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Abstract. The purpose of this paper is to give a characterization of the closure of the
Lizorkin space in spaces of Beppo Levi type. As preparations for the proof, we establish
the invariance of the Lizorkin space, and give local integral representations for smooth
functions.

1. Introduction and preliminaries. The purpose of this paper is
to give a characterization of the closure of the Lizorkin space in spaces of
Beppo Levi type. Let R™ be the n-dimensional Euclidean space. We denote
the Schwartz space on R™ by §. That is, S is the class of all C'"*°-functions
© in R™ such that

sup |z*DPp(z)| < oo

TER™
for all multi-indices @ = (aq,...,ay) and 8 = (f1,...,0,) where % =
28t x% and DP = DP' ... DB (D; = 8/8x;). Unless otherwise speci-
fied, all functions are assumed to be complex-valued. The Schwartz space
S contains the space D of all C°°-functions with compact support. The
Lizorkin space @ is defined by

b= {ngS: S p(z)x® dz = 0 for all a}
Rn
([SKM: §25 in Chap. 5]). Further, we introduce the space ¥ as follows:
U ={yeS:D(0) =0 for all a}.
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The Fourier transform Fu and the inverse Fourier transform Fu of an inte-
grable function u are defined by

Fu(z) = Se_im'yu(y) dy, Fu(x)= Seix'yu(y) dy = Fu(—x)

where x -y = x1y1 + . . . + TpYn. By the Fourier inversion theorem, for u € S
we have the equality

(1.1) FFu=FFu= (2m)"u.
Noting that
D*(Fe)(0) = | o(y) (i)™ dy
and
\ F(y) (iy)* dy = (2m)" D*4(0)
for p, ¢ € S, we see that
(1.2) b =FW), ©=F)

by (1.1). Therefore, since the function e=@=I*=?/12* (4 > 0, b > 0) belongs
to ¥, the function f(e*“|x|2*b/‘x|2) is an example of a function in @. We
note that
&ND ={0}.
Throughout this paper, let 1 < p < oco. For real numbers r and s, we
define the weighted Lebesgue spaces LP™(1°8)" ag follows:

[P (log)®
— — P p AL
= {u wllp,rog)s = (S lu(z)[P(1+ |=|)™(log(e + |z])) da:) < oo}

where e is the base of the natural logarithm. We simply write Lp.0,(108)° — p
and ||ullp.0,10g)0 = ||ullp. Further, L' denotes the space of all integrable
functions, and Li _ is the set of all locally integrable functions. For a positive

integer m, the Sobolev space WP and the space LP of Beppo Levi type are
defined by

wh = {ue Lt fullwg, = > 1D7ll, < o0}
[vl<m
and
Ly, = {u € Lige * |tlmp = Z D7 u, < OO}
[v[=m
where |y| = y1+. ..+, for a multi-index v = (y1,...,75). The norm ||ul| -z,
in £P is given by
lulles, = § lu(@)|de + [ulm.p-
|z|<1
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The denseness of @ in LP was established in P. I. Lizorkin [Lil] and
S. G. Samko [Sa]. The denseness of @ in the Bessel potential spaces is proved
in P. I. Lizorkin [Li2], and hence @ is dense in the Sobolev spaces W2 . In the
final Section 4, we give a characterization of the closure of ¢ in spaces L? of
Beppo Levi type (Theorem 4.8). As a corollary we show that if p > n, then
@ is dense in L2, and if p < n, then @ is not dense in £, (Corollary 4.9).
Sections 2 and 3 are preparations for Section 4. In Section 2 we establish
the invariance of @. Section 3 is devoted to local integral representations
of smooth functions and interpolation inequalities. Throughout this paper
we use the symbol C for a generic positive constant whose value may be
different at each occurrence.

2. The invariance of @. In this section we establish the invariance of
@ relative to a class of operators which contains differential operators, the
Riesz transforms and the Riesz potential operators. Let N denote the set of
natural numbers including zero; 2N stands for the set of nonnegative even
numbers.

LEMMA 2.1. Let m € N. If

1
lim —— Z ayx? =0,
|z|—0 |x|™

lv|=m
then a, =0 for all v with |y| =m.

Proof. We put P(z) =", _,, ay2”. By assumption, for © with |©] =1
we have
P(t tmP
= lim (t0) = lim P(O) = P(O).
t—0+40 [tO|™  t—04+0  t™

For x # 0, by putting t = |z| and © = z/|x|, we get
P(z) = P(tO) =t"™P(O) = 0.

Since it is clear that P(0) = 0, we conclude that P(z) is identically 0, and
hence a = 0 for all v with || = m.

We define
H={feC®R"): D*f(0) =0 for all a}.
LEMMA 2.2. Let f € C*°(R™). Then the following three conditions are
equivalent:

(I feHn.
(IT) For any multi-index o and any | € N,

D f(x)

lz|—0 |z -
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(III) For anyl € N,
) _
jzl—0 |zt
Proof. First, we show (I)=(II). Let f € H. For any [ € N, by the condi-

tion f € H and Taylor’s formula, we have

f(x)zzwﬂ, 0<f<1.

|
=t
Hence
D7f(6 v
i f(ﬂ:l) _ i D7 f02) oy,

IvI=l
because lim, o D7 f(6z) = D7 f(0) = 0. Moreover, since D* f € H for any
multi-index «, by applying the above argument to D% f, we get
DOC
i DI
lz|—0 ||
for any | € N. Thus we obtain (II). The implication (II)=(III) is trivial.
We show (ITI)=-(I). First, by taking [ = 0, we get f(0) = lim ;¢ f(z)
= 0. We assume that D7 f(0) = 0 for any « with |y| < m. Then by Taylor’s
formula we have
1 D7 f(0 D7 f(0 v
f(ﬂf)_ Z f()xy+z flOz) « 0<6<l.

m+1 m-+1 | | ) m-+1"
R Rt 2 T 2 T T

=0

By assumption we have lim,_o f(x)/|z|™*! = 0, and moreover for v with
[v] = m + 2, limyy)_o 27 /|z|™ ! = 0. Therefore

lim — Z DWf(O):m:o.

m—+1 |
|z]—0 || Wl

Hence, it follows from Lemma 2.1 that D7 f(0) = 0 for any  with |y| = m~+1.
Consequently, by induction we obtain D7 f(0) = 0 for any , and hence
f € H. This proves (III)=(I).

Let 2 C R™ be an open set and m € N. C™({2) is the space of functions
such that all partial derivatives D*f, |a| < m, are continuous on {2, and
C>®(£2) = oo C™(£2). The following lemma is a consequence of the mean
value theorem of calculus.

LEMMA 2.3. Let f € C°(R") and f e C™(R™—{0}). If limy_o D f(x)
exists for any multi-index «, then f € C(R™).

LEMMA 2.4. Let ¢ € ¥ and m € C®(R"—{0}). If for any multi-index -y,
there exist I, € N and Cy > 0 such that
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! >1
21 DY < |, |zl =1,
(2.1) | m(m)—cv{’x‘—l77 0< |z <1,

then the function

s in V.
Proof. First, it is clear that f € C>°(R™—{0}). By (2.1), the assumption
1 € ¥ and Lemma 2.2 we see that

nguﬂzgmpm@MMSCbmnw@n:

\ |z|—0 lz|—0 |zl

and hence f € C°(R™). We show
(2.2) lim D*f(x) =0 for any a.

|| —0
Since
D*f0) = X (%) 0m)p* i)
o \7
TS
by the Leibniz formula, it is sufficient to show
DYm(z)D*7(x) = 0 (|z| —0)

for v < a, which follows from (2.1), v € ¥ and Lemma 2.2 again. Hence
we obtain (2.2), and hence f € C°°(R"™) by Lemma 2.3. Further, (2.2) also
implies D f(0) = 0 for any multi-index «, and hence f € H. Similarly, the
condition (2.1) and ¢ € ¥ imply f € S. Thus we obtain f € HNS = V.

The dual space of S is denoted by S’.

PROPOSITION 2.5. Suppose T : & — S’ is a linear operator, and for
¢ € P,
F(Tp)(x) =m(x)Fe(x) inS,
where m € C°(R™ —{0}) and for any multi-index y there exist |, € N and
Cy > 0 such that

Iy >1
DY <C z|>,  Jz[ =1,
| m“»—v{mh,0<ﬂ<L
Then the operator T carries @ into .

Proof. For ¢ € @ by Lemma 2.4 the function
_ fmx)Fo(x), ©#0,
o) = { 0, x=0,
is in ¥ since Fp € ¥. Therefore we have

To =FF(Ty)=Fp € .
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For a positive integer m, the Riesz kernel k,,(x) of order m is given by

Ko (2) = 1 ™", m —n & 2N,
mAs (O, — log |z|)|z|™ ™, m —n € 2N,

Ym,n
with
_ [ wn22m P (m)2)/T((n —m)/2), m —n & 2N,
Y = { (—=1)m=n)/29m=172/2 (1 /2)((m —n)/2)!, m —n € 2N,
and

Omon = 2I'(m) 3

where C is Euler’s constant. For f € S, we define the Riesz potential xJ, of
f as follows:

_F’(m/2> 1<1+%+...+m—(3)—logw

k() = km(z = v) f(y) dy.
The Fourier transform of the Riesz kernel k., is given by
Frm(z) =Pf.lz|™™ ([Sc: Sect. 7 in Chap. VII])
where Pf. stands for the pseudo function ([Sc: Sect. 4 in Chap. II]). Since
PEJe~"p(x) = o] ()
for ¢ € ¥, we have
(2.3) Frl (@) = |o| " F f()
for f € @. Further, we define the Riesz transforms R; (j = 1,...,n) as

follows:

_ o T((n+1)/2) Tj —Yj
Rjf(x) = ;l_r% T(nt1)/2 ‘ S|> |z — y|n+l fy) dy.
r—y|>e

The Riesz transforms are bounded operators on LP:

(2.4) IR fllp < ClIfllp,  G=1,--sm,

and for f € L2, the Fourier transform of R;f is given by
1T

(25) F(Rjf)(z) = —ﬁff(l“)

For a multi-index v = (y1,...,7n), We set

R'=R]*...R".
For f € L2, it follows from (2.5) that

(_i)lvlm'v
(2.6) FRf)(z) = BEEE

COROLLARY 2.6. The differential operator D7, the Riesz potential oper-
ator nfn and the Riesz transforms R; (j =1,...,n) carry @ into .

f ().
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Proof. This follows from the formula F(D7f)(x) = (iz)"F f(x), (2.3),
(2.5) and Proposition 2.5.

REMARK 2.7. The invariance of @ relative to the Riesz potential opera-
tor was proved in [He] and [SKM].

For f € LP we put

Drf= > ﬁllmmf.
[vl=m

COROLLARY 2.8. If u € &, then f = D™uc d and u = k,.

Proof. That D™u € @ follows from Corollary 2.6. Since
F(D™u)(x) = |z|"™ Fu(z)

for u € @ by (2.6), we see that
Frl (2) = Frim(2)Ff(x) = Frip(x)F(D™u)(z)
= Pf.|z| 72| Fu(x) = Fu(x).

3. Local integral representations of smooth functions. If v is a
C™-function with compact support, then it can be represented by its partial
derivatives of order m as follows:

(3.1) uz)= Y - g(‘”_y)

aloy ) |z —y|™

«

Du(y) dy

|a]=m
([Re]) where o, is the surface area of the unit sphere, and

(_1)mm| « «a
(32)  ule) = Y L D (w — ) D u(y) dy
la]=m

([Wa]). In this section we give two kinds of integral representations of
C™-functions, which correspond to (3.1) and (3.2). One is based on Tay-
lor’s formula, and the other is deduced from the fact that the Riesz kernel
Kom 1s a fundamental solution for the iterated Laplace operator A" namely

(3.3) A = (—1)™6

where 0 is the point mass at the origin.
Let 0 < €1 < 2. We take a function n € C*(R) such that suppn C
{51 <t< 62} and

T 1
| nyentat = —,
0 In

and set
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Moreover we put

(3.4) w(z) = n(lz),
(3.5) X(z) = on | wltz/[z))t" " dt.

||
Then {w(z)dz =1 and x(z) = 0,7(|z]). Since 7 € C*°([0, 00)) and

_J1/o, for0<t<ey,
T(t) = {O for t > e,

we have xy € D and
(z) = 1 for |z| < ey,
10 for |x] > es.
PROPOSITION 3.1. Let 0 < &1 < e3. Then there exist functions p, x € D

such that supp p,supp x C {|z| < e}, pu(x) =0 on {|z| <e1}, x(x) =1 on
{lz| <e1}, and if uwe C™(R™), then

laj=m "

«

x(z—y)D%u(y) dy.

Proof. By Taylor’s formula we have

(B7) u@)= 3 vafy)@—yw

[v]<m

al

+m Z %S(l—t)m1Dau(y+t(x—y))dt.
jal=m Y0

We take functions w and x defined by (3.4) and (3.5). Multiplying (3.7) by
w(x — y) and integrating with respect to y, we get

u()= > =|Duy)(x - y)w(z—y)dy

1

—
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By integration by parts we have
1
h(@) = Yule = pul)dy where pa)= 30 D @)
lyl<m

Since w € D and suppw C {e1 < |z| < e2} by (3.4), 1 also has the same
properties. Further by the change of variables y + ¢t(z — y) = z, we obtain

L= Y gi(l—t)m_1<sEf:g)jw(?:j>Dau(z) T fzt)n>dt

laj=m "0
_ O;mgSDau(z)(x—z)a(S)w<?:*:) (1_dtt)n+1) dz

because x —y = (z—z)/(1—1t). By the change of variable |z —z|/(1—t) = s,
we get

Iy(x) = IZ gSDau(z)(m — z)a< S w(g‘i : z) ’;__Z|" ds) dz
= Z a:?; SDau(z)i:;:iz)zx(az —2)dz
laj=m — "

because (x — z)/(1 —t) = s(x — z)/|z — z|. Thus we obtain (3.6).

PROPOSITION 3.2. Let 0 < g1 < €9. Then there exist functions (,£ € D
such that supp ¢, suppé C {|z] < e}, C(x) = 0 on {|z| < &1}, €(x) = 1 on
{lz| <er}, and if uwe C™(R™), then

(38 () ={clavut)dyt > T D Eray) -9)Duly) dy.
jaf=m &

Proof. First we assume that u € D. Since u(x — y) belongs to D as a
function of y, the formula (3.3) gives

u(z) = (6(y),u(z —y)) = ((=1)" A" k2m (y), u(z — y))
= (=)™ k2m (), A™u(x — y)) = | (=1)"kam (y) A™u(x — y) dy

where (-, -) stands for the pairing between distributions and test functions.
We take a function £ € D such that

17 ’x‘ Sglv

(39) 0 ={y psa
If we set ((z) = (—=1)™A™((1 — &)kam)(x), then by integration by parts we
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have

u(e) = § (1= €@)(~1)" Kam(y) A" (e — y) dy
56 (=) Koy >Amu<x— >czy

= J¢wute —y) dy + Z SD“(Eﬂzm)(y)DQU(Cﬁ —y)dy

o=

— [ - puydy+ 3 MSD“(& )@ — ) D u(y) d
o 2m y)D%u(y) dy.
|a]=m

By (3.3) and (3.9) we see that ((x) = 0 for |z| < e; and |z| > €2, and hence
¢ € D. Therefore we obtain the proposition for u € D. In case u € C™(R"),
the proposition is obtained by approximating v by a sequence {u;} C D
such that D%u; converges to D%u locally uniformly as j — oo for |a| < m.
This completes the proof.

By taking differentiation under the integral sign in (3.6) and (3.8), we
obtain the following corollary.

COROLLARY 3.3. Let 0<e1 <eo. Then there exist functions u, x,(, &€ €D

such that supp p,supp x,supp ¢,supp{ C {|z| < ez}, pu(z) = ((z) =0 on
{lz| < e}, x(z) = &(z) = 1 on {|z| < e1}, and if u € C™(R"), then for
|’Y’ <m-— 17

DYu(x) = SD’Y,U,(.T} y) dy + Z

lo|=

SD”xa(rc —y)Du(y) dy

where xo(x) = x*x(x)/|z|™, and
Du(x) = XD”C(:B— >u< >dy

+ Z U Dt (g5, (& — ) D*u(y) dy.

|ee|=
We set By = {|z| < 1}. By cutting off functions belonging to C"(B1),

we obtain integral representations for u € C™(By).

COROLLARY 3.4. Letr > 0,0 < &1 < g3 and r+eg < 1. Then there exist

functions p, x,(, & € D such that supp p, supp x, supp ¢,supp & C {|z| < &2},
u(x) = ¢(z) = 0 on {|z| < er}, x(2) = &{(z) =1 on {[z] < &1}, and if
u € C™(By), then for |y| <m —1 and |z| <,

DYu(x) = XD” (x— y)u(y) dy
+ Z . } D7 xa(z — y) D™ u(y) dy

lo|=
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and
DYu(z) = | D7¢(x — y)u(y) dy

S #Smw(g@m)(x —y)D%u(y) dy.

|a]=m
By Corollaries 3.3 and 3.4 we get interpolation inequalities.

COROLLARY 3.5. Let r > 0 and € > 0. Then for u € C™(R") and
v <m—n/p,

1/p
max [DYu@)] < (| Ju)ldy+ X (] IDtu)dy) )
B lyl<r+e lal=m  |y|<r+e
where CL is independent of r.

Proof. Let |z| < r and |y| < m — n/p. By applying Corollary 3.3 for
g1 =¢/2 and €9 = €, we have

| D u()]
< | Dz —y)uly)|dy
lz—y|<e
m - o
+ ) o | ID"xal2 —y)Duly)| dy
laj=m " |z—y|<e
< max |D7pu(y)| | lu(y)ldy
vise lyl<r+e
m ’ l/p/ a 1/p
3 () Dl ay) (] D)l dy)
jal=m oyl << lyl<r+e
1 o » 1/p
<ci(§ wlay+ Y (O § D)) )
lyl<rte lal=m  y|<r+e
where
, 1/p’
ct=, mox (max|pru)+ max - (§ D))
lyl<m—n/p \ lyl<e |al=m aloy,
ly|<e
< 00.

COROLLARY 3.6. Let 0 <e <1and0<r <1l—e. Then for u e C™(B)
and |y| <m—1,

max | D u(z §C’2( max |u + max |D%u )
e |D7u(a) < C2( e ol + 32 e 10°u)

where C? is independent of .
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Proof. Let |x| < r and |y| < m — 1. By applying Corollary 3.4 for
g1 =¢/2 and 9 = €, we have

IDYu(@)| < | IDY(x = y)uly)| dy

lz—y|<e
m!
3T | ID €)@ — ) D uly)] dy
lal=m " |z—y|<e
< max |u(y)|{ID7¢(y)|dy
ly|<r+e
m!

+ ol D DV (Ekgm) (y)| d
>0 o max [D%u(y)] || D™ (Exan) 0)] dy
|aj=m

<02 _|_ Da
< C2( o) max [D*u(y)])

|la]=m

where

C?= max (§|Dvc<y>|dy+

DY () (9)| dy ) <
[v]<m—1 glﬁzwr{n a! Ram Y1 4Y o

4. The closure of @ in spaces of Beppo Levi type. In order to
define the Riesz potential of an LP-function, we introduce the modified Riesz
kernel k,, ,(x,y). For an integer k < m, we set

DYk (—
Em(T —y) — Z Mm”, 0<k<m,
Km,k(T,Y) = lv|<k v

km (T — ), k<O.

Moreover, for a locally integrable function f we define
Up (@) = § s (2. 9) f () dy
if it exists. Concerning the existence of UTJ; 1> We have the following.

LEMMA 4.1 (cf. [Ku: Corollary 5.9 and Proposition 5.15]). Let f € L?
and k = [m —n/p| be the integral part of m —n/p.

(i) In case m —n/p ¢ N, Uf;,k exists and
m 1/p
(Y1 s @Plal= az) " < Clifll

(ii) In case m —n/p € N, if we denote by f1 and fo the restriction of f
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to {|z| < 1} and to {|z| > 1} respectively, then Uﬂ;lkal and Uf;%k exist and
_ — 1/p
(§1U5 s @Il (14 log Jol|) ™ dz) ™ < Cll Al

(§102 el =2 (1 + [tog 1)) d) " < €l
For a set E C R", we denote by LP(E) the set of LP-functions f such
that f(x) =0 on the complement of E.
LEMMA 4.2 (cf. [Ku: Theorem 4.4]). Let k = [m —n/p| and |a| = m.
(i) In case m —n/p ¢ N, for f € LP,
DU/, = (-1)"R*f.
(ii) In case m —n/p € N, for f € LP(B1) and g € LP(BY),
DU} oy = (F1)"R*f,  D°Uj,, = (~1)"R%.
where BY is the complement of Bj.
The Riesz potential space RP, is defined by
{Uj%,C : f € LP}, m—n/p &N,
{ Ur];l,kfl +U7];2,k 1 felP fi=flg, f2=flpg}, m—n/peN,

with k = [m —n/p] where f|p, is the restriction of f to B;. Concerning the
relation between the Riesz potential spaces and the spaces of Beppo Levi
type, we have

LEMMA 4.3 (cf. [Ku: Theorem 6.7]). Let k = [m — n/p|]. Then
E;)n N Lp,fm7(10g)0’ m — n/p ¢ N,
EﬁlﬂLP’_m’(log)il, m—n/p €N,

where Py, is the set of polynomials of degree k with complex coefficients.

RY, =

m

an—i-Pk:{

We introduce the following notation:
B={feC>®:D"f is bounded for each a}.
The following lemma holds.

LeEMMA 4.4. (i) If ue S and v € HN B, then uv € ¥.
(i) If w e ¥ and v € B, then uv € ¥.

We take a function A € D such that A(z) =1 on |z| < 1. We put
h(z) = Nz) + e~ =" =1/12l*
g(z) =1 — M) — e #1112 = 1 _ p(a).
We note that g € H N B. For a function f and a positive number &, we set

fio)(x) = fex).



112 T. Kurokawa

We can easily check
LeEMMA 4.5. (i) For a multi-index o, D fy(z) = €l®ID? f (ex).
(ii) If f e L', then Ff(x) = (1/e™)Ff(x/e).
We put

) = e L 0ule) = vo@lajo (@) = viealg(a/o)

Since v(.) € S and g(1/) € H N B, it follows from Lemma 2.1(i) that
(4.1) 0- € V.
Further, we have
0:(7) = v(e)(¥) — v(e) (@) h(1/) (2).
We set
Ke(z) = Foe(z), Ki(z)=Fue(x), He(x)=Fhe)(z)
and
K2(z) = F(vieyhye)(x) = KL * Hyje ()

where the symbol * means convolution. Since p. € ¥ by (4.1), we have
K. € ® on account of (1.2). By elementary calculations we have K{(z) =
2*"7r*"/26*|’3|2/4, and hence

(4.2) \Ki(z)dz = 1.
Moreover, by Lemma 2.2(ii) we have

(4.3) Kl(z) = ~K! (f

£ En

g), Hy.(v) =e"Hy(ex).

LEMMA 4.6. If (1 + |z|)™u(z) € L' for every nonnegative integer m,
then K. xu € &.

Proof. By (1.2) it suffices to show that F(K.*u) € ¥. Since K. € S and
u € L', we see that

F(Ke = u)(x) = FKe(x) Fu(z) = (2m)" oc () Fu(z)

by (1.1). The condition (1 + |z|)™u(x) € L' (m = 0,1,...) implies Fu € B.
Therefore (4.1) and Lemma 4.4(ii) give the assertion.

We denote by &7 the closure of ¢ in L7 .
LEMMA 4.7. Let k = [m — n/p|. Then ®F, D Py.

Proof. Let Q € Pj. We take a function ¢ € C*°(R) such that ¢(t) =1
ont<1and ¢(t)=0ont> 2 If we set
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log |x|
pi(z) = ¢<logj)’ v#0,

Y '1":07

then p; € D and p;(z) =1 on |z| < j and ¢;j(x) = 0 on |z| > j2. We put
h; = ¢;Q € D. We shall show that h; converges to Q) as j — oo in LP . It
is clear that

| 1hi(z) — Q)| dz — 0 (j — o).

|z|<1

Let |a| = m. Since @ € Py and k < m, by the Leibniz formula we have

D*(h; — Q)(x) = Dhy(x) = 3 (“) D" () D" Q(x)

y<a N
- ¥ (‘;‘)Da-wmm@m»

v<a, |1v|<Lk

Since av — 7y # 0 for || < k, we see that
1/
(1107, — Q) az) "
< Y <O‘> (| @)

v<a, |v|<k v Jj<|z[<52

<o Y (F et a)

v<a, [v|<k  j<]w| <52

Since

C
DY 7, < -
DTS (g fafie

on j < |z| < j2, we obtain
| 1D ()Pl
Jj<|z|<52

S lz|F=m™P de k< m —n/p,

c i<lel
< —
(log j)P S |z|""dzx, k=m—n/p,
i<lz]<5?

C {j(km””", k<m—n/p,
(log j)P

—0 (j—o0)

log 7, k=m—n/p,
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since (k —m)p+mn <0 for k < m —n/p. Thus we get
(4.4) 1hj = Qlles, =0 (j — 00).

Further, we put hj . = Kc x h; = KL% hj — K2 % h;. Since h; € D, (4.2) and
(4.3) imply

(4.5) 11C2 # Ry — By

Since K2 « hj = Kl « Hy /. * hj, we obtain

cr,—0 (e —=0).

(4.6) 12 #Rjller, =0 (£ —0)
because [|Kl]|y =1 and ||H; /.||, — 0 (¢ — 0). Since hj . € ¢ by Lemma 4.6,
(4.4)—(4.6) give the lemma.

Now we are in a position to prove our main theorem.
THEOREM 4.8.
g _ { Gy g,
£ A Lpmoe) ™ e N
Proof. We begin with the proof that the left-hand side is contained in
the right-hand side. Let u € @7 . By the definition there exists a sequence
{u;} C @ which converges to u as j — oo in LP,. We put f = D"u and
fi = DMu; (j = 1,2,...). It follows from w € LP that f € L”, and by
Corollary 2.8, f; € ® and u; = m{{. Moreover, we see that

(7) 15— Flp < 3 R Dy~ wly
< |C’;J —Ufpmp — 0 (= 00).
Let k = [m — n/p]. We first consider the case m —n/p ¢ N. We have
uj(x) = Sﬁm(x —y)fiy)dy = Uf:f’k(a:) + Z ay ;7
[vI<k

with
Du;(0)

1

Lemma 4.1(i) and (4.7) give

{ 10D (@)~ Ul (@) de—0  (j— o).
|z|<1

Further, for |a| = m, by Lemma 4.2(i), (2.4) and (4.7) we see that
DU = UL ol = CIRf; = BOfll, < Clfs = flly = 0 (G — 0).
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Thus we conclude that UfJ i, converges to Uf rasj—ooinLh. For [y <k,
by applying Corollary 3. 5 with r = 0 and & = 1, we have

|ay,5 — ayi| = %]Dvuj(O) — D7y (0)]

<o § ) -uwlay+ Y ( \Do‘uj(y)—Da“l(y)|pdy)1/p>

ly|<1 laj=m |y|<1
< Clluj —wllgp, =0 (4,1 — o0).

Thus {a,;}52, is a Cauchy sequence for each |y| < k, and hence there
exist a, (|y| < k) such that a, ; tends to a, as j — oo. This implies that
ngk a~ ;r7 converges to Zlvlsk a,z” as j — oo in LP,. Consequently, we
have
u = Uf;k + Z ayx” € RE 4 Py
IvI<k

This implies that uw € £P N Lp—m:(08)° by Lemma 4.3,
We next consider the case m —n/p € N. In this case, putting f;1 = fj|s,

and f;2 = fj|Bs, we have
uj(x) = Sﬁm(ﬂi —y)fiy)dy = va{;;i,l(x) + Uv{mj;; (z) + Z o
lvI<k
with
71‘ VD7 k(=) £(y) dy, Iy < k-1,
ayj =19 1

) DUnnf)dy, b=k
" yl>1

Lemma 4.1(ii) and (4.7) give
| 10k @) = Ul @) dz =0 (j — o),
|z|<1

and
| [0l - vl (@) de -0  (j— o0)

|z]<1

where f1 = f|p, and fo = f|pe. Further, Lemma 4.2(ii), (2.4) and (4.7) give
’Uqff'li—l - r];lk—llm,p_’(% ’UQQ Uka‘mp 0 (J—o00).

Thus Uf]k 1+Ufjk converges to Uflk 1+Uf2k asj — ooin LP, . For |y| < k,
we shall show that {ay 152, is a Cauchy sequence. First let m — n/p € N
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and m —n/p # 0. For |y| < k — 1, by using Corollary 3.5 we have
1
a5 — ayil = WD”%(O) = Dy (0)] < Clluy — wl g,

because |y| < m —n/p. This shows that {a, ;}32, is a Cauchy sequence for
|v] <k — 1. Let |y| = k. We put

vi@)= | wm@-9)fi@)dy, wiz) = | kml@-y)fik)dy.

lyl<1 ly|>1
We show that {v;}32; and {w;}32, are Cauchy sequences in L}, . Since
B
: x
v(e) = Ui+ > 5 | Dlea(-n)fiw)dy,
BI<k—1 7 Jy|<1
for || = m by Lemma 4.2(ii) we have
Dv; = DU | = (~1)"R°f; 1.
Hence we see that

0j = Vlmp = > IR fia =R fialy < Clifja— fially

loe|=m

<Clfj = fillpb =0 (4,1 — 00).

Further we obtain

| lo@ —w@lde= § | § #ule— o)) - fiy) dy| do

|z]<1 lz|]<1 |y|l<1
<V lwm@)de § |f;(y) - fily)l dy
|z|<2 ly|<1

<Clfi=fillp—=0 (Gl — o).

Thus {v;}32, is a Cauchy sequence in L} . Since u; = v; + w; and

.1 oo .10 1 p 1 . 100
{u;}52,,{v;}32, are Cauchy sequences in L}, so is {w;}52,. Furthermore
we shall show

(4.8) Jnax, lw;(z) — wi(x)] < Cllwj —wil zz,,
(4.9) Jnax, |D%w;(z) — Dwi(x)| < Cllw; —wi| zz, -
la]l=m

Since w; — w; € C*°(B1), by applying Corollary 3.4 with r =1/2,0 <&y <
g9 < 1/2 and v = 0, for |z| < 1/2 we have
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() = wn (@)
<| 1 - - ) dy

|z—y|<e2

ST e e

lal=m " |z—y|<es

<Clloo § Twj(y) — wily)| dy
lyl<1

’

m!
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0 (T e dy) (D s —w P ay)

jof=m " lyl<1 lvl<1
< Cllwj = willz,

with ||¢]|ec = sup, |¢(2)|, because m — n/p > 0 implies

(1 10°Emamr a) " <o

ly|<1

Thus we obtain (4.8). Further, for |a| = m and |z| < 1/2 we have

Dwj(@) = D*wn(a@)| = | § Dk = y)(f5(y) = fiy) dy|
ly|>1
<( ] e @) (] 150 - AP ar)
ly|>1 ly[>1
<(F il ) (1) - AP )

ly|>1/2 ly|>1

<O fj2 = fizll,=0C

ly|=m
< Clwj — wilmp < Cllw; — w2z,
because
o ’ 1/p’ ! 1
| D% (y)P dy) < C( Voo dy)
ly|>1/2 ly|>1/2

m!
Z —!R'YDV(wj — wl)

1/p

< oQ.

Thus we obtain (4.9). Consequently, by taking |y| = k, r = 0 and ¢ = 1/2

in Corollary 3.6, we obtain

1
lay,j — ayi| = ¥|D7wj(0) — Dwi(0)] < Cllwj — wy|
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This shows that {a,;}32, is a Cauchy sequence for [y| = k. Next let
m — n/p = 0. In this case we have

uj(@) = sl (@) = Unty (@) + U5 () + a0y

By putting w,, = S|I dx, we see that

<1
1
|a07j - a()’l| = — S |a07j - ag,l‘ dx
" zl<1
1 1 j,1 2 3,2
= — | luy(@) —w(@) + U (@) =Upit (@) + U5 () = UL (o) de
™ z|<1
1 . 1/p
< — | @ -w@lde+w;(§ UL @) dr)
" lal<1 |z]<1
. 1/
v (§ o @)

|z|<1
Therefore, Lemma 4.1(ii) gives
|a0,; = aoa| < Clluj = willzs, + Cllfin = fiallp + Clifi2 = fizllp
< Clluj —wll gz, + Cllfe = fillp < Cllug — will gz,
This shows that {ag;}32, is a Cauchy sequence. Thus we conclude that
{ay,;}52, is a Cauchy sequence for |y| <k. Hence there exist a, (|| < k)

such that a, ; tends to a, as j — oo. This implies that ZWK’C a~, jx7 con-
verges to Z|V|<k ay2” as j — oo in LP . Consequently, we have

u—Uflk 1+Uf2k+ Z ayx? € RY 4 Py.
[vI<k

This implies that u € £2, N LP»~™°8)"" by Lemma 4.3.
Next, we show the converse inclusion. Let
c £p, A Le—mo8)” g /p &N,
U _
e, A Le=moe) ™ /pe N

By Lemma 4.3 there exists an LP-function f such that

. { U, kT 2y <k T m—n/p &N,
Uflk 1+U7];2,k+2w|gkav$'y7 m—n/p €N,
with k = [m—n/p|, fi = f|p, and fo = f|ps. Since @ is dense in L? ([Lil]),

there exists a sequence {f;} C @ such that f; converges to f as j — oo in
LP. We consider the case m —n/p ¢ N. Since f; converges to f as j — oo in

LP, Uﬁk converges to Ug%k as j — oo in L£P by Lemmas 4.1(i) and 4.2(i).
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Hence, for given € > 0, there exists a function f; € @ such that

(4.10)  e/2> (U], = US4 llen,

:HUg; <t 3 S0 () ) d

I’y\<k

£y,

We put

= Z ayx”, Plx)= Z il

2 2o { DYk (=) fi(y) d
vI<k vI<k

Since P — P; € Py, by Lemma 4.7 there exists a function ¢ € @ such that
(4.11) 1P =P = glleg, < o/2
By (4.10) and (4.11) we have
hu—wfy = lles, = U+ P+ P = P = sl — glles,
<UL, i = K+ Plllco, + 1P = Pi— ol s,
= U o = UR lles, + 1P = P = ¢l s,
<e/24+¢e/2=¢.

Since st + ¢ € @ by Corollary 2.6, this implies that u € &2,. In case
m —n/p € N, we can prove that u € #P in the same way. Thus we have
completed the proof of the theorem.

REMARK 4.9. Since £P = RP +P,,—1 ([Ku: Theorems 6.1 and 6.3]), by
Lemma 4.3 and Theorem 4.8 we conclude that if p > n, then @ is dense in
LP . and if p < n, then @ is not dense in L7 .
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