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Automatic continuity of operators

commuting with translations

by

J. Alaminos, J. Extremera and A. R. Villena (Granada)

Abstract. Let τX and τY be representations of a topological group G on Banach
spaces X and Y , respectively. We investigate the continuity of the linear operators
Φ : X → Y with the property that Φ ◦ τX(t) = τY (t) ◦ Φ for each t ∈ G in terms of
the invariant vectors in Y and the automatic continuity of the invariant linear functionals
on X.

1. Introduction. Numerous interesting operators arising in mathemat-
ical analysis, as well as in mathematical physics, have the property of com-
muting with a group of meaningful transformations. Specifically a lot of
attention has been paid to the operators which commute with translations
on the classical translation-invariant topological linear spaces F(G) of func-
tions (or distributions) over some locally compact group G. A basic task
is to derive a suitable representation for all such operators. As a matter
of fact, it is well known that those linear operators Φ : Lp(Rn) → Lq(Rn),
1 ≤ p, q ≤ ∞, commuting with translations which, in addition, are contin-
uous, are necessarily representable in the form Φ(f) = k ⋆ f for a unique
tempered distribution k (see [29, Section I.3]). Thus verifying the automatic
continuity of operators of this kind has become a subject of lively interest
which has been developed even for linear operators Φ : X → Y which com-
mute with translations, where X and Y are Banach spaces on which G acts
as a group of continuous transformations. In this context, it is worth empha-
sizing the results by B. E. Johnson [16] and G. A. Willis [34]. Willis showed
that if G is a locally compact group which contains F2 as a closed subgroup,

then every linear operator Φ : X → L1(G) which commutes with translations

is continuous for each representation of G on a Banach space X. Johnson
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considered the question whether, given bounded representations of a locally
compact abelian group G on Banach spaces X and Y , every linear operator
Φ : X → Y which commutes with translations is continuous. Moreover, it is
shown that every linear operator Φ : X → Y which commutes with transla-

tions is continuous if and only if every γ-covariant linear functional on X
is continuous whenever γ is a character of G such that there is a non-zero

vector in Y on which G acts by scalar multiplication corresponding to γ.
The automatic continuity of linear operators commuting with transla-

tions sometimes subsumes the uniqueness of invariant norms. This is a sub-
ject which started with the seminal paper by K. Jarosz [13] on L1(R) and
Lp(T) (1 ≤ p ≤ ∞) and it has been successfully carried out for arbitrary lo-
cally compact abelian groups [7, 31] and for non-abelian compact groups [8].
In [32] we investigated the uniqueness-of-invariant-norm problem for an ar-
bitrary Banach space (X, ‖ · ‖) on which a compact group G acts as a group
of continuous transformations. The problem was to decide whether each
complete norm | · | on X which is well-behaved with respect to the transfor-
mations of G is necessarily equivalent to the norm ‖ · ‖.

On the other hand, it turns out that both the automatic continuity of
linear operators which commute with translations and the uniqueness-of-
invariant-norm problem are closely related to the problem of determining
whether or not there are discontinuous translation invariant linear function-
als. This latter question was raised by G. H. Meisters [20] for the spaces F(G)
and has been much studied (see [21] and [23] for the best general source of
information in this area). It is important to note here that Meisters asked
in [21, Section 6] whether it is possible to establish a general result of this
type: if the translation-invariant linear functionals on F(G) are automati-

cally continuous, then so are the linear operators Φ : F(G) → F(G) which

commute with translations. This connects to Johnson’s result because the
class of covariant linear functionals is just a little different from the class of
invariant linear functionals and, in fact, we shall show later that for most of
the spaces F(G) the automatic continuity of the covariant linear functionals
is equivalent to the automatic continuity of the invariant linear functionals.

We are interested in investigating the problem of the automatic continu-
ity of the linear operators Φ : X → Y which commute with translations in
the sense that Φ ◦ τX(t) = τY (t) ◦Φ for each t in a given group G, where τX
and τY are representations of G on the Banach spacesX and Y , respectively.

In Section 2 we review some of the standard facts on representations
of groups on Banach spaces, the uniqueness-of-invariant-norm problem, and
automatic continuity.

Section 3 deals with locally compact abelian groups. We begin by dis-
cussing how Johnson’s theorem [16] characterizes the automatic continuity
of linear operators which commute with translations in terms of the so-called
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scalar modules and covariant linear functionals. Then we derive an interest-
ing characterization of the automatic continuity of those operators which
are well-behaved with respect to a flow on a Riemannian manifold in terms
of the equilibrium points of the dynamical system.

Section 4 is intended as an attempt to obtain the basic principle which
characterizes the automatic continuity of linear operators which commute
with translations in non-abelian context. We first provide what we consider
the appropriate non-abelian version of the scalar modules and covariant
linear functionals. For a representation τ of a topological group G on a
Banach spaceX we consider the representations π⊗τ of G on Hπ⊗X, where
π ranges over the finite-dimensional irreducible unitary representations of
G and Hπ is the representation space of π. A discontinuous linear operator
Φ : X → Y which commutes with translations is shown to exist in the case
when there is, for some π, a non-zero π ⊗ τ -invariant vector in Hπ ⊗ Y and
a discontinuous π⊗ τ -invariant linear functional on Hπ ⊗X. We then prove
that the converse is even true for some spaces Y and some groups.

In Section 5 we examine how the compactness of the group affects the
problem. It turns out that there is a strong dichotomy in the answer to the
question depending on whether the group is compact or not. For a compact
group we obtain interesting characterizations of the automatic continuity of
linear operators which commute with translations, and we illustrate the use-
fulness of our characterization when considering the Banach spaces Lp(Ω),
where Ω is a compact Hausdorff space equipped with a positive Radon mea-
sure on which G acts as a group of measure-preserving transformations. We
also discuss the usefulness of Kazhdan’s property (T) for investigating the
problem.

Let us finally remark that we generalize a number of the main results
from [7, 8, 32].

2. Preliminaries

2.1. Representations. Let L(X) denote the Banach algebra of all contin-
uous linear operators on a given non-zero complex Banach space X, and let
X∗ be the topological dual space of X. Let X∗ be any linear subspace in X∗.
As usual, σ(X,X∗) stands for the coarsest topology on X for which each
of the functionals in X∗ is continuous. For every T ∈ L(X), T ∗ ∈ L(X∗)
stands for the adjoint operator of T .

A representation of a group G on a Banach space X is a group homo-
morphism τ : G → L(X) from G into the group of all invertible elements
of L(X). For all t ∈ G and x ∈ X we call τ(t)x the translate of x by t.
The representation is said to be bounded if there exists a constant C such
that ‖τ(t)‖ ≤ C for each t ∈ G and, in this situation, X becomes a Ba-
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nach G-module in the sense of [16]. It is worth pointing out that by defining
|x| = supt∈G ‖τ(t)x‖ for each x ∈ X we obtain a norm on X which is
equivalent to ‖ · ‖ and, with respect to this new norm, τ(G) consists of
isometries. In the case when G is a topological group, the representation
is said to be strongly continuous if the map t 7→ τ(t)x is continuous for
each x ∈ X. Let X∗ be a linear subspace of X∗. We call the representation
σ(X,X∗)-continuous if the function t 7→ ξ(τ(t)x) is continuous on G for all
x ∈ X and ξ ∈ X∗. Of course, every strongly continuous representation is
σ(X,X∗)-continuous.

Let τX and τY be representations of a group G on Banach spaces X
and Y . Then a linear operator Φ : X → Y is said to commute with transla-

tions if

Φ(τX(t)x) = τY (t)(Φ(x))

for all x ∈ X and t ∈ G.

In the representation theory of topological groups, the unitary repre-
sentations play a predominant rôle. As usual, a unitary representation of a
topological group G is a strongly continuous representation π of G on some
Hilbert space Hπ such that π(G) consists of unitary operators. The unitary
representation π is said to be irreducible if the only closed subspaces of Hπ

that are invariant under π(G) are the trivial ones, that is, {0} and Hπ. Two
unitary representations π and π′ of G are said to be equivalent if there is a
unitary operator U : Hπ → Hπ′ such that Uπ(t) = π′(t)U for each t ∈ G.
We shall denote by [π] the class of an irreducible unitary representation π
of G. The set of equivalence classes of irreducible unitary representations of
G is called the dual space of G and is denoted by Ĝ. We denote by ĜFIN

the subset of Ĝ consisting of finite-dimensional representations.

Let G be a locally compact group. We denote by M(G) the Banach
space of all bounded complex-valued regular Borel measures on G. Recall
that M(G) is a Banach ∗-algebra with the product given by convolution

⋆ and involution given by µ∗(E) = µ(E−1) for all µ ∈ M(G) and E ⊂ G
measurable. As usual, the Banach algebra L1(G) of all (Haar-)integrable
complex-valued functions (or rather, equivalence classes thereof) on G is
identified with the two-sided ideal Mac(G) of M(G) consisting of measures
which are absolutely continuous with respect to Haar measure. Let Mf(G)
stand for the subalgebra of M(G) consisting of discrete measures with finite
support. For every t ∈ G, δt stands for the point mass measure at t. Every
unitary representation π of G determines a norm-decreasing unital algebra
∗-homomorphism π̃ from the Banach algebra M(G) into the C∗-algebra
L(Hπ) which is defined by

π̃(µ) =
\
G

π(t) dµ(t)
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for each µ ∈ M(G). Furthermore, if [π] ∈ ĜFIN, then the restriction of
π̃ to Mf(G) gives an algebraically irreducible representation of Mf(G) on
the finite-dimensional space Hπ and so the Jacobson density theorem yields
π̃(Mf(G)) = L(Hπ).

2.2. The uniqueness-of-norm problem. The uniqueness-of-norm problem
is a classical topic in automatic continuity theory, which has been mainly
developed in the context of Banach algebras. The most important result in
this area is the famous theorem by B. E. Johnson [15] that every semisimple
Banach algebra (such as L1(G) for any locally compact group G) carries
a unique Banach algebra norm. Recently quite a lot of attention has been
paid to the question of whether classical Banach spaces related to a locally
compact groupG, such as Lp(G) with 1 ≤ p ≤ ∞, carry a unique translation-
invariant norm.

Let τ be a representation of a group G on a Banach space (X, ‖ · ‖). We
call a complete norm | · | on X topologically invariant/invariant if τ(G) is a
subset/bounded subset of L(X, | · |). Following [32], we say that X carries
a unique topologically invariant/unique invariant norm if every topologi-
cally invariant/invariant norm on X is necessarily equivalent to ‖ · ‖. We
already know [7, 8, 32] that the uniqueness-of-invariant-norm problem is
closely related to the existence of non-zero invariant elements and discon-
tinuous invariant linear functionals. Recall that if τ is a representation of a
topological group G on a Banach space X, then an element x ∈ X is said
to be τ -invariant if τ(t)x = x for each t ∈ G, and that a linear functional φ
on X is said to be τ -invariant if φ(τ(t)x) = φ(x) for all x ∈ X and t ∈ G.
We shall sometimes use the term invariant instead of τ -invariant in the case
where no confusion can arise about the meaning of the representation. On
the other hand, when considering a left regular representation of G on a
Banach space F(G) of functions (or Radon measures) on G, it is customary
to use the term translation-invariant rather than invariant.

Remark 1. It would be tempting to define the invariant norms as those
complete norms |·| onX for which τ(G) is a subgroup of the group Iso(X, |·|)
of isometries of the Banach space (X, | · |). According to this temporary
definition, one may ask whether it is now true that | · | = c‖ · ‖ for some
constant c > 0. This is far from being true. It is known [13] that any complete
norm on L2(T) making rotations continuous is equivalent to the classical
norm ‖ · ‖2. Nevertheless, the norm | · | = ‖ · ‖2 + ‖ · ‖1 on L2(T) makes
rotations isometric and the property | · | = c‖ · ‖2 fails to be true for each
c > 0. Thus, even when we restrict our attention to this narrower notion of
invariance, the uniqueness of norm has to be understood up to equivalence.
On the other hand, it should be taken into account that there is a complete
norm |·| onX which is equivalent to ‖·‖ and such that (X, |·|) has only trivial
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isometries [14]. Finally, it is easily shown that the subgroups of Iso(X, | · |)
with | · | equivalent to ‖ · ‖ are nothing but the bounded subgroups of the
group Inv(L(X, ‖ · ‖)) of invertible operators of L(X, ‖ · ‖).

2.3. Automatic continuity. When studying the automatic continuity of
linear operators which commute with translations we become involved with
the so-called stability lemma. Recall that the separating space S(Φ) of a
linear map Φ from a Banach space X into a Banach space Y is defined by

S(Φ) = {y ∈ Y : there exists (xn) → 0 in X with (Φ(xn)) → y}.

The separating space is a closed subspace of Y . Moreover, it is an immediate
restatement of the closed graph theorem that Φ is continuous if and only if
S(Φ) = {0}. Another standard fact that we shall use is that ΨΦ is continuous
if and only if Ψ(S(Φ)) = {0} whenever Ψ is any continuous linear operator
from Y into another Banach space Z. We refer the reader to [4], where the
basic properties of the separating space are explored.

Lemma 1 (Stability lemma). Let X and Y be Banach spaces, and let

(Sn) and (Tn) be sequences of continuous linear operators on X and Y ,
respectively. If Φ is a linear map from X into Y such that TnΦ = ΦSn for

each n ∈ N, then there exists N ∈ N such that

(T1 · · ·Tn)(S(Φ)) = (T1 · · ·TN )(S(Φ))

for each n ≥ N .

In order to put the stability lemma into action we shall need the following
result.

Lemma 2. Let G be a locally compact group. If Σ is a non-empty set

of finite-dimensional pairwise non-equivalent irreducible unitary representa-

tions of G, then one of the following assertions holds:

(i) There exists µ ∈ Mf(G) such that the set {π ∈ Σ : π̃(µ) 6= 0} is

non-empty and finite.

(ii) There exist sequences (πn) in Σ and (µn) in Mf(G) such that

π̃n(µn ⋆ · · · ⋆ µ1) 6= 0 and π̃n(µn+1 ⋆ · · · ⋆ µ1) = 0

for each n ∈ N.

Proof. This result is derived from [32, Lemma 4.2]. However, there is one
apparently technical difficulty: all results from [32] are stated for the situa-
tion when G is compact. Indeed, just a quick glance through [32, Subsection
4.1] shows that the same reasoning also applies to the case when we are con-
cerned with finite-dimensional representations. Accepting this statement we
can prove our lemma as follows.

If Σ is finite, then assertion (i) holds true with µ = δe, where e stands
for the identity of G.
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We now assume that Σ is infinite. Retaining the notation of [32, Lemma
4.2] we consider the set

Π = {π ∈ Σ : ∃µ with π̃(µ) 6= 0 and σ̃(µ) = 0 ∀σ ∈ Σ \ {π}}.

It is clear that Π = ∅ in the case where the first assertion in the lemma
fails to hold. In such a case, according to the proof of [32, Lemma 4.2], it
follows that we can construct sequences (πn) and (µn) satisfying the second
assertion.

3. Abelian groups and dynamical systems. In this section we are
concerned with a locally compact abelian group G. Then every irreducible
unitary representation of G is 1-dimensional and so it corresponds naturally
to a group homomorphism from G into T. Thus Ĝ is identified with the
group of continuous group homomorphisms from G into T (which is the

usual meaning of Ĝ when G is abelian). We write GDIS for the group G
viewed as a discrete group.

3.1. Johnson Theorem. B. E. Johnson introduced in [16] the notion ofG-
module. Recall that a Banach G-module, for a given locally compact abelian
group G, is a Banach space X equipped with a mapping (t, x) 7→ t · x from
G×X into X such that

(i) x 7→ t · x is linear on X for each t ∈ G;
(ii) s · (t · x) = (st) · x for all s, t ∈ G and x ∈ X;
(iii) e · x = x for each x ∈ X, where e stands for the identity of G;
(iv) there exists K > 0 with ‖t · x‖ ≤ K‖x‖ for all t ∈ G and x ∈ X.

A G-submodule of X is a closed linear subspace M of X with G ·M ⊂ M .
The G-submodule M is said to be scalar if for each t ∈ G there is γ(t) ∈ C

with t ·x = γ(t)x for all t ∈ G and x ∈M . It should be noted that γ is then
a group homomorphism from G into T. We call a vector x ∈ X γ-scalar
if t · x = γ(t)x for each t ∈ G. A linear functional φ on X is said to be
γ-covariant if φ(t · x) = γ(t)φ(x) for all x ∈ X and t ∈ G.

Let X and Y be Banach G-modules. Then a linear operator Φ : X → Y
is a G-module homomorphism if Φ(t · x) = t · Φ(x) for all t ∈ G and x ∈ X.

Theorem 3 ([16, Theorem 4.1 and Corollary 4.2]). Let G be a locally

compact abelian group, let X, Y be Banach G-modules, and let Φ : X → Y
be a G-module homomorphism. Then S(Φ) is the direct sum of a finite

number of scalar G-submodules of Y . Moreover , the following assertions

are equivalent :

(i) Every G-module homomorphism Φ : X → Y is continuous.

(ii) Every γ-covariant linear functional on X is continuous whenever

γ ∈ ĜDIS is such that there exists a non-zero γ-scalar vector in Y .
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It is clear that the notion of Banach G-module is equivalent to that
of bounded representation of G on a Banach space. Of course, G-module
homomorphisms are just the linear maps which commute with translations,
and thus the last part of Theorem 3 can be rephrased as follows.

Corollary 4. Let τX and τY be bounded representations of a locally

compact abelian group G on Banach spaces X and Y , respectively. Then the

following assertions are equivalent :

(i) Every linear operator Φ : X → Y which commutes with translations

is continuous.

(ii) Every γ-covariant linear functional on X is continuous whenever

γ ∈ ĜDIS is such that there exists a non-zero γ-scalar vector in Y .

Corollary 5. Let τX be a bounded representation of a locally compact

abelian group G on a Banach space X. Then the following assertions are

equivalent :

(i) Every linear operator Φ : X → Y which commutes with translations

is continuous for each bounded representation τY of G on a Banach

space Y .

(ii) Every γ-covariant linear functional on X is continuous for each γ ∈

ĜDIS.

Proof. By Corollary 4, it is clear that (ii) implies (i). On the other hand,
if we consider the regular representation of G on ℓ∞(G), then γ ∈ ℓ∞(G)

is γ-scalar for each γ ∈ ĜDIS. Thus in the case where (ii) fails Corollary 4
shows that there is a discontinuous linear operator Φ : X → ℓ∞(G) which
commutes with translations.

Corollary 6. Let τY be a bounded representation of a locally compact

abelian group G on a Banach space Y . Then the following assertions are

equivalent :

(i) Every linear operator Φ : X → Y which commutes with translations

is continuous for each bounded representation τX of G on a Banach

space X.

(ii) The only γ-scalar vector of Y is {0} for each γ ∈ ĜDIS.

Proof. By Corollary 4, (ii) implies (i).
Let τ be the regular representation of G×Z on ℓ∞(G×Z). Then [36, The-

orem 6] gives a discontinuous τ -invariant linear functional φ on ℓ∞(G× Z).
We now consider ℓ∞(G × Z) equipped with the representation τ ′ of G on
ℓ∞(G× Z) given by τ ′(t)x = τ(t, 0)x for all t ∈ G and x ∈ ℓ∞(G× Z). Let

γ ∈ ĜDIS. For every x ∈ ℓ∞(G× Z) we define a function γ · x ∈ ℓ∞(G× Z)
by (γ ·x)(t, k) = γ(t)x(t, k) for each (t, k) ∈ G×Z. Our goal is to show that
the linear functional ψ on ℓ∞(G × Z) defined by ψ(x) = φ(γ · x) for each
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x ∈ ℓ∞(G×Z) is γ-covariant and discontinuous. If t ∈ G and x ∈ ℓ∞(G×Z),
then

ψ(τ ′(t)x) = φ(γ · τ(t, 0)x) = φ(γ(t)τ(t, 0)(γ · x)) = γ(t)φ(γ · x) = γ(t)ψ(x).

On the other hand, if (xn) is a sequence in ℓ∞(G× Z) with limxn = 0 and
limφ(xn) 6= 0, then it is easily seen that lim γ · xn = 0 and that ψ(γ · xn) =
φ(xn), which gives the discontinuity of ψ. Hence, if (ii) fails, then Corollary 4
shows that there is a discontinuous linear operator Φ : ℓ∞(G×Z) → Y which
commutes with translations.

Corollary 7. Let τ be a bounded representation of a locally compact

abelian group G on a Banach space X. Then the following assertions are

equivalent :

(i) X carries a unique invariant norm.

(ii) Every γ-covariant linear functional on X is continuous whenever

γ ∈ ĜDIS is such that there exists a non-zero γ-scalar vector in X.

Proof. Assume that (ii) holds, and let | · | be an invariant norm on X.
Then we can apply Corollary 4 to infer that the identity map from (X, ‖ · ‖)
onto (X, | · |) is continuous. This clearly implies that both norms are equiv-
alent.

We now assume that x0 ∈ X is a non-zero γ-scalar vector and that φ is
a discontinuous γ-covariant linear functional on X. Then we take α ∈ C \
{0, φ(x0)}. It is easily seen that the map x 7→ αx−φ(x)x0 is a discontinuous
invertible linear operator from X onto itself, and therefore we can define a
complete norm |·| onX which is not equivalent to ‖·‖ by |x| = ‖αx−φ(x)x0‖
for each x ∈ X. Since τ(t)x0 = t · x0 = γ(t)x0 for each t ∈ G, we have

|τ(t)x| = ‖ατ(t)x− φ(τ(t)x)x0‖ = ‖ατ(t)x− φ(x)γ(t)x0‖

= ‖τ(t)(αx− φ(x)x0)‖ ≤ K‖αx− φ(x)x0‖ = K|x|

for all x ∈ X and t ∈ G, which shows that | · | is an invariant norm on X.

Remark 2. Under the assumptions of Theorem 3 and Corollaries 4–7 a
mild continuity hypothesis on the map t 7→ t · y (y ∈ Y ) would imply that
scalar submodules of Y correspond to continuous group homomorphisms,
and then all of those results would apply with ĜDIS replaced by Ĝ.

Remark 3. It is worth pointing out that the automatic continuity of
the invariant linear functionals on X is far from being sufficient to charac-
terize either the continuity of linear operators from X which commute with
translations or the uniqueness of invariant norm on X for all Banach G-
modulesX. Indeed, let G be a locally compact abelian group, let γ ∈ Ĝ\{1},
and consider an infinite-dimensional Banach space X. We endow X with the
representation τ given by τ(t)x = γ(t)x for all t ∈ G and x ∈ X. It is easily
checked that the element 0 is the only invariant element of X, and that the
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functional 0 is the only invariant linear functional on X. Nevertheless it is
clear that every function of X is γ-scalar and that every linear functional
on X is γ-covariant. Since X is infinite-dimensional there is a discontinuous
linear functional on X, and so Corollary 7 shows that X does not carry a
unique invariant norm. In particular the identity map from X into itself,
when endowed with some suitable norm, is a discontinuous linear operator
which commutes with translations.

3.2. Dynamical systems. We now apply the results in the preceding sec-
tion to show the significance of the dynamical systems in automatic conti-
nuity theory. In the following, (M, 〈·, ·〉) denotes a finite-dimensional Rie-
mannian manifold, ω stands for its associated Riemannian density, and µ
stands for the induced measure on M.

Suppose that ϕ is a diffeomorphism from M onto itself. Then there exists
a unique smooth function Jϕ on M such that the pull-back ϕ∗ω of ω by
ϕ is given by ϕ∗ω = (Jϕ)ω. The function Jϕ is the so-called Jacobian

determinant of ϕ. If f ∈ L1(M), then (f ◦ ϕ)|Jϕ| ∈ L1(M) and\
M

f(p) dµ(p) =
\
M

f(ϕ(p))|(Jϕ)(p)| dµ(p).

The evolution of a physical system may be described by a flow on a
Riemannian manifold M. This is a smooth map F : R × M → M such that

F(s,F(t, p)) = F(s+ t, p) and F(0, p) = p

for all s, t ∈ R and p ∈ M. We thus obtain a one-parameter group of
diffeomorphisms from M onto itself given by (Ft)t∈R, where Ft is defined
by Ft(p) = F(t, p) for all t ∈ R and p ∈ M. It is usually not F that is
given, but rather the law of motion. In other words, differential equations
are given that we must solve to find the flow. These equations of motion
have the form

γ′(t) = X(γ(t)), γ(0) = p,

where X is a smooth vector field on M; X is called the infinitesimal generator

of F . The curve t 7→ F(t, p) is nothing else than the solution of the preceding
equation for each p ∈ M. Let us also recall that the vector field X is said
to be conservative if there exists a smooth function U : M → R, a potential,
such that

〈u,X(p)〉p = −dU(p)(u)

for all p ∈ M and u ∈ TpM. The vector field X is said to be incompressible

or divergence free if div X = 0, where the divergence div X of X is the only
smooth function on M with the property that the Lie derivative of ω along
X equals (div X)ω. This is equivalent to the property that JFt = 1.

In preparation for the following results, we point out that JFt > 0 for
each t ∈ R. Indeed, since Ft is a diffeomorphism, JFt is nowhere zero; since
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it is continuous in t and equals 1 at t = 0, it is positive for each t ∈ R. The
flow F on the manifold M induces a representation τ of R on the Banach
space Lp(M) given by

τ(t)f = (f ◦ F−t)(JF−t)
1/p

for each 1 ≤ p ≤ ∞ (with the usual convention 1/∞ = 0). If X is in-
compressible, then (Ft)t∈R is a one-parameter group of measure-preserving
diffeomorphisms.

We refer the reader to [1] for the details about integration and dynamical
systems on manifolds.

Lemma 8. Let (M, 〈·, ·〉) be a finite-dimensional Riemannian manifold ,
let F be a flow on M whose infinitesimal generator X is incompressible, and

let 1 ≤ p ≤ ∞. Suppose that the measure of the set {p ∈ M : X(p) = 0}
of equilibrium points is different from zero. Then there are an invariant

non-zero function in Lp(M) and a discontinuous invariant linear functional

on Lp(M). Accordingly , there is a discontinuous invertible linear operator

from Lp(M) onto itself which commutes with translations.

Proof. We begin by showing the existence of the invariant function. In
the case where p = ∞ it suffices to take the function 1 (note that neither the
incompressibility nor the condition µ({p ∈ M : X(p) = 0}) > 0 are required
at all in this case). If 1 ≤ p < ∞, then we can take f ∈ Lp(M) \ {0} which
vanishes on {p ∈ M : X(p) 6= 0}. Since Ft(p) = p for each t ∈ R and each
equilibrium point p, it follows immediately that f ◦ Ft = f for each t ∈ R.

We now prove the existence of the functional. Consider the closed subset
N of M defined by N = {p ∈ M : X(p) = 0} equipped with the measure
induced by M. Let ψ : Lp(N) → C be a discontinuous linear functional. Then
the linear functional f 7→ ψ(f|N) on Lp(M) is easily seen to be discontinuous
and invariant.

By Remark 6, there is a discontinuous invertible linear operator from
Lp(µ) onto itself which commutes with translations.

We now turn to the case when the measure of the set of equilibrium
points of the flow is zero.

Lemma 9. Let (M, 〈·, ·〉) be a finite-dimensional Riemannian manifold ,
and let F be a flow on M whose infinitesimal generator X is conservative.

Suppose that the measure of the set {p ∈ M : X(p) = 0} of equilibrium points

is zero. Then the only invariant function in L1(M) is zero.

Proof. Let U be a potential function for the field X.
We begin by observing that, for every p ∈ M with X(p) 6= 0, the function

θp : R → R defined by

θp(t) = U(F(t, p))
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for each t ∈ R is strictly decreasing. To this end we compute the derivative
of θp, which is obviously given by

θ′p(t) = dU(F(t, p))(X(F(t, p))) = −〈X(F(t, p)),X(F(t, p))〉F(t,p) < 0

for each t ∈ R, where the last inequality holds because X(F(t, p)) 6= 0 for
each t ∈ R, as is easy to check.

For every real number c and every (non-empty) interval I ⊂ R we define
the set

M(c, I) = {F(t, p) : t ∈ I, p ∈ M, X(p) 6= 0, U(p) = c}

= {q ∈ M : X(q) 6= 0, U(F(−t, q)) = c for some t ∈ I}.

It should be pointed out that M(c, I) = ∅ if and only if c is such that there
is no p ∈ M with X(p) 6= 0 and U(p) = c.

We proceed to show that M(c, I) is open in the case where I is an open
interval. Let t0 ∈ I and p0 ∈ M with X(p0) 6= 0 and U(p0) = c. We choose
δ > 0 such that [t0 − δ, t0 + δ] ⊂ I, and we observe that

U(F(−t0 + δ,F(t0, p0))) = U(F(δ, p0)) < U(F(0, p0)) = U(p0) = c

and

U(F(−t0 − δ,F(t0, p0))) = U(F(−δ, p0)) > U(F(0, p0)) = U(p0) = c.

We now consider the set

V = {p ∈ M : X(p) 6= 0, U(F(−t0 + δ, p)) < c, U(F(−t0 − δ, p)) > c},

which is clearly open and contains the point F(t0, p0). We next prove V ⊂
M(c, I). If q ∈ V, then there is η ∈ ]−δ, δ[ such that U(F(−t0 + η, q)) = c.
Since t0 − η ∈ I and F(t0 − η,F(−t0 + η, q)) = F(0, q) = q, we conclude
that q ∈ M(c, I).

If c, d ∈ R, then

M(c, {d}) = Fd({p ∈ M : X(p) 6= 0} ∩ {p ∈ M : U(p) = c}),

which is a Borel set since {p ∈ M : X(p) 6= 0} is open, {p ∈ M : U(p) = c} is
closed, and Fd is a diffeomorphism. From this fact together with what has
previously been proved, it may be concluded that M(c, I) is a Borel subset
of M for all c ∈ R and intervals I.

Choose c ∈ R. The task is now to show that M(c, I)∩M(c, J) = ∅ in the
case where I and J are disjoint intervals. Indeed, if p ∈ M(c, I) ∩ M(c, J),
then U(F(−a, p)) = U(F(−b, p)) = c with a ∈ I and b ∈ J . This contradicts
the fact that a 6= b (because I∩J = ∅) and the map t 7→ U(F(t, p)) is strictly
decreasing.

Our next objective is to prove that

(1) {p ∈ M : X(p) 6= 0} =
⋃

r∈Q

M(r,R).
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Let p ∈ M with X(p) 6= 0. Then {U(F(t, p)) : t ∈ R} is an open interval and
so U(F(t, p)) = r ∈ Q for some t ∈ R. Hence p = F(−t,F(t, p)) ∈ M(r,R).

We now assume that f ∈ L1(M) is an invariant function. This means
that (f ◦ Ft)JFt = f for each t ∈ R. For every c ∈ R, we have

∞ >
\
M

|f(p)| dµ(p) ≥
\

M(c,R)

|f(p)| dµ(p) =
∑

k∈Z

\
M(c,]k,k+1])

|f(p)| dµ(p)

=
∑

k∈Z

\
F−k(M(c,]k,k+1]))

|f(Fk(p))|(JFk)(p) dµ(p)

=
∑

k∈Z

\
M(c,]0,1])

|f(Fk(p))(JFk)(p)| dµ(p) =
∑

k∈Z

\
M(c,]0,1])

|f(q)|p dµ(q),

which clearly implies that
T
M(c,]0,1]) |f | dµ = 0 and hence that

T
M(c,R) |f | dµ

= 0. From (1) we deduce that \
{p∈M: X(p) 6=0}

|f | dµ = 0.

This implies that f = 0 almost everywhere on {p ∈ M : X(p) 6= 0}. Accord-
ingly, since µ({p ∈ M : X(p) = 0}) = 0, we have f = 0 almost everywhere
on M.

Corollary 10. Let (M, 〈·, ·〉) be a finite-dimensional Riemannian man-

ifold , and let F be a flow on M whose infinitesimal generator X is con-

servative. Suppose that the set {p ∈ M : X(p) = 0} of equilibrium points

has measure zero. Then every linear operator Φ : X → Lp(M) such that

Φ(τ(t)x) = (Φ(x) ◦ F−t)(JF−t)
1/p for all t ∈ R and x ∈ X is continuous

for each bounded representation τ of R on a Banach space X and each

1 ≤ p <∞.

Proof. Assume that f ∈ Lp(M) is a γ-scalar function for some 1 ≤ p

<∞ and some γ ∈ R̂DIS. We check at once that |f |p is an invariant function
of L1(M). Lemma 9 now shows that f = 0 and Corollary 6 completes the
proof.

Corollary 11. Let (M, 〈·, ·〉) be a finite-dimensional Riemannian man-

ifold , and let F be a flow on M whose infinitesimal generator X is incom-

pressible and conservative. Then Lp(M) carries a unique invariant (under

the flow) norm if and only if the set {p ∈ M : X(p) = 0} has measure zero.

Remark 4. It is worth pointing out that Lemma 9 and Corollaries 10
and 11 may fail in the case when the conservativity is removed. Consider in
the 2-dimensional Euclidean space the flow F : R × R2 → R2 given by

F(t, x, y) = (x cos t− y sin t, x sin t+ y cos t)
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for each (t, x, y) ∈ R × R2. Note that the diffeomorphism Ft is the rotation
of angle t for each t ∈ R and that the infinitesimal generator of F is given
by X(x, y) = (−y, x) for each (x, y) ∈ R2. The field X is incompressible
but it is not conservative since curl(X) = 2 6= 0. Clearly, the only equilib-

rium point is the origin. Nevertheless the function (x, y) 7→ e−(x2+y2) lies
in Lp(R2) for each 1 ≤ p ≤ ∞ and is invariant under the translations in-
duced by the flow F . In fact, every radial function in Lp(R2) is invariant.
Thus Lemma 9 fails and, on account of Corollary 6, Corollary 10 also fails.
Furthermore, since the subspace of Lp(R2) consisting of radial functions is
infinite-dimensional and GDIS is amenable, Corollary 19 below yields a dis-
continuous invariant linear functional on Lp(R2) for each 1 < p ≤ ∞, and
Corollary 7 now shows that Lp(R2) does not carry a unique invariant norm.
Thus Corollary 11 also fails.

4. The basic principle. For a topological group G acting on Banach
spaces X and Y , it is probably possible to characterize the automatic conti-
nuity of the linear operators Φ : X → Y which commute with translations in
terms of the appropriate non-abelian versions of both the scalar vectors of
Y and the covariant linear functionals on X. This section is intended as an
attempt to find this basic principle that underlies the theory of automatic
continuity of linear operators which commute with translations.

4.1. A non-abelian version of the covariant linear functionals. Let τ be
a representation of a topological group G on a Banach space X. In most of
the remainder of this paper we shall be concerned with the representations
π ⊗ τ of G on the Banach space Hπ ⊗X defined through

(π ⊗ τ)(t)(u⊗ x) = π(t)u⊗ τ(t)x

for all u ∈ Hπ, x ∈ X, and t ∈ G, where [π] ranges through ĜFIN. We will
also be dealing with the representation of G on Hπ ⊗X which, by abuse of
notation, we continue to write τ , defined through

τ(t)(u⊗ x) = u⊗ τ(t)x

for all u ∈ Hπ, x ∈ X, and t ∈ G. Note that Hπ ⊗X can be identified with
the space Xn, where n = dimHπ. The important point to note here is that
Hπ ⊗X becomes a Banach space with respect to any cross norm and that
all of these are equivalent. From now on, we shall consider Hπ ⊗ X as a
Banach space without specifying any concrete norm.

Remark 5. Let τ be a representation of a locally compact abelian group
G on a Banach spaceX, and let γ ∈ Ĝ. It is a simple matter to check that the
representation γ⊗τ can be naturally identified with the representation τγ of

G on X given by τγ(t)x = γ(t) τ(t)x for all x ∈ X and t ∈ G in such a way
that the γ ⊗ τ -invariant elements and the γ ⊗ τ -invariant linear functionals
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can be thought of as the τγ-invariant elements and the τγ-invariant linear
functionals, respectively, which are just the γ-scalar elements and the γ-
covariant linear functionals, respectively. Thus, the π ⊗ τ -invariant linear
forms with [π] ∈ ĜFIN may be thought of as a non-abelian version of the
covariant linear forms.

Our task is now to prove that, for most Banach spaces of Radon measures
on a locally compact group G, including spaces such as M(G), Lp(G) with
1 ≤ p ≤ ∞, Cb(G), and C0(G), the π ⊗ τ -invariance is equivalent in some
way to the τ -invariance.

Let G be a locally compact group acting on the left on a locally compact
Hausdorff space Ω. This means that there is a continuous map (t, ω) 7→ tω
from G×Ω into Ω such that eω = ω and s(tω) = (st)ω for all s, t ∈ G and
ω ∈ Ω. For every function f : Ω → C the translates are defined by

(τ(t)f)(ω) = f(t−1ω)

for all t ∈ G and ω ∈ Ω, while for every Radon measure µ on Ω the translates
are defined by \

Ω

f d(τ(t)µ) =
\
Ω

τ(t−1)f dµ

for all t ∈ G and f ∈ Cc(Ω), where Cc(Ω) is the space of continuous functions
on G with compact support. The case where Ω = G is of special interest;
in that case we obtain the so-called left regular representations of G on a
number of Banach spaces such as C0(G), Lp(G) with 1 ≤ p ≤ ∞, and M(G).

Following [27], a Banach space on a locally compact group G is a trans-
lation-invariant linear space F(G) of Radon measures onG which is a Banach
space whose topology is stronger than the weak topology σ(F(G), Cc(G)).

Lemma 12. Let τ be a representation of a topological group G on a

Banach space X, and let [π] ∈ ĜFIN. Let (ei)
n
i=1 be an orthonormal basis of

Hπ and , for every i ∈ {1, . . . , n}, let Pi : Hπ ⊗ X → X be the continuous

linear operator defined through

Pi(u⊗ x) = 〈u, ei〉x

for all u ∈ Hπ and x ∈ X. Then

ζ =

n∑

i=1

ei ⊗ Pi(ζ),

Pi(τ(t)ζ) = τ(t)Pi(ζ) (i = 1, . . . , n),

and

Pi((π ⊗ τ)(t)ζ) =

n∑

j=1

〈ei, π(t)ej〉 τ(t)Pj(ζ)

for all ζ ∈ Hπ ⊗X and t ∈ G.
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Proof. The first and second identities are obvious. On the other hand,
for u ∈ Hπ, x ∈ X, and i ∈ {1, . . . , n}, we have

Pi((π ⊗ τ)(t)(u⊗ x)) = Pi(π(t)u⊗ τ(t)x) = 〈π(t)u, ei〉τ(t)x

= 〈u, π(t−1)ei〉τ(t)x =
〈
u,

n∑

j=1

〈π(t−1)ei, ej〉ej

〉
τ(t)x

=
n∑

j=1

〈ei, π(t)ej〉〈u, ej〉τ(t)x

=

n∑

j=1

〈ei, π(t)ej〉τ(t)(〈u, ej〉x)

=
n∑

j=1

〈ei, π(t)ej〉τ(t)Pj(u⊗ x),

and so the third identity follows.

Lemma 13. Let F(G) be a Banach space on a locally compact group G,

let [π] ∈ ĜFIN, let (ei)
n
i=1 be an orthonormal basis of Hπ, and let (Pi)

n
i=1 be

the operators given in Lemma 12. Suppose that 〈π(·)u, v〉F(G) ⊂ F(G) for

all u, v ∈ Hπ, and define the map Φπ : Hπ ⊗ F(G) → Hπ ⊗ F(G) by

Φπ(ζ) =

n∑

i=1

n∑

j=1

ei ⊗ 〈π(·)ej, ei〉Pj(ζ)

for all ζ ∈ Hπ⊗F(G), where 〈π(·)u, v〉 stands for the function t 7→ 〈π(t)u, v〉
on G for all u, v ∈ Hπ. Then Φπ is an invertible continuous linear operator

such that

Φπ(τ(t)ζ) = (π ⊗ τ)(t)Φπ(ζ)

for all ζ ∈ Hπ ⊗ F(G).

Proof. It is easily seen that the linear operator µ 7→ 〈π(·)u, v〉µ from
F(G) into itself has a closed graph, and therefore is continuous, for all
u, v ∈ Hπ. This clearly forces the continuity of Φπ.

For t ∈ G and ζ ∈ Hπ ⊗ F(G), we have

(π ⊗ τ)(t)Φπ(ζ) =
n∑

i=1

n∑

j=1

π(t)ei ⊗ τ(t)(〈π(·)ej, ei〉Pj(ζ))

=
n∑

i=1

n∑

j=1

π(t)ei ⊗ 〈π(t−1·)ej, ei〉τ(t)Pj(ζ)

=
n∑

i=1

n∑

j=1

π(t)ei ⊗ 〈π(·)ej, π(t)ei〉Pj(τ(t)ζ)
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=
n∑

i=1

n∑

j=1

π(t)ei ⊗
〈
π(·)ej,

n∑

k=1

〈π(t)ei, ek〉ek

〉
Pj(τ(t)ζ)

=
n∑

i=1

n∑

j=1

n∑

k=1

〈ek, π(t)ei〉π(t)ei ⊗ 〈π(·)ej, ek〉Pj(τ(t)ζ)

=

n∑

j=1

n∑

k=1

ek ⊗ 〈π(·)ej, ek〉Pj(τ(t)ζ) = Φπ(τ(t)ζ),

where
∑n

i=1〈ek, π(t)ei〉π(t)ei = ek (k = 1, . . . , n) because (π(t)ei)
n
i=1 is an

orthonormal basis of Hπ.

We now define the linear operator Φπ∗ : Hπ ⊗ F(G) → Hπ ⊗ F(G) by

Φπ∗(ζ) =
n∑

i=1

n∑

j=1

ei ⊗ 〈π(·)∗ej , ei〉Pj(ζ),

where 〈π(·)∗ej , ei〉 stands for the function t 7→ 〈π(t)∗ej , ei〉 on G for all
i, j = 1, . . . , n. For every ζ ∈ Hπ ⊗ F(G), we have

(Φπ ◦ Φπ∗)(ζ) =

n∑

i=1

n∑

j=1

ei ⊗ 〈π(·)ej, ei〉Pj

( n∑

k=1

n∑

l=1

ek ⊗ 〈π(·)∗el, ek〉Pl(ζ)
)

=
n∑

i=1

n∑

j=1

n∑

l=1

ei ⊗ 〈π(·)ej, ei〉〈π(·)∗el, ej〉Pl(ζ)

=
n∑

i=1

n∑

l=1

ei ⊗
( n∑

j=1

〈el, π(·)ej〉〈ei, π(·)ej〉
)
Pl(ζ)

=
n∑

i=1

n∑

l=1

ei ⊗ 〈el, ei〉Pl(ζ) =
n∑

i=1

ei ⊗ Pi(ζ) = ζ,

and likewise we see that (Φπ∗ ◦ Φπ)(ζ) = ζ.

Corollary 14. Let F(G) be a Banach space on a locally compact group

G and let [π] ∈ ĜFIN. Suppose that 〈π(·)u, v〉F(G) ⊂ F(G) for all u, v ∈ Hπ.

Then the following assertions hold :

(i) There is a non-zero τ -invariant vector in F(G) if and only if there

is a non-zero π ⊗ τ -invariant vector in Hπ ⊗ F(G).
(ii) There is a discontinuous τ -invariant linear functional on F(G) if

and only if there is a discontinuous π⊗ τ -invariant linear functional

on Hπ ⊗ F(G).

Proof. Consider an orthonormal basis (ei)
n
i=1 ofHπ, the operators (Pi)

n
i=1

given in Lemma 12, and the operator Φπ given in Lemma 13.
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(i) Let µ be a non-zero τ -invariant vector of F(G), and choose a vector
u ∈ Hπ \ {0}. Lemma 13 shows that

Φπ(u⊗ µ) = Φπ(u⊗ τ(t)µ) = (π ⊗ τ)(t)Φπ(u⊗ µ)

for each t ∈ G, which implies that Φπ(u ⊗ µ) is a non-zero π ⊗ τ -invariant
vector of Hπ ⊗ F(G). Conversely, let ζ be a non-zero π ⊗ τ -invariant vector
of Hπ ⊗ F(G). Then Lemma 13 gives

Φπ(τ(t)Φ−1
π (ζ)) = (π ⊗ τ)(t)ζ = ζ,

which shows that Φ−1
π (ζ) is τ -invariant and therefore Pi(Φ

−1
π (ζ)) is a τ -

invariant vector of F(G) for each i = 1, . . . , n. Clearly one of them is different
from zero.

(ii) We now assume that ψ is a discontinuous τ -invariant linear functional
on F(G). Then we lift ψ to a discontinuous τ -invariant linear functional ψπ

on Hπ ⊗F(G) by ψπ(ζ) =
∑n

i=1 ψ(Pi(ζ)) for each ζ ∈ Hπ ⊗F(G). Lemma 13
now shows that ψπ ◦Φ

−1
π is a discontinuous π⊗ τ -invariant linear functional

on Hπ ⊗ F(G).

We finally assume that φ is a discontinuous π ⊗ τ -invariant linear func-
tional on Hπ ⊗ F(G). Then Lemma 13 clearly forces that φ ◦Φπ is a discon-
tinuous τ -invariant linear functional on Hπ ⊗F(G). For every i ∈ {1, . . . , n},
define Qi : F(G) → Hπ ⊗ F(G) by Qi(µ) = ei ⊗ µ for each µ ∈ F(G). It is
clear that

φ ◦ Φπ =
n∑

i=1

φ ◦ Φπ ◦Qi ◦ Pi,

and therefore φ ◦ Φπ ◦ Qi is discontinuous for some i ∈ {1, . . . , n}. On the
other hand, it is obvious that φ ◦ Φπ ◦ Qi is a τ -invariant linear functional
on F(G).

In order to investigate the uniqueness-of-invariant-norm problem for a
Banach space X on which a compact group G acts, we introduced in [32] the
auxiliary spaces L(Hπ)⊗X, where π ranges through the irreducible unitary
representations of G. We also introduced the auxiliary representation τπ of
G on L(Hπ) ⊗X through

τπ(t)(T ⊗ x) = (π(t) ◦ T ) ⊗ (τ(t)x)

for all T ∈ L(Hπ), x ∈ X, and t ∈ G. It is obvious that the representation

τπ makes sense for an arbitrary topological group G and each [π] ∈ ĜFIN.

Our next goal is to relate the notions of τπ-invariant vectors and func-
tionals to those considered in the present paper of π ⊗ τ -invariant vectors
and functionals, which seems to be more elementary. To this end, for every
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v ∈ Hπ we define continuous linear operators

(2) Ψv : L(Hπ) ⊗X → Hπ ⊗X, Ψv(T ⊗ x) = (Tv) ⊗ x

(T ∈ L(Hπ), x ∈ X),

and

(3) Ψv : Hπ ⊗X → L(Hπ) ⊗X, Ψv(u⊗ x) = (u⊗ v) ⊗ x

(T ∈ L(Hπ), x ∈ X),

where, as usual, u ⊗ v ∈ L(Hπ) is defined by (u ⊗ v)w = 〈w, v〉u for each
w ∈ Hπ. We also recall that L(Hπ) ⊗X becomes a Banach L(Hπ)-module
with the operations given through

S · (T ⊗ x) = (S ◦ T ) ⊗ x = (S ⊗ x) · T

for all S, T ∈ L(Hπ) and x ∈ X.
The proof of the following result is immediate, and it is left to the reader.

Lemma 15. Let G be a topological group, and let τ be a representation

of G on a Banach space X. Let [π] ∈ ĜFIN, and let u, v ∈ Hπ. Then the

following assertions hold :

(i) Both Ψu and Ψu commute with translations.

(ii) (Ψu◦Ψv)(ζ) = 〈u, v〉ζ and (Ψv◦Ψu)(ϑ) = ϑ·(u⊗v) for all ζ ∈ Hπ⊗X
and ϑ ∈ L(Hπ) ⊗X.

Lemma 16. Let G be a topological group, and let τ be a representation

of G on a Banach space X. If [π] ∈ ĜFIN, then the following assertions are

equivalent :

(i) Every π ⊗ τ -invariant linear functional on Hπ ⊗X is continuous.

(ii) Every τπ-invariant linear functional on L(Hπ) ⊗X is continuous.

Proof. Assume that (i) holds, and let (ei)
n
i=1 be an orthonormal basis of

Hπ. If ψ : L(Hπ) ⊗ X → C is τπ-invariant, then by Lemma 15(i), ψ ◦ Ψ ei

is a π ⊗ τ -invariant linear functional for each i = 1, . . . , n. On account of
Lemma 15(ii), we have ψ =

∑n
i=1 ψ ◦ Ψ ei ◦ Ψei

, which is continuous.
We now assume that (ii) holds, and let φ : Hπ ⊗ X → C be a π ⊗ τ -

invariant linear functional. Set u ∈ Hπ with ‖u‖ = 1. Then the linear
functional φ◦Ψu is τπ-invariant (Lemma 15(i)) and therefore it is continuous,
and hence so is φ ◦ Ψu ◦ Ψu = φ (Lemma 15(ii)).

4.2. Discontinuous operators arising from invariant vectors and invari-

ant functionals. The following result provides some evidence for the exis-
tence of a principle as suggested at the beginning of this section.

Theorem 17. Let G be a topological group, and let τX and τY be rep-

resentations of G on Banach spaces X and Y , respectively. Suppose that

there exist a discontinuous π⊗τX -invariant linear functional and a non-zero
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π⊗τY -invariant vector for some [π] ∈ ĜFIN. Then there exists a discontinu-

ous linear operator Φ from X into Y such that Φ commutes with translations.

Proof. Let (ei)
n
i=1 be an orthonormal basis of Hπ, and let (Pi)

n
i=1 be the

operators given in Lemma 12.
Choose a non-zero π ⊗ τY -invariant vector ζ ∈ Hπ ⊗ Y and a discontin-

uous π ⊗ τX -invariant linear functional φ : Hπ ⊗X → C. We define a linear
operator Φ : X → Y by

Φ(x) =

n∑

i=1

φ(ei ⊗ x)Pi(ζ)

for each x ∈ X.
We first prove that Φ commutes with translations. Let x ∈ X and t ∈ G.

We have

Φ(τX(t)x) =
n∑

i=1

φ(ei ⊗ τX(t)x)Pi(ζ)(4)

=
n∑

i=1

φ((π ⊗ τX)(t)(π(t−1)ei) ⊗ x)Pi(ζ)

=

n∑

i=1

φ((π(t−1)ei) ⊗ x)Pi(ζ)

=
n∑

i=1

φ
( n∑

j=1

〈π(t−1)ei, ej〉ej ⊗ x
)
Pi(ζ)

=
n∑

j=1

φ(ej ⊗ x)
n∑

i=1

〈ei, π(t)ej〉Pi(ζ).

Since ζ is π ⊗ τY -invariant, on account of Lemma 12, we have

(5) Pi(ζ) = Pi((π ⊗ τY )(t)ζ) =
n∑

j=1

〈ei, π(t)ej〉 τY (t)Pj(ζ)

for each t ∈ G. Identity (4) now becomes

Φ(τX(t)x) =
n∑

j=1

φ(ej ⊗ x)
n∑

i=1

〈ei, π(t)ej〉
n∑

k=1

〈ei, π(t)ek〉 τY (t)Pk(ζ)

= τY (t)
( n∑

j=1

φ(ej ⊗ x)
n∑

k=1

( n∑

i=1

〈ei, π(t)ej〉 〈ei, π(t)ek〉
)
Pk(ζ)

)

= τY (t)
( n∑

j=1

φ(ej ⊗ x)
n∑

k=1

〈π(t)ek, π(t)ej〉Pk(ζ)
)
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= τY (t)
( n∑

j=1

φ(ej ⊗ x)
n∑

k=1

〈ek, ej〉Pk(ζ)
)

= τY (t)
( n∑

j=1

φ(ej ⊗ x)Pj(ζ)
)

= τY (t)Φ(x).

We now proceed to show that Φ is discontinuous. Since φ is discontinuous,
there exists i0 ∈ {1, . . . , n} such that the linear functional x 7→ φ(ei0 ⊗x) on
X is discontinuous. Choose l ∈ {1, . . . , n}. Since π̃(Mf(G)) = L(Hπ), there
exist K ∈ N, t1, . . . , tK ∈ G, and α1, . . . , αK ∈ C such that

( K∑

k=1

αkπ(tk)
)
ei =

{
0 if i 6= l,

ei0 if i = l.

From identity (4), we deduce that

Φ
( K∑

k=1

αkτX(t−1
k )x

)
=

K∑

k=1

αkτY (t−1
k )Φ(x)(6)

=

K∑

k=1

αk

( n∑

j=1

φ(ej ⊗ x)

n∑

i=1

〈π(tk)ei, ej〉Pi(ζ)
)

=
n∑

j=1

n∑

i=1

φ(ej ⊗ x)
〈( K∑

k=1

αkπ(tk)
)
ei, ej

〉
Pi(ζ)

=

n∑

j=1

φ(ej ⊗ x)〈ei0, ej〉Pl(ζ) = φ(ei0 ⊗ x)Pl(ζ)

for each x ∈ X. From the discontinuity of the functional x 7→ φ(ei0 ⊗ x)
we deduce that there exists a sequence (xn) in X with limxn = 0 and

limφ(ei0 ⊗ xn) = 1. Since lim
∑K

k=1 αkτX(t−1
k )xn = 0, (6) now clearly forces

Pl(ζ) ∈ S(Φ). We thus obtain

(7) Pj(ζ) ∈ S(Φ) (j = 1, . . . , n).

As ζ 6= 0, we have Pj0(ζ) 6= 0 for some some j0 ∈ {1, . . . , n}, and this entails
that S(Φ) 6= {0}, and therefore that Φ is discontinuous.

Remark 6. It is worth pointing out that, under the assumptions of
Theorem 17 with (X, τX) = (Y, τY ), there exists a discontinuous linear
invertible operator from X onto itself which commutes with translations.
Indeed, let Φ be the linear operator given in that theorem, and take α ∈
C \ (sp(Φ|Φ(X)) ∪ {0}), where sp(Φ|Φ(X)) stands for the spectrum of the re-
striction of Φ to Φ(X) (it should be pointed out that dimΦ(X) <∞). In the
same manner as at the end of the proof of [32, Theorem 3.1] we can check
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that αI−Φ is an invertible linear operator from X onto itself, and αI−Φ is
obviously discontinuous and commutes with translations. Consequently, the
map | · | defined on X by |x| = ‖αx− Φ(x)‖ for each x ∈ X is an invariant
norm on X which is not equivalent to ‖ · ‖. Note that this is similar to the
reasoning in the proof of Corollary 7. We thus generalize [7, Theorem 5], [8,
Theorem 6.1], and [32, Theorem 3.1].

4.3. Amenable groups. Our next objective is to investigate the size of
the separating space of a linear operator which commute with translations
corresponding to an amenable group in terms of an invariant mean. Until
further notice we suppose that G is an amenable locally compact group. Re-
call that abelian groups as well as compact groups are examples of amenable
groups.

Theorem 18. Let G be an amenable locally compact group, and let M
be an invariant mean on L∞(G). Let X be a Banach space, let X∗ be a linear

subspace of X∗, and let τ be a bounded σ(X,X∗)-continuous representation

of G on X. Suppose that one of the following conditions holds:

(a) X∗ = X∗;
(b) X is a dual Banach space and X∗ is a predual of X.

Then there exists a continuous linear operator PM : X → (X∗)
∗ defined by

ξ(PMx) = Mt(ξ(τ(t
−1)x))

for all x ∈ X and ξ ∈ X∗ (where Mt means that M is applied to the

corresponding function of t), which satisfies the properties:

(i) PMτ(t)x = PMx ∀x ∈ X, ∀t ∈ G;
(ii) PMx = x whenever x ∈ X is τ -invariant ;

and , in case (b),

(iii) P 2
M = PM ;

(iv) PMX = {x ∈ X : τ(t)x = x ∀t ∈ G}.

Proof. Let x ∈ X. For every ξ ∈ X∗, the function t 7→ ξ(τ(t−1)x) is con-
tinuous and bounded. This shows that Mt(ξ(τ(t

−1)x)) makes sense. More-
over, it is easily checked that the linear functional ξ 7→ Mt(ξ(τ(t

−1)x)) on
X∗ is continuous, and so PMx is well defined. It is a simple matter to show
that PM is a continuous linear operator from X into (X∗)

∗.
The task is now to prove that PMτ(s)x = PMx for all x ∈ X and s ∈ G.

Let ξ ∈ X∗. On account of the left invariance of M , we have

ξ(PMτ(s)x) = Mt(ξ(τ(t
−1)τ(s)x)) = Mt(ξ(τ((s

−1t)−1)x))

= Mt(ξ(τ(t
−1)x)) = ξ(PMx).

If x ∈ X is invariant, then ξ(PMx) = Mt(ξ(τ(t
−1)x)) = Mt(ξ(x)) = ξ(x)

for each ξ ∈ X∗, since M(1) = 1. Therefore PMx = x.
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We now turn to the case (b). We first claim that τ(s)PMx = PMx for all
x ∈ X and s ∈ G. Indeed, on account of the right invariance of M , we have

ξ(τ(s)PMx) = (ξ ◦ τ(s))(PMx) = Mt((ξ ◦ τ(s))(τ(t
−1)x))

= Mt(ξ(τ((ts
−1)−1)x)) = Mt(ξ(τ(t

−1)x)) = ξ(PMx).

It is clear that the preceding property together with (i) and (ii) yields (iii)
and (iv).

Corollary 19. Let G be an amenable locally compact group, let X be

a dual Banach space, let X∗ be a predual of X, and let τ be a bounded

σ(X,X∗)-continuous representation of G on X. If the subspace of X con-

sisting of the τ -invariant vectors is infinite-dimensional , then there exists a

discontinuous τ -invariant functional.

Proof. Let M be an invariant mean on L∞(G), let PM be the projection
given in Theorem 18, and let Y be the space of τ -invariant vectors ofX. Since
dimY = ∞, it follows that there exists a discontinuous linear functional ψ
on Y . The linear functional φ = ψ ◦ PM is easily seen to be discontinuous
and, according to Theorem 18, we have

φ(τ(t)x) = ψ(PMτ(t)x) = ψ(PMx) = φ(x)

for all t ∈ G and x ∈ X, so that φ is τ -invariant.

Corollary 20. Let G be an amenable locally compact group, let X be

a dual Banach space and X∗ be a predual of X, let Y be a Banach space,
let τX be a bounded σ(X,X∗)-continuous representation of G on X, and let

τY be a representation of G on Y . If the subspace of Hπ ⊗X consisting of

the π ⊗ τX -invariant vectors is infinite-dimensional and there is a non-zero

π⊗τY -invariant vector for some [π] ∈ ĜFIN, then there exists a discontinuous

linear operator from X into Y which commutes with translations.

Proof. It is clear that Hπ ⊗X is a dual Banach space, and Corollary 19
now shows that there exists a discontinuous π ⊗ τX -invariant linear func-
tional. Theorem 17 completes the proof.

Lemma 21. Let G be an amenable locally compact group, and let M
be an invariant mean on L∞(G). Let X be a Banach space, and let τX
be a representation of G on X. Let τY be a bounded σ(Y, Y∗)-continuous

representation of G on a Banach space Y (where either Y∗ = Y ∗ or Y is

a dual Banach space and Y∗ is a predual of Y ). Suppose that one of the

following assertions holds:

(i) The only τY -invariant vector of Y is zero.

(ii) Every τX -invariant functional on X is continuous.
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Then for every linear operator Φ : X → Y which commutes with translations

we have PM (S(Φ)) = {0}, where PM is the operator given in Theorem 18
for Y .

Proof. First observe that in case (i) we have PM (Y ) = {0}.
We now consider the case where (ii) holds. On account of Theorem 18,

for every φ ∈ (Y∗)
∗∗, the linear functional φ ◦PM ◦Φ is τX -invariant, and so

it is continuous. This implies that φ(PM (S(Φ))) = {0} for each φ ∈ (Y∗)
∗∗

and hence PM (S(Φ)) = {0}.

Theorem 22. Let G be an amenable locally compact group, let M be an

invariant mean on L∞(G), and let [π] ∈ ĜFIN. Let X be a Banach space,
and let τX be a representation of G on X. Let τY be a bounded σ(Y, Y∗)-
continuous representation of G on a Banach space Y (where either Y∗ = Y ∗

or Y is a dual Banach space and Y∗ is a predual of Y ). Then the following

assertions are equivalent :

(i) For every linear operator Φ : X → Y which commutes with trans-

lations, we have Mt(〈u, π(t)v〉ξ(τY (t−1)y)) = 0 for all u, v ∈ Hπ,
ξ ∈ Y∗, and y ∈ S(Φ).

(ii) Every π ⊗ τX-invariant linear functional on Hπ ⊗ X is continuous

whenever there exists a non-zero π⊗ τY -invariant vector in Hπ ⊗Y .

Proof. Assume that assertion (ii) holds. Let Φ : X → Y be a linear
operator which commutes with translations. We define the linear operator
Φπ : Hπ ⊗X → Hπ ⊗ Y by Φπ(u⊗ x) = u⊗Φ(x) for all u ∈ Hπ and x ∈ X.
We observe that

Φπ((π ⊗ τX)(t)(u⊗ x)) = Φπ(π(t)u⊗ τX(t)x)

= π(t)u⊗ Φ(τX(t)x) = (π ⊗ τY )(t)Φπ(u⊗ x)

for all u ∈ Hπ and x ∈ X, which shows that Φπ commutes with translations.
On the other hand, we see at once that S(Φπ) = Hπ ⊗ S(Φ). On account
of Lemma 21, we have PM,π(Hπ ⊗ S(Φ)) = {0}, where PM,π stands for the
operator given by Theorem 18 for Hπ ⊗ Y . It should be pointed out that
both Hπ ⊗ Y and the representation π ⊗ τY of G on Hπ ⊗ Y satisfy the
requirements in both Theorem 18 and Lemma 21. This gives

0 = Mt(ζ((π ⊗ τY )(t−1)(u⊗ y))) = Mt(ζ(π(t−1)u⊗ τY (t−1)y))

for all ζ ∈ Hπ ⊗Y∗, u ∈ Hπ, and y ∈ S(Φ). By taking ζ = v⊗ ξ with v ∈ Hπ

and ξ ∈ Y∗, this now becomes

Mt(〈π(t−1)u, v〉ξ(τY (t−1)y)) = 0,

which yields assertion (i).
Our next concern is the case where there exist a discontinuous π ⊗ τX -

invariant linear functional on Hπ⊗X and a non-zero π⊗τY -invariant vector
ζ ∈ Hπ ⊗ Y . We now consider the discontinuous linear operator Φ : X → Y
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as defined in the proof of Theorem 17, and we retain the notation of that
proof. Set ξ ∈ Y∗ with ξ(Pj0(ζ)) 6= 0. According to (5), we have

τY (t−1)Pi(ζ) =
n∑

j=1

〈ei, π(t)ej〉Pj(ζ)

for all t ∈ G and i = 1, . . . , n. We thus obtain
n∑

i=1

Mt(〈ei, π(t)ej0〉ξ(τY (t−1)Pi(ζ)))

=
n∑

i=1

n∑

j=1

Mt(〈ei, π(t)ej0〉 〈ei, π(t)ej〉)ξ(Pj(ζ))

=
n∑

j=1

Mt

( n∑

i=1

〈ei, π(t)ej0〉〈ei, π(t)ej〉
)
ξ(Pj(ζ))

=
n∑

j=1

Mt(〈π(t)ej, π(t)ej0〉)ξ(Pj(ζ))

=
n∑

j=1

Mt(〈ej, ej0〉)ξ(Pj(ζ)) = ξ(Pj0(ζ)) 6= 0.

Therefore there exists i ∈ {1, . . . , n} such that

Mt(〈ei, π(t)ej0〉ξ(τY (t−1)Pi(ζ))) 6= 0.

On the other hand, on account of (7), we have Pi(ζ) ∈ S(Φ) for each i =
1, . . . , n. Consequently, the first assertion in the theorem does not hold.

5. The rôle of compactness. It is important to note here that the
automatic continuity of linear operators which commute with translations
for a locally compact abelian group G strongly depends on whether G is
compact or not. As a matter of fact it turns out from Corollary 6 that
every linear operator Φ : X → L1(G) which commutes with translations is
continuous for each bounded representation τX of G on a Banach space X
if and only if G is non-compact. Indeed, since the function 1 is obviously
translation-invariant and lies in L1(G) in the case where G is compact,
Corollary 6 shows the existence of a discontinuous linear operator Φ : X →
L1(G) which commutes with translations for some X. Conversely, if there
exists such a Φ, then there is a non-zero γ-scalar function f ∈ L1(G) for some

γ ∈ Ĝ. On the other hand, it is easily seen that |f | is translation-invariant
and therefore it is constant, which clearly entails that G is compact.

One of the purposes of this section is to examine whether such a strong
dichotomy occurs in non-abelian context.
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5.1. Compact groups. In the following, G stands for a compact group.
It is well known that every irreducible unitary representation of G is finite-
dimensional (see [11, Theorem 22.13] for example) and so ĜFIN = Ĝ. On the
other hand, if τ is a σ(X,X∗)-continuous representation of G on a Banach
space X, where either X∗ = X∗ or X is a dual Banach space and X∗

is a predual of X, then τ is bounded. Indeed, the continuity of the map
t 7→ ξ(τ(t)x) from G into X together with the compactness of G imply that
the map is bounded for all x ∈ X and ξ ∈ X∗. The uniform boundedness
theorem now shows that the subset {τ(t) : t ∈ G} of L(X) is bounded.

Theorem 23. Let G be a compact group. Let X be a Banach space,
and let τX be a representation of G on X. Let τY be a σ(Y, Y∗)-continuous

representation of G on a Banach space Y (where either Y∗ = Y ∗ or Y is a

dual Banach space and Y∗ is a predual of Y ). Then the following assertions

are equivalent :

(i) Every linear operator Φ : X → Y which commutes with translations

is continuous.

(ii) Every π ⊗ τX-invariant linear functional on Hπ ⊗ X is continuous

whenever [π] ∈ Ĝ is such that there exists a non-zero π⊗τY -invariant

vector in Hπ ⊗ Y .

Proof. First observe that integration with respect to the normalized
Haar measure on G obviously defines an invariant mean on L∞(G).

On account of Theorem 22 together with the preceding observation, as-
sertion (ii) is equivalent to the property

(8)
\
G

〈u, π(t)v〉ξ(τY (t−1)y) dt = 0

([π] ∈ Ĝ, u, v ∈ Hπ, ξ ∈ Y∗, y ∈ S(Φ))

for every linear operator Φ : X → Y which commutes with translations. We
now note that (8) is equivalent to

(9)
\
G

p(t)ξ(τY (t−1)y) dt = 0

∀ trigonometric polynomial p, ξ ∈ Y∗, y ∈ S(Φ).

Since the trigonometric polynomials are dense in C(G) with the uniform
norm [12, Theorem 27.39], it may be concluded that (9) is equivalent to

(10) ξ(τ(t−1)y) = 0 (t ∈ G, ξ ∈ Y∗, y ∈ S(Φ)).

By taking t to be the identity in G in (10) we see that (10) becomes
ξ(S(Φ)) = {0} for each ξ ∈ Y∗. Of course, this latter condition is equiv-
alent to S(Φ) = {0} and therefore to the continuity of Φ.

Corollary 24. Let G be a compact group, and let τX be a representa-

tion of G on a Banach space X. Then the following assertions are equivalent :
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(i) Every linear operator Φ : X → Y which commutes with translations

is continuous for each σ(Y, Y∗)-continuous representation τY of G
on a Banach space Y (where either Y∗ = Y ∗ or Y is a dual Banach

space and Y∗ is a predual of Y ).
(ii) Every linear Φ : X → F(G) which commutes with translations is

continuous for each Banach space F(G) on G.

(iii) Every π ⊗ τX-invariant linear functional on Hπ ⊗X is continuous

for each [π] ∈ Ĝ.

Proof. Assume that (i) holds, and let Φ : X → F(G) be a linear operator
which commutes with translations for some Banach space F(G) on G. The
inclusion map J : F(G) →M(G) is a continuous linear operator which com-
mutes with translations. Therefore J◦Φ is continuous, and so J(S(Φ))={0},
which clearly forces S(Φ) = {0}. This shows that (i) implies (ii).

We now assume that there exists a discontinuous π⊗ τX -invariant linear
functional on Hπ ⊗ X for some [π] ∈ Ĝ. Take F(G) = L1(G). Since G is
compact, the function 1 is in F(G) and obviously is translation-invariant.
According to Corollary 14, there is a non-zero π ⊗ τ -invariant vector in
Hπ ⊗ F(G). By Theorem 17, there exists a discontinuous linear operator
Φ : X → F(G) which commutes with translations. Thus (ii) implies (iii).

Finally, by Theorem 23, it is clear that (iii) implies (i).

Corollary 25. Let G be a compact group, and let τY be a σ(Y, Y∗)-
continuous representation of G on a Banach space Y (where either Y∗ = Y ∗

or Y is a dual Banach space and Y∗ is a predual of Y ). Then the following

assertions are equivalent :

(i) Every linear operator Φ : X → Y which commutes with translations

is continuous for each representation τX of G on a Banach space X.

(ii) The only π⊗ τY -invariant vector of Hπ ⊗Y is {0} for each [π] ∈ Ĝ.

Proof. From Theorem 23, we see that (ii) implies (i).

We now assume that there exists a non-zero π ⊗ τY -invariant vector of
Hπ ⊗ Y for some [π] ∈ Ĝ. Set K = G × T and X = L1(K) equipped with
the left regular representation τ of K. Since K is an infinite compact group,
[27, Theorem 1] yields a discontinuous τ -invariant linear functional on X.
Corollary 14 now yields a discontinuous π ⊗ τ -invariant linear functional
φ on Hπ ⊗ X. We now consider the representation τX of G on X defined
by

τX(t)x = τ(t, 1)x

for all x ∈ X and t ∈ G. It is obvious that φ is τX -invariant. Hence we can
apply Theorem 23 to find a discontinuous linear operator Φ : X → Y which
commutes with translations.
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On account of Corollary 14, Theorem 23 and Corollary 24 have the fol-
lowing two straightforward consequences. In what follows, T(G) denotes the
algebra of all trigonometric polynomials on the compact group G.

Corollary 26. Let G be a compact group. Let F(G) be a Banach space

on G such that T(G)F(G) ⊂ F(G) and let τY be a σ(Y, Y∗)-continuous rep-

resentation of G on a Banach space Y (where either Y∗ = Y ∗ or Y is a dual

Banach space and Y∗ is a predual of Y ). Then the following assertions are

equivalent :

(i) Every linear operator Φ : F(G) → Y which commutes with transla-

tions is continuous.

(ii) Every translation-invariant linear functional on F(G) is continuous

whenever there exists a non-zero π⊗ τY -invariant vector in Hπ ⊗ Y
for some [π] ∈ Ĝ.

Corollary 27. Let G be a compact group, and let F(G) be a Banach

space on G such that T(G)F(G) ⊂ F(G). Then the following assertions are

equivalent :

(i) Every linear operator Φ : F(G) → Y which commutes with transla-

tions is continuous for each σ(Y, Y∗)-continuous representation τY
of G on a Banach space Y (where either Y∗ = Y ∗ or Y is a dual

Banach space and Y∗ is a predual of Y ).
(ii) Every linear operator Φ : F(G) → F′(G) which commutes with trans-

lations is continuous for each Banach space F′(G) on G.

(iii) Every translation-invariant linear functional on F(G) is continu-

ous.

Theorem 28. Let G be a compact group and let 1 < p < ∞. Then the

following assertions are equivalent :

(i) Every linear operator Φ : Lp(Ω) → Y which commutes with trans-

lations is continuous for each compact Hausdorff space Ω equipped

with a positive Radon measure on which G acts by measure-pre-

serving transformations with Ω/G finite and for each σ(Y, Y∗)-con-

tinuous representation τY of G on a Banach space Y (where either

Y∗ = Y ∗ or Y is a dual Banach space and Y∗ is a predual of Y ).
(ii) Every linear operator Φ : Lp(Ω)→F(G) which commutes with trans-

lations is continuous for each compact Hausdorff space Ω equipped

with a positive Radon measure on which G acts by measure-pre-

serving transformations with Ω/G finite and for each Banach space

F(G) on G.

(iii) Lp(Ω) carries a unique invariant norm for each compact Hausdorff

space Ω equipped with a positive Radon measure on which G acts

by measure-preserving transformations with Ω/G finite.
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(iv) Lp(G) carries a unique invariant norm.

(v) Every invariant linear functional on Lp(G) is continuous.

(vi) Every invariant linear functional on Lp(G) is a multiple of the Haar

integral.

Proof. On account of [32, Theorem 5.3], assertions (iii)–(vi) are already
known to be equivalent.

We can prove that (i) implies (ii) in just the same way as we proved that
(i) implies (ii) in Corollary 24.

Assume that there exists a discontinuous invariant linear functional on
Lp(G). Since the function 1 is obviously an invariant function in Lp(G),
Theorem 17 now shows that there is a discontinuous linear operator from
Lp(G) into itself which commutes with translations. This proves that (ii)
implies (v).

We finally proceed to show that (v) implies (i). Let Ω be a compact
Hausdorff space equipped with a positive Radon measure on which G acts
as a group of measure-preserving transformations with Ω/G finite, and let
τY be a σ(Y, Y∗)-continuous representation of G on a Banach space Y (where
either Y∗ = Y ∗ or Y is a dual Banach space and Y∗ is a predual of Y ). On
account of Corollary 24, we only need to show that every π ⊗ τ -invariant
linear functional on Hπ ⊗L

p(Ω) is continuous for each [π] ∈ Ĝ. In the proof
of [32, Theorem 5.3] it is shown that every τπ-invariant linear functional on

L(Hπ)⊗Lp(Ω) is continuous for each [π] ∈ Ĝ. From Lemma 16 we conclude
that every π⊗ τ -invariant linear functional on Hπ ⊗L

p(Ω) is continuous for

each [π] ∈ Ĝ.

Remark 7. Of course, Theorem 28 completes the information given
in [32, Theorem 5.3]. Clearly Banach spaces F(G) with the property that
T(G)F(G) ⊂ F(G) include the spaces M(G), Lp(G) with 1 ≤ p ≤ ∞, and
C(G). It should also be pointed out that translation-invariant linear func-
tionals have been shown to be automatically continuous on some spaces F(G)
for a wide variety of groups G. As a matter of fact, translation-invariant lin-
ear functionals are automatically continuous on the following spaces: L2(G),
where G is a compact abelian group with a finite number of connected com-
ponents [22]; L2(G) for compact abelian groups G such that G/C is poly-
thetic (that is, contains a finitely generated dense subgroup), where C is
the connected component of the identity [17]; and Lp(G), 1 < p <∞, when
G is a connected metrizable compact abelian group [3]. Thus Theorem 28
generalizes [7, Theorem 10(iii)].

It turned out in [24, 25, 32, 35] that the automatic continuity of the
translation-invariant linear functionals is closely related to the so-called
strong Kazhdan’s property. Recall that for a compact group G this prop-
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erty can be rephrased as follows: G has the strong Kazhdan’s property (T)
if, and only if, the restriction τ of the left regular representation of G to
the invariant subspace L2

0(G) = {f ∈ L2(G) :
T
G f(t) dt = 0} does not

have almost invariant vectors when G is viewed as a discrete group. Such a
group is described in [24] as not satisfying the mean-zero weak containment

property. This property is related to the so-called Banach–Ruziewicz prob-

lem. This problem, for the spheres, asks whether the Lebesgue measure on
the N -dimensional Euclidean sphere SN is the unique normalized, finitely
additive rotation invariant measure on all Lebesgue measurable subsets of
SN . When solving this problem it was shown that the group SO(N + 1)
has the strong Kazhdan’s property (T) for N ≥ 2 ([6] in the cases where
N = 2, 3 and [18, 30] in the case where N ≥ 4). Moreover, every simple
compact connected Lie group has the strong Kazhdan’s property (T) (see
[19, Chapter III, 5.7] or [28, Theorem 5.17]). The unitary group U(H) of an
infinite-dimensional separable Hilbert space when equipped with the strong
operator topology has the strong Kazhdan’s property [2]. The compact uni-
tary groups U(N) also have the strong Kazhdan’s property for N ≥ 2.

Corollary 29. Let G be a compact group which has the strong Kazh-

dan’s property (T). Then every linear operator Φ : Lp(Ω) → Y which com-

mutes with translations is continuous for each compact Hausdorff space Ω
equipped with a positive Radon measure on which G acts as a group of

measure-preserving transformations with Ω/G finite, each 1 < p < ∞, and

for each bounded σ(Y, Y∗)-continuous representation τY of G on a Banach

space Y (where either Y∗ = Y ∗ or Y is a dual Banach space and Y∗ is a

predual of Y ).

Proof. By [24], every invariant linear functional on Lp(G) is continuous
and so Theorem 28 now implies our corollary.

Corollary 30. Let N ≥ 2, let 1 < p < ∞, and let τY be a bounded

σ(Y, Y∗)-continuous representation of SO(N + 1) on a Banach space Y
(where either Y∗ = Y ∗ or Y is a dual Banach space and Y∗ is a predual

of Y ). Then every linear operator Φ : Lp(SN ) → Y which commutes with

rotations is continuous.

5.2. Non-compact [MAP] groups. In the remainder of this section we
assume G to be a [MAP] group, that is, a locally compact group with the
property that the set of its finite-dimensional irreducible unitary represen-
tations separates the points of G.

Theorem 31. Let G be a non-compact [MAP] group, let X be a Banach

space, and let τ be a representation of G on X. Then every linear operator

Φ : X →M(G) which commutes with translations is continuous.
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Proof. Assume towards a contradiction that S(Φ) 6= {0}. Let

∆ = {[π] ∈ ĜFIN : π̃(S(Φ)) 6= {0}}.

This definition makes sense because the correspondence π ↔ π̃ respects
unitary equivalence.

We can now apply Lemma 2 by taking Σ in such a way that

∆ = {[π] : π ∈ Σ}.

Let µ ∈Mf(G) satisfy the first assertion in that lemma, and let

{π1, . . . , πN} = {π ∈ Σ : π̃(µ) 6= 0}.

We define I = L1(G) ⋆ µ ⋆S(Φ) ⋆ L1(G). It is clear that I is a closed two-

sided ideal of L1(G) and that π̃(I)={0} for each [π]∈ĜFIN\{[π1], . . . , [πN ]}.
Consequently, if f ∈ I is such that π̃k(f) = 0 for each k ∈ {1, . . . , N}, then

π̃(f) = 0 for each [π] ∈ ĜFIN. Since
⋂

π∈ĜFIN

ker π̃ = {0} [10, Theorem

3.2], it may be concluded that the map f 7→ (π̃1(f), . . . , π̃N (f)) from I
into L(Hπ1

) ⊕ · · · ⊕ L(HπN
) is injective. Since dimL(Hπk

) < ∞ for each
k ∈ {1, . . . , N}, it follows that dim I < ∞. From [9, Lemma 1] we see that
I = {0}. Hence

{0} = π̃1(L
1(G) ⋆ µ ⋆S(Φ) ⋆ L1(G)) = π̃1(L

1(G))π̃1(µ)π̃1(S(Φ))π̃1(L
1(G)).

Since π̃1 is an algebraically irreducible representation of M(G) on Hπ1
, it

follows that π̃1(µ)π̃1(S(Φ)) = {0}. On the other hand, S(Φ) is easily checked
to be left translation-invariant, and so the linear subspace of Hπ1

generated
by the vectors π̃1(S(Φ))x with x ∈ Hπ1

is invariant for π1 and it is contained
in ker π̃1(µ) 6= Hπ1

. This entails that π̃1(S(Φ))x = 0 for each x ∈ Hπ1
, which

contradicts the fact that π1 ∈ Σ.
Finally, we are concerned with the case in which the second assertion

of Lemma 2 holds. It should be pointed out that π̃n(µ∗1 ⋆ · · · ⋆ µ
∗
n) 6= 0 and

π̃n(µ∗1 ⋆ · · · ⋆ µ
∗
n+1) = 0 for each n ∈ N. Furthermore, for every n ∈ N, µ∗n

can be expressed in the form

µ∗n =
Nn∑

k=1

αn,kδtn,k

with Nn ∈ N, αn,1, . . . , αn,Nn
∈ C, and tn,1, . . . , tn,Nn

∈ G, and we define a
continuous linear operator Sn from X into itself by

Sn(x) =

Nn∑

k=1

αn,kτ(tn,k)x

for each x ∈ X. We now define Tn : M(G) → M(G) by Tn(µ) = µ∗n ⋆ µ for
each µ ∈M(G). It is clear that Tn is a continuous linear operator and that
ΦSn = TnΦ for each n ∈ N. Thus we are now in a position to apply the
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stability lemma. Therefore there exists N ∈ N such that

(µ∗1 ⋆ · · · ⋆ µ
∗
N )(S(Φ)) = (µ∗1 ⋆ · · · ⋆ µ

∗
N+1)(S(Φ)).

In particular

(µ∗1 ⋆ · · · ⋆ µ
∗
N )(S(Φ)) ⊂ (µ∗1 ⋆ · · · ⋆ µ

∗
N+1)(S(Φ)).

Hence

π̃N ((µ∗1 ⋆ · · · ⋆ µ
∗
N )(S(Φ))) ⊂ π̃N ((µ∗1 ⋆ · · · ⋆ µ

∗
N+1)(S(Φ))) = {0},

which implies that π̃N (µ∗1 ⋆ · · · ⋆ µ
∗
N )π̃N (S(Φ)) = {0}. The linear subspace

of Hπ generated by the vectors π̃N (S(Φ))x with x ∈ HπN
is invariant for

πN , and it is contained in ker π̃N (µ∗1 ⋆ · · · ⋆ µ
∗
N ) 6= HπN

. This entails that
π̃N (S(Φ))x = 0 for each x ∈ HπN

, contrary to πN ∈ Σ.

Corollary 32. Let G be a non-compact [MAP] group, let τ be a repre-

sentation of G on a Banach space X, and let F(G) be a Banach space on G.

Then every linear operator Φ : X → F(G) which commutes with translations

is continuous.

Proof. The inclusion map J : F(G) →M(G) is a continuous linear oper-
ator which commutes with translations. According to Theorem 31, J ◦ Φ is
continuous, and so J(S(Φ)) = {0}, which clearly forces S(Φ) = {0}.

Corollary 33. Let G be an infinite [MAP] group. Then the following

assertions are equivalent :

(i) Every linear operator Φ : X → L1(G) which commutes with trans-

lations is continuous for each representation of G on a Banach

space X.

(ii) Every linear operator Φ : X → L1(G,E) which commutes with trans-

lations is continuous for each representation of G on a Banach space

X and for each Banach space E.

(iii) There is a non-zero Banach space E with the property that every

linear operator Φ : X → L1(G,E) which commutes with translations

is continuous for each representation of G on a Banach space X.

(iv) L1(G) carries a unique topologically invariant norm.

(v) L1(G,E) carries a unique topologically invariant norm for each Ba-

nach space E.

(vi) There is a non-zero Banach space E with the property that L1(G,E)
carries a unique topologically invariant norm.

(vii) G is non-compact.

Proof. We first assume that (i) holds. Let ‖ · ‖ be a complete norm on
L1(G) that makes all the left translations from (L1(G), ‖·‖) into itself contin-
uous. The identity map Φ from (L1(G), ‖ · ‖) onto (L1(G), ‖ · ‖1) commutes
with translations, and therefore it is continuous. On account of the open
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mapping theorem, ‖ · ‖ is equivalent to ‖ · ‖1, and this proves (iv). In the
same manner we can see that (ii) implies (v) and that (iii) implies (vi). Let
X be a Banach space on which G acts, let E be a Banach space, and let
Φ : X → L1(G,E) be a linear operator which commutes with translations.
Assume towards a contradiction that S(Φ) 6= {0}. Set F0 ∈ S(Φ) with
F0 6= 0. On account of [5, Corollary II.2.7], there exists a continuous linear
functional ψ on E such that ψ ◦F0 6= 0. We define Ψ : L1(G,E) → L1(G) by
Ψ(F ) = ψ ◦F for each F ∈ L1(G,E). It is easily checked that Ψ is a contin-
uous linear operator which commutes with translations. Consequently, Ψ ◦Φ
commutes with translations, and therefore it is continuous. This implies that
Ψ(S(Φ)) = {0}, and hence that ψ◦F0 = 0, a contradiction. We thus get (ii).

It is obvious that (ii) implies both (i) and (iii), that (iv) implies (vi), and
that (v) implies both (iv) and (vi).

It is shown in [27, Theorem 1] that for every infinite compact group G,
there exists a discontinuous translation invariant functional φ on L1(G).
Let E be a non-zero Banach space and let ψ be a non-zero continuous linear
functional on E. Then the functional F 7→ φ(ψ ◦ F ) on L1(G,E) is easily
seen to be translation-invariant and discontinuous. On the other hand, let
u ∈ E \ {0} and consider the function F ∈ L1(G,E) defined by F (t) = u
for each t ∈ G. It is clear that F is invariant and [32, Theorem 3.1] now
shows that L1(G,E) does not carry a unique topologically invariant norm.
Consequently, (vi) implies (vii).

Finally, the fact that (vii) implies (i) follows immediately from Theo-
rem 31.

Remark 8. It should be noted that Corollary 32 generalizes [7, Theorem
10(i)] and that Corollary 33 generalizes [7, Theorem 3 and Corollary 4].
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