m.

Proposition 1.4. Let X be normalized asymptotically symmetric with

constant C. Then X is a.s. with constant D = D(C).

Proof. Let F be a two-dimensional subspace of X. We can find a nor-
malized basis (e0, e1) of F and a subspace Y of X so that X = F ⊕ Y and
|a0| ≤ ‖a0e0 + a1e1 + y‖, ‖f‖ ≤ 2‖f + y‖, ‖y‖ ≤ 3‖f + y‖ for all real a0, a1

and all y ∈ Y , f ∈ F . This can be easily done by taking (e0, e1) to be an
Auerbach basis for F and extending the dual functionals by Hahn–Banach.

We first observe that it suffices to show Y is a.s. with constant C. Indeed,
let (xi

n)∞n=1 ⊆ BX , the unit ball of X, for i ≤ m. Write xi
n = f i

n + yi
n. By

passing to a subsequence in n we may assume that f i
n → f i as n → ∞ for

i ≤ m, and hence that xi
n = f i + yi

n for all n. Furthermore, there exists an
absolute constant K such that

lim
n1→∞

. . . lim
nm→∞

∥∥∥
m∑

i=1

xi
ni

∥∥∥ K∼ max
(∥∥∥

m∑

i=1

f i
∥∥∥, lim

n1→∞
. . . lim

nm→∞

∥∥∥
m∑

i=1

yi
ni

∥∥∥
)

(as usual, we may assume both limits exist). A similar result holds if we
change the order of the limits and this verifies the observation.

Now let (yi
n)∞n=1 ⊆ BY for i ≤ m. For any n and i ≤ m choose ai

n ≥ 0
and bi

n ≤ 0 with

1 = ‖ai
ne0 + yi

n‖ = ‖bi
ne0 + yi

n‖.
Note that |ai

n|, |bi
n| ≤ 1 for all i and n. Thus, by passing to a subsequence, we

may assume ai
n → ai ≥ 0 and bi

n → bi ≤ 0 as n → ∞. Choose ci ∈ {ai, bi} so
that |∑m

i=1 ci| ≤ 1. For any n and i ≤ m set zi
n = cie0+yi

n ∈ SX . Note that if∑m
i=1 ci = 0, then our earlier observations would yield the desired inequality.
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Otherwise we choose cm+1 ∈ {1,−1} so that |∑m+1
i=1 ci| > 1. Set zm+1

n =

cm+1e0 for all n. Then there exists an f ∈ SF with ‖∑m+1
i=1 cie0 + f‖ = 1.

Indeed, assume for convenience
∑m

i=1 ci > 1. We shall parametrize the unit
sphere of F . For 0 ≤ θ ≤ π let f(θ) be the unit vector in F which has
counterclockwise angle θ with respect to the basis vector e0. Define the
continuous function g(θ) = ‖∑m+1

i=1 cie0 + f(θ)‖. Our claim follows since
g(0) > 2 and g(π) = ‖∑m

i=1 cie0‖ ≤ 1.

Set zm+2
n = f and zm+3

n = −(
∑m+1

i=1 cie0 + f) for all n. We have

lim
n1→∞

. . . lim
nm+3→∞

∥∥∥
m+3∑

i=1

zi
ni

∥∥∥ = lim
n1→∞

. . . lim
nm→∞

∥∥∥
m∑

i=1

yi
ni

∥∥∥.

The analogous result holds for any permutation σ and so

lim
n1→∞

. . . lim
nm→∞

∥∥∥
m∑

i=1

yi
ni

∥∥∥ ≤ C lim
nσ(1)→∞

. . . lim
nσ(m)→∞

∥∥∥
m∑

i=1

yi
ni

∥∥∥.

Remark 1.5. A similar argument to the above implies that in the defi-
nition of w.a.s. we may replace weakly null sequences by normalized weakly
convergent sequences.

2. Spreading models and asymptotic symmetry. The following
theorem easily yields Theorem 0.3.

Theorem 2.1. Let 1 < p < ∞. There exists a reflexive infinite-dimen-

sional Banach space X which is not asymptotically symmetric and yet sat-

isfies the following.

(2.1) Every normalized basic sequence in X admits a subsequence that is

4-equivalent to the unit vector basis of ℓp.

Proof. We shall define spaces Xk for k ∈ N and set X = (
∑∞

k=1 Xk)p.
Each Xk will be reflexive and satisfy (2.1) with 4 replaced by 3 + ε for any
ε > 0. Gliding hump arguments then yield (2.1) for X.

Fix 1 < q < p < r with 1/q + 1/r = 1 and let k ∈ N. Each Xk will
have a normalized 1-unconditional basis {ei

j : 1 ≤ i ≤ k, j ≥ i} which
we visualize as k infinite rows of an upper triangular array. We will define
the norm on Xk so that if n1 < · · · < nk then ‖∑k

i=1 ei
ni
‖ = k1/r and we

shall say that the collection (ei
ni

)k
i=1 is permissible. In addition we will have

‖e1
nk

+ · · · + ek
n1
‖ = 1. Thus

lim
n1→∞

. . . lim
nk→∞

‖e1
n1

+ · · · + ek
nk
‖ = k1/r lim

nk→∞
. . . lim

n1→∞
‖e1

n1
+ · · · + ek

nk
‖.

Hence X is not a.s.
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Let (ai)
k
i=1 ∈ Bℓk

q
, the unit ball of ℓk

q . Let x ∈ span{ei
j : i ≤ k, j ≥ i},

say x =
∑

bi
je

i
j . We define

|x|(ai)k
i=1

= sup
( ∞∑

j=1

( k∑

i=1

|aib
i
ni

j
|
)p)1/p

where the “sup” is taken over all lexicographically ordered integers n1
1 <

n2
1 < · · · < nk

1 < n1
2 < n2

2 < · · · . Thus each collection (bi
ni

j
)k
i=1 is the

coordinates of x with respect to the permissible collection (ei
ni

j
)k
i=1, and

these collections move to the right in our array picture as j increases.
The space Xk is the completion of (span{ei

j : i ≤ k, j ≥ i}, ‖ · ‖) where

‖x‖ = sup{|x|(ai)k
i=1

: (ai)
k
i=1 ∈ Bℓk

q
}.

If (ei
ni

)k
i=1 is a permissible collection and x =

∑k
i=1 bie

i
ni

, then ‖x‖ =

(
∑k

i=1 |bi|r)1/r. Indeed, the lower estimate is immediate and suppose that
‖x‖ = |x|(ai)k

i=1
for some (ai)

k
i=1 ∈ Bℓk

q
. We may thus write

‖x‖ =
[( ∑

i∈I1

|aibi|
)p

+ · · · +
( ∑

i∈It

|aibi|
)p]1/p

where I1, . . . , It are disjoint subsets of {1, . . . , k}. Thus, since 1/q +1/r = 1,

‖x‖ ≤
k∑

i=1

|aibi| ≤ ‖(bi)
k
i=1‖r.

Next we let y =
∑k

i=1 ei
ni

where nk < nk−1 < · · · < n1. Let ‖y‖ =
|y|(ai)k

i=1
. Since any permissible collection of ei

j ’s will intersect the support

of y in at most one coordinate we have

|y|(ai)k
i=1

≤
( k∑

i=1

|ai|p
)1/p

≤ ‖(ai)
k
i=1‖q ≤ 1.

This completes the proof of our assertions which imply that X is not a.s.
The basis for Xk is boundedly complete, and so once we prove that Xk

satisfies (2.1) with constant 3 and for all normalized block bases, it will
follow that Xk is reflexive and satisfies (2.1) for 3+ ε and for all normalized
basic sequences.

Let ε > 0 and let (xi) be a normalized block basis of {ei
j : i ≤ k, j ≥ i}.

Passing to a subsequence we may assume that for all m,

(2.2) max{j : ∃i ≤ k, ei
j ∈ suppxm} + 2k < min{j : ∃i ≤ k, ei

j ∈ suppxm+1}
and for some (ai)

k
i=1 ∈ Bℓk

q
,

(2.3) |xm|(ai)k
i=1

> 1 − ε.
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Since (2.2) spaces the xm’s to have at least 2k “columns” between successive
supports, we deduce using (2.3) that for all scalars (cm),

∥∥∥
∑

m

cmxm

∥∥∥ ≥ (1 − ε)
(∑

m

|cm|p
)1/p

.

Indeed, one can string together the lexicographically ordered lists that yield
each norm |xm|(ai)k

i=1
, inserting extra elements as needed into the gaps.

It remains to prove that ‖∑m cmxm‖≤3(
∑

m |cm|p)1/p. Let x=
∑

m cmxm

and suppose ‖x‖ = |x|(ai)k
i=1

. We let x =
∑

bi
je

i
j and choose n1

1 < · · · < nk
1 <

n1
2 < n2

2 < · · · so that

‖x‖ =
( ∞∑

j=1

( k∑

i=1

|aib
i
ni

j
|
)p)1/p

.

For each j let Aj = {ei
ni

j
}k

i=1 be the corresponding permissible collection.

Let

J1 = {j : Aj intersects the support of exactly one xm},
J0 = {j : Aj intersects the support of more than one xm},

and let J0 = J2 ∪ J3 where J2 contains every other integer in J0 and J3 =
J0 \J2. Thus if j1 and j2 are distinct integers in J2 (or J3) then Aj1 and Aj2

cannot both intersect the support of the same xm.

By the triangle inequality in ℓp,

‖x‖ ≤
3∑

l=1

( ∑

j∈Jl

( k∑

i=1

|aib
i
ni

j
|
)p)1/p

.

We shall show that each of these three terms is bounded above by ‖(cm)‖p.

For m ∈ N let Im = {j ∈ J1 : Aj ∩ suppxm 6= ∅}. Thus Im ∩ Im′ = ∅ if
m 6= m′. Since |cm| = ‖cmxm‖ we have

( ∑

j∈J1

( k∑

i=1

|aib
i
ni

j
|
)p)1/p

=
( ∑

m

∑

j∈Im

( k∑

i=1

|aib
i
ni

j
|
)p)1/p

≤ ‖(cm)‖p.

Now, we estimate the J2 sum (the J3 estimate is identical). The J2 sum
is an ℓp sum of terms of the form

Qj =
s∑

t=1

|cmt |
∑

i∈It

|aidt,i|

where I1 < · · · < Is are subsets of {1, . . . , k} and m1 < · · · < ms. Note that
xm1 , . . . , xms are those xi’s for which Aj ∩ suppxi 6= ∅, and the dt,i’s are the
corresponding relevant coordinates of xmt . The sequence (xmi)

s
i=1 depends
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of course upon j but these families are disjoint for different j’s in J2. Thus
it suffices to prove that

Qj ≤
( s∑

t=1

|cmt |p
)1/p

.

Now for t fixed (dt,i)i∈It are the coordinates of xmt with respect to a subset
(indexed by It) of a permissible collection of eu

v ’s and these are in turn

1-equivalent to the unit vector basis of ℓ
|It|
r as we have shown. Hence

Qj ≤
s∑

t=1

|cmt | ‖(ai)i∈It‖q ≤ ‖(cmt)
s
t=1‖r‖(ai)

k
i=1‖q ≤ ‖(cmt)‖r ≤ ‖(cmt)‖.

Remarks 2.2. The space X constructed in Theorem 2.1 satisfies (2.1)
and also has the property that ℓr and c0 are asymptotic versions of X (see
[MMT]). A different example of this sort of phenomenon is given in [OS]
where a reflexive space Z is constructed satisfying (2.1) with 4 replaced by
1+ ε, ε > 0 arbitrary, yet Z has ℓr as an asymptotic version for some r 6= p.
It would be interesting to see if one could construct X as in Theorem 2.1
to satisfy (2.1) with 4 replaced by 1 + ε. Another natural question is to
ascertain what happens if ℓp is replaced by ℓ1 or c0. We will show that in
these cases one obtains positive results.

Theorem 2.3. Let X have a basis (ei). Assume that for some K < ∞
every spreading model of any normalized block basis of (ei) is K-equivalent

to the unit vector basis of ℓ1. Then X is block asymptotically symmetric

with respect to (ei).

Proof. By renorming X we may assume that (ei) is a bimonotone basis.
Let m ∈ N, (bi)

m
i=1 ⊆ [−1, 1], (xi

j)
∞
j=1 be a normalized block basis of (ei) for

i ≤ m and σ a permutation of {1, . . . , m} so that the iterated limits

lim
n1→∞

. . . lim
nm→∞

∥∥∥
m∑

i=1

bix
i
ni

∥∥∥, lim
nσ(1)→∞

. . . lim
nσ(m)→∞

∥∥∥
m∑

i=1

bix
i
ni

∥∥∥

both exist, the first being equal to 1.

We visualize (xi
j)i,j as an array of m infinite rows. Using Ramsey’s the-

orem, by passing to a subsequence of the columns, given ε > 0 we may
assume that for all integers n1 < · · · < nm and k1 < · · · < km, for all
f ∈ BX∗ there exists g ∈ BX∗ with |f(xi

ni
)− g(xi

ki
)| ≤ ε for i ≤ m. This fol-

lows by partitioning [−1, 1] into finitely many intervals (It)
l
t=1 of length less

than ε and thus inducing a finite coloring of [N]m as follows: (n1, . . . , nm)
has color (It1 , . . . , Itm) if there exists f ∈ BX∗ with f(xi

ni
) ∈ Iti for i ≤ m.
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It follows that up to an arbitrarily small error
∥∥∥

m∑

i=1

bix
i
ni

∥∥∥ ≈
∥∥∥

m∑

i=1

bix
i
ki

∥∥∥ ≈ 1

whenever n1 < · · · < nm and k1 < · · · < km. To avoid trivial but tedious
error estimates, in the remainder of the proof we shall assume ε = 0. We
may also assume that if x ∈ span (xi

j1
)m
i=1, y ∈ span (xi

j2
)m
i=1 for j1 < j2 then

suppx < supp y with respect to (en). Finally we assume similar stabiliza-
tions for the order induced by σ.

Let n1
1 < · · · < nm

1 < n1
2 < · · · < nm

2 < · · · and set yj =
∑m

i=1 bix
i
ni

j
for

j ∈ N. Then (yj) is a normalized block basis of (ei) and thus, passing to a
subsequence, we may assume it has a spreading model which is K-equivalent
to the unit vector basis of ℓ1.

Hence for all k there exists F ⊆ N with |F | = k and f ∈ BX∗ with
f(yj) ≥ 1/K for j ∈ F (up to an arbitrarily small error). Using the pigeon-
hole principle and ignoring small errors we obtain m of the yj ’s (which we
relabel as y1, . . . , ym), f ∈ BX∗ and (ai)

m
i=1 so that f(xi

ni
j
) = ai for all j and

1 ≤ i, j ≤ m.
We shall show that

1 ≤ K
∥∥∥

m∑

i=1

bσ(i)x
σ(i)
nσ(i)

∥∥∥

provided that nσ(1) < · · · < nσ(m). From our stabilizations it suffices to
produce nσ(1) < · · · < nσ(m) satisfying this. We choose them so that each

x
σ(i)
nσ(i)

is in the support of some yj , j ≤ m. It follows that f(x
σ(i)
nσ(i)

) = aσ(i)

and the claim follows.

The proof tells us that the b.a.s. constant of X is bounded by a function
of K and the basis constant of (ei).

Theorem 2.4. Let X be a separable Banach space such that every spread-

ing model of a normalized weakly null sequence in X is equivalent to the unit

vector basis of c0.Then X is weakly asymptotically symmetric.

Proof. It follows from [AOST, Proposition 3.2] that for some C < ∞
every spreading model of a normalized weakly null sequence in X is C-
equivalent to the unit vector basis of c0.

Let m ∈ N and let (xi
j)

∞
j=1, i ≤ m, be normalized weakly null sequences

in X. Let K < ∞, (bi)
m
i=1 ⊆ R and assume that for some permutation σ,

lim
n1→∞

. . . lim
nm→∞

∥∥∥
m∑

i=1

bix
i
ni

∥∥∥ = K, lim
nσ(1)→∞

. . . lim
nσ(m)→∞

∥∥∥
m∑

i=1

bix
i
ni

∥∥∥ = 1.

We will prove that K ≤ C, which will complete the proof of the theorem.
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As in the proof of the previous theorem, by passing to a subsequence
of the columns and ignoring arbitrarily small errors we may assume that
‖∑m

i=1 bix
i
ni
‖ = K if n1 < · · · < nm. Moreover, we may assume that if

f ∈ BX∗ with f(xi
ni

) = ai for i ≤ m and if k1 < · · · < km, then there exists
g ∈ BX∗ with g(xi

ki
) = ai for i ≤ m.

We shall say that z is ((bi)
m
i=1, σ) distributed if

z =

m∑

i=1

bσ(i)x
σ(i)
nσ(i)

for some nσ(1) < · · · < nσ(m) and as above, by Ramsey’s theorem, we
may assume that for such a vector, ‖z‖ = 1. In addition we may assume
that if (zi)

m
i=1 are all ((bi)

m
i=1, σ) distributed with zj =

∑m
i=1 bσ(i)x

i
nj

σ(i)

and

nj
σ(m) < nj+1

σ(1) for j < m, then ‖∑m
j=1 zj‖ does not depend upon the par-

ticular choice of the nj
σ(i)’s. Finally, since the rows (xi

j)
∞
j=1 are weakly null,

we can assume that the coordinates supporting such a sequence (zj)
m
j=1,

namely (xi
nj

σ(i)

)m,m
i=1, j=1 are suppression-1 unconditional. (This argument is

used in [HO] and [AOST].) Roughly, if one has f ∈ BX∗ and one considers
z =

∑m
i,j=1 ai

jx
i
nj

σ(i)

with its coordinates sufficiently spread out then one can

“slide” the coordinates I one wishes to kill, preserving the order, so that
f ≈ 0 on these coordinates. The new vector w, distributed exactly the same
as z, hence with ‖w‖ = ‖z‖, satisfies

f(w) =
∣∣∣f

( ∑

i,j 6∈I

ai
jx

i
nj

σ(i)

)∣∣∣ ≤ ‖w‖ = ‖z‖.

Now let (zj)
∞
j=1 be a “block basis” of (xi

j) with each zj having ((bi)
m
i=1, σ)

distribution. As (zj) is normalized weakly null, passing to a subsequence we
may assume it has a spreading model which is C-equivalent to the unit vector
basis of c0. In particular, by relabeling, we may assume that ‖∑m

i=1 zi‖ ≤ C.
By restricting this vector to a suitable set of coordinates we obtain a vector
equal to

∑m
i=1 bix

i
ni

for some n1 < · · · < nm. Thus C ≥ ‖∑m
i=1 zi‖ ≥

‖∑m
i=1 bix

i
ni
‖ = K, and the proof is complete.

3. Variants of a.s. and Tsirelson-like spaces

Theorem 3.1. There exists a reflexive Banach space Y which is w.n.a.s.

but not w.a.s.

The required Y is Tzafriri’s space Ti(2; 1/2) ([CS, Section X.D]). We re-
call the definition. Let c00 be the linear space of finitely supported sequences
of reals. If x ∈ c00 and E ⊆ N, we set Ex(i) = x(i) if i ∈ E and 0 other-
wise. For sets E, F ⊆ N, E < F denotes maxE < minF . Now, Y is the
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completion of c00 under the norm given by the following implicit equation:

(3.1) ‖x‖ = max

(
‖x‖∞, sup

1

2
√

n

n∑

i=1

‖Eix‖
)

where the “sup” is taken over all n ∈ N and E1 < · · · < En.
The space Y is reflexive and the unit vector basis (ei) is a normalized

1-unconditional 1-subsymmetric basis for Y . We recall two facts from [CS].

Fact 1. For all x ∈ Y , ‖x‖ ≤ ‖x‖2.

Fact 2 ([CS, Lemma X.d.4, p. 109]). If (ui)
n
i=1 is a finite block basis of

(ei) then
∥∥∥

n∑

i=1

ui

∥∥∥ ≤
√

3
( n∑

i=1

‖ui‖2
)1/2

.

From Fact 2 and (3.1) we deduce that if (yi)
n
i=1 is a normalized block

basis of (ei) then

√
n/2 ≤

∥∥∥
n∑

i=1

yi

∥∥∥ ≤ 3
√

n .

This implies that Y is w.n.a.s. with constant 6. That Y is not w.a.s. follows
from either the next theorem or [Sa] (see the remarks below).

Theorem 3.2. c0 is finitely representable in Y . Moreover , for some C <
∞ (equivalently , for all C > 1), for all n there exist disjointly supported

(with respect to (ei)) normalized vectors (xi)
n
i=1 in Y with (xi)

n
i=1 being

C-equivalent to the unit vector basis of ℓn
∞.

First we shall show how this theorem completes the proof of Theorem 3.1.
(ei)

∞
i=1 is 1-subsymmetric and hence is its own spreading model. But Theo-

rem 3.2 and (3.1) imply that (ei) is not symmetric, which every spreading
model of a w.a.s. reflexive space would be.

Tzafriri [Tz] constructed a symmetric version of Y denoted by V1/2,2. The
definition of the norm is given by (3.1) where the sup is taken over disjoint
sets (Ei)

n
i=1 in N. The space V1/2,2 has finite cotype and hence does not

contain ℓn
∞’s uniformly. Thus, a consequence of Theorem 3.2 is the following

corollary which answers a question from [CS].

Corollary 3.3. The spaces Y and V1/2,2 are not isomorphic.

This question was answered independently by B. Sari [Sa] who used
different techniques. In fact Sari has proved that Y = Ti(2; 1/2) does not
contain a symmetric basic sequence. Moreover, Sari’s result also proves that
Y is not w.a.s. since (ei) is not symmetric. We include Theorem 3.2 because
it is of separate interest.

Lemma 3.4. For n ≥ 4, ‖∑n
i=1 ei‖ =

√
n/2.
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Proof. The lower estimate is immediate and the case n = 4 is easy using
(3.1). For n > 4 there exist E1 < · · · < Ek with

∥∥∥
n∑

i=1

ei

∥∥∥ =
1

2
√

k

k∑

j=1

∥∥∥Ej

( n∑

i=1

ei

)∥∥∥.

Let |Ej ∩ {1, . . . , n}| = nj , hence
∑k

j=1 nj ≤ n. By Fact 1 and Cauchy–
Schwarz,

∥∥∥
n∑

i=1

ei

∥∥∥ ≤ 1

2
√

k

k∑

j=1

√
nj ≤

1

2
√

k

( k∑

j=1

ni

)1/2√
k ≤

√
n

2
.

Lemma 3.5. Let δ =
√

3/2 < 1 and let (ui)
n
i=1 be a block basis of (ei)

with ‖ui‖ ≤ 1 for i ≤ n. Let E1 < · · · < Ek be subsets of N so that for i ≤ n,
suppui intersects at most one Ej. Then

1

2
√

k

k∑

j=1

∥∥∥Ej

( n∑

i=1

ui

)∥∥∥ ≤ δ
√

n.

Proof. For j ≤ k let nj = |{i : suppui ∩ Ej 6= ∅}|. Thus
∑k

j=1 nj ≤ n.
By Fact 2 and Cauchy–Schwarz,

1

2
√

k

k∑

j=1

∥∥∥Ej

( n∑

i=1

ui

)∥∥∥ ≤
√

3

2
√

k

k∑

j=1

√
nj ≤

√
3

2
√

k

( k∑

j=1

nj

)1/2√
k ≤ δ

√
n.

Proof of Theorem 3.2. Let m ∈ N. We shall construct disjointly sup-
ported normalized vectors (xi)

m
i=1 in Y so that ‖∑m

i=1 xi‖ ≤ ∑∞
i=0 δi + 1.

By the unconditionality of (ei) this completes the proof. Each (xi) will be
a normalized average of certain basis vectors, the number of which rapidly
increases with i and the supports are uniformly mixed (just as the 1 inch
marks on a yardstick are uniformly separated by the 1

32 inch marks and
so on). To do this we need some notation. We shall choose below rapidly
increasing integers q1 < · · · < qm. Given these we define pi =

∏i
j=1 qj for

i ≤ m and we then choose natural numbers rt1,...,ti for each i ≤ m and
tj ≤ qj for j ≤ i so that rt1,...,ti < rs1,...,sj whenever (t1, . . . , ti) is less than
(s1, . . . , sj) lexicographically. For example

r1 < r2,1,4 < r2,2 < r2,2,3 < r3.

We shall say that (xi)
m
i=1 corresponds to (q1, . . . , qm) if for i ≤ m,

xi =
2√
pi

q1∑

j1=1

q2∑

j2=1

· · ·
qi∑

ji=1

erj1,...,ji
.

Since (ei) is 1-subsymmetric the particular choice of the rj1,...,ji ’s does not
matter but their order does. By Lemma 3.4, ‖xi‖ = 1 for i ≤ m.
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Let (εn)∞n=1 be a sequence of positive numbers with
∑∞

n=1 εn < 1. We
shall prove by induction on m that for every integer q ≥ 4 there exist
integers q < q2 < · · · < qm so that for all integers q1 with 4 ≤ q1 ≤ q, if
(xi)

m
i=1 corresponds to (q1, . . . , qm) then

(3.2)
∥∥∥

m∑

i=1

xi

∥∥∥ ≤
m−1∑

i=0

δi +

m∑

i=1

εi ≡ M(m).

This is obvious for m = 1 so assume it holds for some m. Let q ≥ 4.
Choose d ∈ N so that

(3.3)
√

q < εm+1

√
d .

Choose n ∈ N so that

(3.4)
2dM(m)√

n
< εm+1.

Let q2 = dn. By the inductive hypothesis for q0 ≡ qq2 we can find
integers q0 < q3 < · · · < qm+1 so that if 4 ≤ s ≤ q0 and if (yi)

m
i=1 is a

sequence corresponding to (s, q3, q4, . . . , qm+1), then ‖∑m
i=1 yi‖ ≤ M(m).

Let 4 ≤ q1 ≤ q and let (xi)
m+1
i=1 correspond to (q1, . . . , qm+1). There exists

k ≥ 2 and E1 < · · · < Ek so that

∥∥∥
m+1∑

i=1

xi

∥∥∥ =
1

2
√

k

k∑

j=1

∥∥∥Ej

( m+1∑

i=1

xi

)∥∥∥

≤ 1

2
√

k

k∑

j=1

‖Ej(x1)‖ +
1

2
√

k

k∑

j=1

∥∥∥Ej

( m+1∑

i=2

xi

)∥∥∥.

Case 1: k ≥ d. Then

‖x1‖1 = 2
√

q1 ≤ 2
√

q < 2εm+1

√
d

by (3.3). Thus

1

2
√

k

k∑

j=1

‖Ej(x1)‖ ≤ 1

2
√

k
‖x1‖1 <

√
d√
k

εm+1 ≤ εm+1.

Also

1

2
√

k

k∑

j=1

∥∥∥Ej

( m+1∑

i=2

xi

)∥∥∥ ≤
∥∥∥

m+1∑

i=2

xi

∥∥∥.

Now (xi)
m+1
i=2 corresponds to the m-tuple (q1q2, q3, . . . , qm+1) and since q1q2

≤ qq2 = q0, by the inductive hypothesis we have

∥∥∥
m+1∑

i=2

xi

∥∥∥ ≤ M(m).
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Thus
∥∥∥

m+1∑

i=1

xi

∥∥∥ ≤ M(m) + εm+1 < M(m + 1).

Case 2: k < d. For the x1 term we use the estimate

1

2
√

k

k∑

j=1

‖Ej(x1)‖ ≤ 1.

To estimate the
∑m+1

i=2 xi term we write xi =
∑n

h=1 xi,h for 2 ≤ i ≤ m + 1,
where (xi,h)n

h=1 is an identically distributed block basis. Thus |suppxi,h| =
pi/n = q1dq3 · · · qi.

By Lemma 3.4,

‖xi,h‖ =
1

2

√
pi

n

2√
pi

=
1√
n

for 2 ≤ h ≤ m + 1.

Thus for h ≤ n, (
√

nxi,h)m+1
i=2 corresponds to (q1q2/n, q3, . . . , qm+1) and since

q1q2/n = q1d ≤ qq2 = q0, by the inductive hypothesis we have

(3.5)
∥∥∥

m+1∑

i=2

√
n xi,h

∥∥∥ ≤ M(m).

Set zh =
∑m+1

i=2 xi,h for h ≤ n. Then (zh)n
h=1 is an identically distributed

block basis of (ei) and hence

‖z1‖ = · · · = ‖zn‖ ≡ a ≤ M(m)√
n

by (3.5).

Since E1 < · · · < Ek, for j ≤ k there are at most two h’s for which
Ej ∩ supp zh 6= ∅ and Ej′ ∩ supp zh 6= ∅ for some j′ 6= j.

For j ≤ k let

Ẽj =
⋃

{supp zh : h ≤ n, supp zh ∩ Ej 6= ∅
and supp zh ∩ Ej′ = ∅ if j 6= j′}.

We let nj be the cardinality of the set of such h’s. Set z =
∑m+1

i=2 xi. Then

since a ≤ M(m)/
√

n, we have ‖Ejz − Ẽjz‖ ≤ 2M(m)/
√

n. Hence

k∑

j=1

‖Ejz‖ ≤ 2M(m)k√
n

+
k∑

j=1

‖Ẽjz‖.

Now
2M(m)k√

n
≤ 2M(m)d√

n
< εm+1 by (3.4).
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Also
k∑

j=1

‖Ẽjz‖ ≤ 2a
√

k δ
( k∑

j=1

nj

)1/2
≤ 2a

√
k δ

√
n by Lemma 3.5.

Thus

1

2
√

k

k∑

j=1

‖Ej(z)‖ ≤ εm+1 + aδ
√

n.

Now a
√

n ≤ M(m) and δ < 1 so this in turn is

< δ
m−1∑

i=0

δi +
m∑

i=1

εi + εm+1 =
m∑

i=1

δi +
m+1∑

i=1

εi.

From the x1 estimate of 1 = δ0 we obtain ‖∑m+1
i=1 xi‖ ≤ M(m + 1) in

Case 2.

Remarks 3.6. A natural question is whether Y contains an a.s. sub-
space. This is true by our next theorem. The argument is motivated by
arguments given in [KOS]. B. Sari has also used a variation of these argu-
ments to prove the following results. First we give some terminology from
[MMT].

Let (xi)
∞
i=1 be a basis for a space X. A normalized basic sequence (di)

n
i=1

is said to be in the nth asymptotic structure of X, and we write (di)
n
i=1 ∈

{X}n, if ∀ε > 0 ∀m1 ∃y1 ∈ span (xi)i≥m1 ∀m2 ∃y2 ∈ span (xi)i≥m2 . . .∀mn

∃yn ∈ span (xi)i≥mn so that (yi)
n
i=1 is (1 + ε)-equivalent to (di)

n
i=1.

X is Asymptotic ℓp if ∃K < ∞ ∀n ∀(di)
n
i=1 ∈ {X}n, (di)

n
i=1 is K-

equivalent to the unit vector basis of ℓn
p . If X is Asymptotic ℓp then X

contains an asymptotic ℓp basis, as defined above [MMT].
Note that we use a capital letter “A” in the above definition in con-

trast to the different notion of asymptotic ℓp from the introduction. If X
is Asymptotic ℓp, one can pass to a block basis which is asymptotic ℓp (see
[MMT]).

X is Asymptotically unconditional if ∃K <∞ ∀n ∀(di)
n
i=1∈{X}n, (di)

n
i=1

is K-unconditional. A
K∼ B means K−1A ≤ B ≤ KA.

Theorem ([Sa]).

(1) Let 1 < p < ∞. If X is Asymptotically unconditional and for some

K < ∞, for all m ≤ n ∈ N and for all disjointly supported nor-

malized vectors (yi)
m
i=1 in span (di)

n
i=1, ‖

∑m
i=1 yi‖ K∼ m1/p, then X is

Asymptotic ℓp.

(2) If X is Asymptotically unconditional and for some K < ∞, for all

n ∈ N and for all (di)
n
i=1 ∈ {X}n, ‖∑n

i=1 di‖ ≥ n/K, then X is

Asymptotic ℓ1.
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Theorem 3.7. Let Z be a Banach space with a basis (zi). Let 1 ≤ p < ∞
and K < ∞. Assume that for all (di)

n
i=1 ∈ {Z}n, ‖∑n

i=1 di‖ K∼ n1/p. Then

every infinite-dimensional subspace of Z contains an asymptotic ℓp basic

sequence.

Corollary 3.8. Every infinite-dimensional subspace of Y = Ti(2; 1/2)
contains an asymptotic ℓ2, hence a.s., subspace.

Recall that a Banach space X is minimal if every subspace of X contains
a further subspace isomorphic to X. For instance, Schlumprecht’s space S
is minimal [S2].

Corollary 3.9. The space Y is not minimal.

Indeed, Corollary 3.8 tell us that every subspace of Y contains an asymp-
totic ℓ2 subspace Z. Since Y does not contain an isomorph of ℓ2 (cf. [CS]),
it follows that Z cannot contain a subsymmetric basic sequence and hence
Y does not embed into Z.

We do not know if Y contains a minimal subspace.

Proof of Theorem 3.7. By standard perturbation arguments we need
only show that every normalized block basis (xi) of (zi) admits a further
block basis which is asymptotically ℓp. We may assume that (zi) is bimono-
tone, by renorming, and that K > 2. Furthermore, by passing to a block ba-
sis of (xi) we may assume ([MMT], [KOS]) that given εn ↓ 0, for X = [(xi)],

(3.6) {X}n = {W}n for all n ∈ N and all block bases (wi) of (xi); here
W = [(wi)].

(3.7) For n ∈ N, if (yi)
n
i=1 is a normalized block basis of (xi)

∞
i=n, then

(yi)
n
i=1 is (1 + εn)-equivalent to some (di)

n
i=1 ∈ {X}n.

Thus, by increasing K, we may assume that

for n ∈ N, if (yi)
n
i=1 is a normalized block basis of (xi)

∞
i=n, then(3.8)

∥∥∥
n∑

i=1

yi

∥∥∥ K∼ n1/p .

Fix m ∈ N and (di)
m
i=1 ∈ {X}m. We will prove that if

∑m
i=1 |ai|p = 1

then

(3.9)
1

2

1

(2K)2
≤

∥∥∥
m∑

i=1

aidi

∥∥∥ ≤ 2(2K)2,

which will complete the proof of the theorem in view of our remarks above.
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We choose ε, δ, δ′ > 0 and N ′ ∈ N to satisfy

0 < ε <
1

8m

1

(2K)2p
,(3.10)

δ =
ε

4Km
,(3.11)

N ′ > 2m

(
2K

δ

)p

,(3.12)

0 < δ′ <
δ

2KN ′
.(3.13)

Let (wi)
∞
i=1 be a normalized block basis of (xi)

∞
i=N ′ so that for all i, if

wi =
∑

bi,jxj then supj |bi,j | < δ′. Such a (wi) exists by virtue of (3.8); one
can let wi be a suitably long average of xj ’s. Given η > 0 we can thus find,
by (3.6), a normalized block basis (yi)

m
i=1 of (wi) which is (1+ η)-equivalent

to (di)
m
i=1. We will prove that (3.9) holds with (di)

m
i=1 replaced by (yi)

m
i=1

and thus obtain (3.9).

Let (ai)
m
i=1 ⊆ R with

∑m
i=1 |ai|p = 1. From our construction we can write

aiyi =
∑ni+1

j=1 yi,j for i ≤ m, where ni ≥ 0 and (yi,j)
ni+1
j=1 is a block basis of

(xi)
∞
i=N ′ , δ ≤ ‖yi,j‖ < δ + δ′ if j ≤ ni and ‖yi,ni+1‖ < δ. Set

N =
∑

i≤m
|ai|≥ε

ni.

It follows from (3.10) and (3.11) that N ≥ 1.

Now we prove that

(3.14) if i ≤ m and |ai| ≥ ε then 1 ≤ ni ≤ (2K/δ)p.

Indeed, suppose that ni ≥ n0 ≡ [[(2K/δ)p]]+1. Then 1≥‖aiyi‖≥ (δ/K)n
1/p
0 −

n0δ
′ from (3.8). (We shrink each of n0 successive yij ’s to have norm exactly

δ at a loss of at most δ′. Note n0 < N ′ so (3.8) applies.) By (3.10) we get
ni ≥ 1.

Now n0δ
′ < (δ/2K)n

1/p
0 since this is equivalent to δ′ < δ/2Kn

1/q
0 (where

1/p + 1/q = 1) and we have

δ′
(3.13)
<

δ

2KN ′

(3.12)
<

δδp

2K2m(2K)p
<

δ

2Kn
1/q
0

where the last inequality holds since n
1/q
0 ≤ n0 < 2m(2K)p/δp. Thus 1 ≥

(δ/2K)n
1/p
0 and so n0 ≤ (2K/δ)p, a contradiction.
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Therefore, by (3.14) and (3.12),

(3.15) N ≤ m

(
2K

δ

)p

< N ′,

(3.16) if i ≤ m and |ai| ≥ ε then |ai| = ‖aiyi‖ >
δ

2K
n

1/p
i .

Indeed, since ni ≤ N < N ′ we can argue as in (3.14) to get

‖aiyi‖ >
δ

K
n

1/p
i − niδ

′.

Now niδ
′ < (δ/2K)n

1/p
i is equivalent to δ′ < δ/2Kn

1/q
i . But by (3.13),

δ′ < δ/2KN ′ < δ/2Kni and so putting this together we obtain (3.16).

We show in turn that

(3.17) if i ≤ m and |ai| ≥ ε then |ai| = ‖aiyi‖ < 2δKn
1/p
i .

Again we have ‖aiyi‖ < δKn
1/p
i + niδ

′ + δ by shrinking each yi,j , j ≤ ni,
to have norm exactly δ at a cost of δ′, and using (3.8) and adding δ for the
term ‖yi,ni+1‖.

We claim that niδ
′ + δ < δKn

1/p
i . Since niδ

′ + δ < 2δ, by ni < N ′ and

(3.13) and since 2δ < δKn
1/p
i this yields (3.17).

Let
m∑′

i=1

aiyi =
∑

|ai|≥ε
1≤i≤m

aiyi,
m∑′′

i=1

aiyi =
∑

|ai|≥ε
1≤i≤m

ni∑

j=1

yi,j .

We claim that

(3.18)
∥∥∥

m∑′′

i=1

aiyi

∥∥∥ ≥ δ

2K
N1/p.

Indeed, by our now familiar method,

∥∥∥
m∑′′

i=1

aiyi

∥∥∥ ≥ δ

K
N1/p − Nδ′;

but Nδ′ < (δ/2K)N1/p since

Nδ′ < N ′δ′
(3.13)
<

δ

2K
<

δ

2K
N1/p.

Thus (3.18) is proved.
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From (3.18) we have

∥∥∥
m∑′′

i=1

aiyi

∥∥∥
p

>

(
δ

2K

)p

N =

(
δ

2K

)p m∑′

i=1

ni

(3.17)
>

1

(2K)p

m∑′

i=1

|ai|p
(2K)p

=
1

(2K)2p

m∑′

i=1

|ai|p >
1 − mε

(2K)2p
.

Thus
∥∥∥

m∑

i=1

aiyi

∥∥∥ >
∥∥∥

m∑′′

i=1

aiyi

∥∥∥−mε−mδ > (1−mε)1/p 1

(2K)2
−2mε

(3.10)
>

1

2

1

(2K)2
.

Next we show

(3.19)
∥∥∥

m∑′

i=1

aiyi

∥∥∥ < 2δKN1/p.

As usual, ‖∑′m
i=1 aiyi‖ < δKN1/p + Nδ′ + mδ and Nδ′ + mδ < (m + 1)δ.

We claim that 2m < KN1/p, which will complete the proof of (3.19). First

note that if |ai| ≥ ε then by (3.17), n
1/p
i > ε/2δK = 2m by (3.11), which

yields (3.19).
Now ∥∥∥

∑

|ai|<ε

aiyi‖ < mε <
1

2

∥∥∥
m∑′

i=1

aiyi

∥∥∥

since
1

2

∥∥∥
m∑′

i=1

aiyi

∥∥∥ >
1

4

1

(2K)2
> mε.

Thus by (3.19), ‖∑m
i=1 aiyi‖ < 3δKN1/p so

∥∥∥
m∑

i=1

aiyi

∥∥∥
p

< 3pδpKp
m∑′

i=1

ni

(3.16)
< 3pKp(2K)p

m∑′

i=1

|ai|p < 3pKp(2K)p,

and this completes the proof.

We do not know if the modified space V1/2,2 or if the modified versions
of Schlumprecht’s space S (see [S]) are a.s. Since their natural bases are
symmetric, our arguments fail. However, we do have the next theorem.

Theorem 3.10. Schlumprecht’s space S is not w.n.a.s.

Recall that S is the completion of c00 under the norm which satisfies the
implicit equation

‖x‖ = max

{
‖x‖∞, sup

1

f(k)

k∑

j=1

‖Ejx‖
}
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where the “sup” is taken over all k ≥ 2 and sets of integers E1 < · · · < Ek

with f(k) = log2(k + 1). It was shown in [KL] that c0 is finitely represented
in S and indeed our proof of Theorem 3.2 was modeled after that construc-
tion. In [M] an alternative “partially nested” construction was used. We
shall follow the proof of Theorem 3.1 in [M] and use his notation to sketch
the proof of Theorem 3.10.

Take p = 1, q = ∞, θk = 1/f(k), nk = k, 1/pk = 1 − logk(1/θk) =
1 − ln f(k)/lnk and 1/qk = ln f(k)/lnk.

In the course of the proof, if n is arbitrary, k0 is chosen so that 1/f(k0) ≤
1/n and then k1 is chosen with f(k0)/f(k1) ≤ 1/n. If we take k0 so that
f(k0) has “order n”, we need k1 to satisfy (basically)

(3.20) f(k1) ≥ n2 .

Also the proof in [M] requires k
1/qk1
0 ≤ 2, which essentially transforms into

(3.21)
n ln f(k1)

ln k1
≤ 1.

Proof of Theorem 3.10 (sketch). For an arbitrary integer n let d = k1

satisfy (3.20) and (3.21). To prove that S is not w.n.a.s. we need only check
the condition for m ≡ nd.

In order to apply Theorem 3.1 of [M] we choose a rapidly increasing
sequence of integers m ≪ q1 ≪ · · · ≪ qn. We shall employ n different
normalized distributions of elements of S. Precisely, for j ≤ n set

vj =
f(qj)

qj

qj∑

i=1

ei

where (ei) is the unit vector basis of S. We then successively repeat each vj

d-times so that altogether we have m = nd vectors to serve as distributions.
We shall compare the norms of two different permutations of a block se-
quence of m vectors with these distributions. Since (ei) is 1-subsymmetric
this will show that S is not w.n.a.s.

Let (yi,j)
d,n
i=1, j=1 be a block basis of (ei) in lexicographic order with yi,j

equal to vj in distribution. For j ≤ n let uj =
∑d

i=1 yi,j . Then

‖uj‖ =
f(qj)dqj

qjf(dqj)
≈ d.

The proof of Theorem 3.1 in [M] yields a constant C, independent of m,
such that (d−1uj)

n
j=1 is C-equivalent to the unit vector basis of ℓn

∞. Thus

(3.22)
∥∥∥

d∑

i=1

n∑

j=1

yi,j

∥∥∥ =
∥∥∥

n∑

j=1

uj

∥∥∥ ≤ Cd =
Cm

n
.
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We next consider a different order. Let (zi,j)
d,n
i=1, j=1 be a block basis

of (ei), ordered with respect to the lexicographic order (j, i), the reverse

coordinates, with zi,j equal in distribution to vj . Set wj =
∑d

i=1 zi,j so that
(wj)

d
j=1 is a block basis of (ei). As before

(3.23)
∥∥∥

d∑

i=1

n∑

j=1

zi,j

∥∥∥ =
∥∥∥

n∑

j=1

wj

∥∥∥ ≥ n

f(n)

d

2
=

1

2

m

f(n)
.

Since m
f(n)

/
m
n = n

f(n) we infer from (3.22) and (3.23) that S is not w.n.a.s.

We conclude more precisely that the constant Cm for m sequences is at least
of the order

√
ln(m)/ln(ln(m)).

Remarks 3.11. Clearly the constant Cm, the w.n.a.s. constant for m
normalized weakly null sequences in S, satisfies Cm ≤ f(m). We can show
that C2 = f(2) with a different construction. Pei-Kee Lin [L] has pointed
out that one can adjust the proof in [KL] to obtain a sequence in S whose
spreading model is isometric to ℓ1. Indeed in [KL] it was shown that for every
ε > 0 there exists a rapidly increasing sequence of integers, (pk)

∞
k=1, so that if

uj =
f(pj)

pj

pj∑

i=1

ei

then for all n there exist disjointly supported vectors (vj)
n
j=1 in S, each

of the same distribution as uj , with ‖∑n
j=1 vj‖ ≤ 1 + ε. One can choose

scalars (ak)
∞
k=1 ⊆ (0, 1) converging to 1 so that ‖zn‖ < 1 and ‖zn‖ → 1 if

zn =
∑n

j=1 ajvj . It follows that any block basis (x1
n) with distributionx1

n =
distribution zn has spreading model 1-equivalent to the unit vector basis
of ℓ1. If we let (x2

n) be a block basis with distributionx2
n = distributionun,

then the w.n.a.s. constant for these two sequences is f(2). Finally, we note
that since S is minimal [S2], no subspace of S is w.n.a.s.

4. Tsirelson’s space is not iteration stable. No good criterion is
known which forces a Banach space X to be isomorphic to a stable space.
Attempting to find such a criterion, H. Rosenthal has asked if it might be
true that every asymptotically symmetric and iteration stable space X is
isomorphic to a stable space. In this regard he asked us if T is iteration
stable. In this section we show that it is not. First we give the relevant
definitions.

Definition 4.1. A sequence (xn) in a Banach space X is type deter-

mining if for all x ∈ X,
lim

n→∞
‖x + xn‖ exists.

Definition 4.2 (H. Rosenthal). A Banach space X is iteration stable if
for all type determining sequences (xn) and (yn) in X,

lim
n→∞

lim
m→∞

‖xn + ym‖ exists.
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Iteration stability is another softening of the definition of stability.

Theorem 4.3. Tsirelson’s space T is not iteration stable.

We recall that T is the completion of c00 under the norm satisfying the
implicit equation

‖x‖ = max

(
‖x‖∞, sup

1

2

n∑

i=1

‖Ex‖
)

where the “sup” is taken over all n ≥ 2 and n ≤ E1 < · · · < En. The
unit vector basis (ei) is a normalized 1-unconditional basis for the reflexive
space T . For k ≥ 2 we set

‖x‖k = sup
1

2

k∑

i=1

‖Eix‖

where the “sup” is taken over all k ≤ E1 < · · · < Ek.

Proof of Theorem 4.3. For n ≥ 2 let

zn =
2

n2

n2∑

i=1

en3+i

so that ‖zn‖ = 1 and zn is an ℓn
1 -average with constant 1. Precisely, zn =

(1/n)
∑n

j=1 zn,j where zn,j = (2/n)
∑n

i=1 en3+(j−1)n+i for j ≤ n. The se-

quence (zn,j)
n
j=1 is 1-equivalent to the unit vector basis of ℓn

1 . A standard
calculation yields

(4.1) lim
n

‖zn‖k =
1

2
for all k ≥ 2.

For n ∈ N we set

xn =

{
en3 + 1

4en3+1, n odd,

en3 + 1
4zn, n even.

We let ym = 1
2

∑4
i=1 em+i for m ∈ N.

The sequence (yn) is normalized and clearly type determining. Also
‖xn‖ = ‖xn‖∞ = 1 for all n. Moreover for k ≥ 2, n ∈ N,

(4.2) ‖xn‖k ≤ 1

2

(
1 +

1

2

)
=

3

4
.

Note that

lim
n odd

lim
m

‖xn + ym‖ =
1

2

(
1 +

1

4
+ 2

)
=

13

8
,

lim
n even

lim
m

‖xn + ym‖ =
1

2

(
1 +

1

2
+ 2

)
=

14

8
.

We shall show that (xn) is type determining and this will complete the
proof. To do this we verify by induction on l that limn→∞ ‖x + xn‖ exists
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for all x ∈ span(ei) with |suppx| ≤ l. The case l = 0 holds since ‖xn‖ = 1
for all n so assume it holds for l and let |suppx| = l + 1.

We may assume that suppx < suppxn and we define

S(x + xn) = sup
k≤max(supp x)

sup
1

2

k∑

i=1

‖Ei(x + xn)‖

where the second “sup” is taken over all 2 ≤ k ≤ E1 < · · · < Ek with
E1 ∩ suppx 6= ∅. We will show that

(4.3) lim
n→∞

S(x + xn) exists.

Observe that for any n,

‖x + xn‖ = max{‖x + xn‖∞, S(x + xn)}.
Indeed, if k ≤ E1 < · · · < Ek with suppx < E1, then by (4.2),

1

2

k∑

i=1

‖Ei(x + xn)‖ ≤ ‖xn‖k ≤ 3

4
< ‖xn‖∞.

Thus (4.3) will complete the proof.

To prove (4.3) we will show that we can balance the various types of
splitting of x + xn by (Ei)

k
i=1 between n odd and n even. There is no need

to consider splittings such that the last set Ek intersects suppx since that
case is covered by the induction hypothesis. Also any values obtained for
S(x + xn) resulting from splittings for n odd can be treated by a similar
splitting for n even, considering 1

4zn as a single element. We need to show

that limn even S(x + xn) cannot be greater than limn odd S(x + xn).

Take a splitting (Ei)
k
i=1 giving rise to S(x + xn) for n even.

Case 1: There exists i0 < k such that maxEi0 = n3. Thus the support
of zn is split into k − i0 intervals, k ≤ max supp x. By (4.1) this presents no
problem as we can obtain the same values for n odd (as n → ∞).

Case 2: There exists i0 < k with n3 ∈ suppEi0 and Ei0 ∩ supp zn 6= ∅.
By the triangle inequality,

1

2

k∑

i=1

‖Ei(x + xn)‖

≤ 1

2

i0−1∑

i=1

‖Eix‖ +
1

2
‖E′

i0(x + xn)‖ +
1

2
‖E′′

i0xn‖ +
1

2

k∑

i=i0+1

‖Eixn‖

where Ei0 = E′
i0
∪E′′

i0
, E′

i0
< E′′

i0
and maxE′

i0
= n3. The new splitting might

not be admissible but j = k − i0 + 1 ≤ max suppx, and again by (4.1), the
value for the new splitting behaves in the limit as an admissible splitting
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(E1, . . . , Ei0−1, E
′
i0

, E) where E = E′′
i0
∪ ⋃k

i=i0+1 Ei. This last splitting can
be mimicked to yield the same value for n odd.

Remark 4.4. Our proof depends upon using vectors whose norm is given
by ‖ · ‖∞. In regard to Rosenthal’s question it is of interest to determine
if T contains iteration stable subspaces. Accordingly we have the following
partial result.

Proposition 4.5. Let X ⊆ T be an infinite-dimensional subspace so

that for all 0 6= x ∈ X, ‖x‖ 6= ‖x‖∞. If (xn), (yn) ⊆ X are weakly null

sequences, limn ‖xn‖ exists and (yn) is type determining , then

(4.4) lim
n→∞

lim
m→∞

‖xn + ym‖ exists.

Proof. We may assume that ‖xn‖ = 1 for all n. Also, to prove (4.4) we
can freely pass to subsequences of (yn) and so we may assume that for all k,

(4.5) lim
m

‖ym‖k = λ(k) exists.

By perturbing we may assume that (xn) and (ym) are block bases of (ei).

Since ‖ym‖k≤‖ym‖k+1 when supp ym > k, it follows that λ(k) ≤ λ(k+1)
≤ limm ‖ym‖ for all k. Let λ(k) ↑ λ. We prove

(4.6) lim
n

lim
m

‖xn + ym‖ = (1 + λ) ∨ lim
m

‖ym‖,

which yields (4.4).

Let ε > 0 and choose k ∈ N with λ(k) > λ − ε. Choose t ∈ N so that
if t ≥ t and

∑t
i=1 |ai| = 1 then there exists F ⊆ {1, . . . , t} with |F | = k

and
∑

i∈F |ai| < ε. Let n be such that suppxn > t. Choose m0 so that for

m ≥ m0,
∣∣‖ym‖k − λ(k)

∣∣ < ε.

We will prove first that

(4.7) lim
m

‖xn + ym‖ > (1 + λ − 2ε) ∨ lim
m

‖ym‖.

Let 1 = ‖xn‖ = 1
2

∑t
i=1 ‖Eixn‖ for some t ≥ t and t ≤ E1 < · · · < Et.

Let m ≥ m0 so that suppxn < supp ym and choose min(supp ym) ≤ F1 <

· · · < Fk with ‖ym‖k = 1
2

∑k
i=1 ‖Fiym‖. By deleting the smallest k terms

from 1
2

∑t
i=1 ‖Eixn‖ and replacing them by 1

2

∑k
i=1 ‖Fiym‖ we obtain

‖xn + ym‖ ≥ 1 − ε + ‖ym‖k > 1 + λ − 2ε

and (4.7) follows.

We next prove that

(4.8) lim
m

‖xn + ym‖ < (1 + λ + ε) ∨ lim
m

‖ym‖,

which will complete the proof of (4.6). Let suppxn <supp ym and ‖xn + ym‖
= 1

2

∑t
i=1 ‖Gi(xn + ym)‖ where t ≥ t and t ≤ G1 < · · · < Gt. Suppose there
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does not exist i0 with Gi0xn 6= 0 and Gi0ym 6= 0. Then

‖xn + ym‖ ≤ ‖xn‖ + ‖ym‖k(m)

where k(m) ≤ t. If this occurred for infinitely many m’s we would obtain
limm ‖xn + ym‖ ≤ (1 + λ) ∨ limm ‖ym‖. Suppose such a Gi0 exists. Split
Gi0 = G′

i0
∪G′′

i0
with G′

i0
< G′′

i0
and Gi0xn = G′

i0
xn. We now have t + 1 sets

in the sum

1

2

i0−1∑

i=1

‖Gixn‖ + ‖G′
i0xn‖ + ‖G′′

i0ym‖ +
t∑

i=i0+1

‖Giym‖.

If we delete the smallest term we have t sets after coordinate t and so for
some l(m) ≤ max suppxn,

‖xn + ym‖ ≤ ‖xn‖ + ‖ym‖l(m) + ε.

Again, letting m → ∞, we obtain (4.8).
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