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Abstract. The purpose of this paper is to give a characterization of the closure of the
Lizorkin space in spaces of Beppo Levi type. As preparations for the proof, we establish
the invariance of the Lizorkin space, and give local integral representations for smooth
functions.

1. Introduction and preliminaries. The purpose of this paper is
to give a characterization of the closure of the Lizorkin space in spaces of
Beppo Levi type. Let Rn be the n-dimensional Euclidean space. We denote
the Schwartz space on Rn by S. That is, S is the class of all C∞-functions
ϕ in Rn such that

sup
x∈Rn

|xαDβϕ(x)| <∞

for all multi-indices α = (α1, . . . , αn) and β = (β1, . . . , βn) where xα =
xα1

1 . . . xαnn and Dβ = Dβ1
1 . . .Dβn

n (Dj = ∂/∂xj). Unless otherwise speci-
fied, all functions are assumed to be complex-valued. The Schwartz space
S contains the space D of all C∞-functions with compact support. The
Lizorkin space Φ is defined by

Φ =
{
ϕ ∈ S :

�

Rn
ϕ(x)xα dx = 0 for all α

}

([SKM: §25 in Chap. 5]). Further, we introduce the space Ψ as follows:

Ψ = {ψ ∈ S : Dαψ(0) = 0 for all α}.
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The Fourier transform Fu and the inverse Fourier transform Fu of an inte-
grable function u are defined by

Fu(x) =
�
e−ix·yu(y) dy, Fu(x) =

�
eix·yu(y) dy = Fu(−x)

where x · y = x1y1 + . . .+xnyn. By the Fourier inversion theorem, for u ∈ S
we have the equality

(1.1) FFu = FFu = (2π)nu.

Noting that
Dα(Fϕ)(0) =

�
ϕ(y)(iy)α dy

and �
Fψ(y)(iy)α dy = (2π)nDαψ(0)

for ϕ,ψ ∈ S, we see that

(1.2) Φ = F(Ψ), Ψ = F(Φ)

by (1.1). Therefore, since the function e−a|x|
2−b/|x|2 (a > 0, b > 0) belongs

to Ψ , the function F(e−a|x|
2−b/|x|2) is an example of a function in Φ. We

note that
Φ ∩ D = {0}.

Throughout this paper, let 1 < p < ∞. For real numbers r and s, we
define the weighted Lebesgue spaces Lp,r,(log)s as follows:

Lp,r,(log)s

=
{
u : ‖u‖p,r,(log)s =

( �
|u(x)|p(1 + |x|)rp(log(e+ |x|))sp dx

)1/p
<∞

}

where e is the base of the natural logarithm. We simply write Lp,0,(log)0
= Lp

and ‖u‖p,0,(log)0 = ‖u‖p. Further, L1 denotes the space of all integrable
functions, and L1

loc is the set of all locally integrable functions. For a positive
integer m, the Sobolev space W p

m and the space Lpm of Beppo Levi type are
defined by

W p
m =

{
u ∈ L1

loc : ‖u‖Wp
m

=
∑

|γ|≤m
‖Dγu‖p <∞

}

and
Lpm =

{
u ∈ L1

loc : |u|m,p =
∑

|γ|=m
‖Dγu‖p <∞

}

where |γ| = γ1+. . .+γn for a multi-index γ = (γ1, . . . , γn). The norm ‖u‖Lpm
in Lpm is given by

‖u‖Lpm =
�

|x|<1

|u(x)| dx+ |u|m,p.
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The denseness of Φ in Lp was established in P. I. Lizorkin [Li1] and
S. G. Samko [Sa]. The denseness of Φ in the Bessel potential spaces is proved
in P. I. Lizorkin [Li2], and hence Φ is dense in the Sobolev spaces W p

m. In the
final Section 4, we give a characterization of the closure of Φ in spaces Lpm of
Beppo Levi type (Theorem 4.8). As a corollary we show that if p ≥ n, then
Φ is dense in Lpm, and if p < n, then Φ is not dense in Lpm (Corollary 4.9).
Sections 2 and 3 are preparations for Section 4. In Section 2 we establish
the invariance of Φ. Section 3 is devoted to local integral representations
of smooth functions and interpolation inequalities. Throughout this paper
we use the symbol C for a generic positive constant whose value may be
different at each occurrence.

2. The invariance of Φ. In this section we establish the invariance of
Φ relative to a class of operators which contains differential operators, the
Riesz transforms and the Riesz potential operators. Let N denote the set of
natural numbers including zero; 2N stands for the set of nonnegative even
numbers.

Lemma 2.1. Let m ∈ N. If

lim
|x|→0

1
|x|m

∑

|γ|=m
aγx

γ = 0,

then aγ = 0 for all γ with |γ| = m.

Proof. We put P (x) =
∑
|γ|=m aγx

γ . By assumption, for Θ with |Θ| = 1
we have

0 = lim
t→0+0

P (tΘ)
|tΘ|m = lim

t→0+0

tmP (Θ)
tm

= P (Θ).

For x 6= 0, by putting t = |x| and Θ = x/|x|, we get

P (x) = P (tΘ) = tmP (Θ) = 0.

Since it is clear that P (0) = 0, we conclude that P (x) is identically 0, and
hence aγ = 0 for all γ with |γ| = m.

We define

H = {f ∈ C∞(Rn) : Dαf(0) = 0 for all α}.
Lemma 2.2. Let f ∈ C∞(Rn). Then the following three conditions are

equivalent :

(I) f ∈ H.
(II) For any multi-index α and any l ∈ N,

lim
|x|→0

Dαf(x)
|x|l = 0.
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(III) For any l ∈ N,

lim
|x|→0

f(x)
|x|l = 0.

Proof. First, we show (I)⇒(II). Let f ∈ H. For any l ∈ N, by the condi-
tion f ∈ H and Taylor’s formula, we have

f(x) =
∑

|γ|=l

Dγf(θx)
γ!

xγ , 0 < θ < 1.

Hence

lim
|x|→0

f(x)
|x|l =

∑

|γ|=l
lim
|x|→0

Dγf(θx)
γ!

· x
γ

|x|l = 0,

because lim|x|→0 D
γf(θx) = Dγf(0) = 0. Moreover, since Dαf ∈ H for any

multi-index α, by applying the above argument to Dαf , we get

lim
|x|→0

Dαf(x)
|x|l = 0

for any l ∈ N. Thus we obtain (II). The implication (II)⇒(III) is trivial.
We show (III)⇒(I). First, by taking l = 0, we get f(0) = lim|x|→0 f(x)

= 0. We assume that Dγf(0) = 0 for any γ with |γ| ≤ m. Then by Taylor’s
formula we have
f(x)
|x|m+1 =

1
|x|m+1

∑

|γ|=m+1

Dγf(0)
γ!

xγ+
∑

|γ|=m+2

Dγf(θx)
γ!

· xγ

|x|m+1 , 0 < θ < 1.

By assumption we have lim|x|→0 f(x)/|x|m+1 = 0, and moreover for γ with
|γ| = m+ 2, lim|x|→0 x

γ/|x|m+1 = 0. Therefore

lim
|x|→0

1
|x|m+1

∑

|γ|=m+1

Dγf(0)
γ!

xγ = 0.

Hence, it follows from Lemma 2.1 thatDγf(0) = 0 for any γ with |γ| = m+1.
Consequently, by induction we obtain Dγf(0) = 0 for any γ, and hence
f ∈ H. This proves (III)⇒(I).

Let Ω ⊂ Rn be an open set and m ∈ N. Cm(Ω) is the space of functions
such that all partial derivatives Dαf, |α| ≤ m, are continuous on Ω, and
C∞(Ω) =

⋂∞
m=0 C

m(Ω). The following lemma is a consequence of the mean
value theorem of calculus.

Lemma 2.3. Let f ∈C0(Rn) and f ∈C∞(Rn−{0}). If lim|x|→0 D
αf(x)

exists for any multi-index α, then f ∈ C∞(Rn).

Lemma 2.4. Let ψ ∈ Ψ and m ∈ C∞(Rn−{0}). If for any multi-index γ,
there exist lγ ∈ N and Cγ > 0 such that
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(2.1) |Dγm(x)| ≤ Cγ
{
|x|lγ , |x| ≥ 1,
|x|−lγ , 0 < |x| < 1,

then the function

f(x) =
{
m(x)ψ(x), x 6= 0,
0, x = 0,

is in Ψ .

Proof. First, it is clear that f ∈ C∞(Rn−{0}). By (2.1), the assumption
ψ ∈ Ψ and Lemma 2.2 we see that

lim
|x|→0

|f(x)| = lim
|x|→0

|m(x)ψ(x)| ≤ C0 lim
|x|→0

|ψ(x)|
|x|l0 = 0,

and hence f ∈ C0(Rn). We show

(2.2) lim
|x|→0

Dαf(x) = 0 for any α.

Since

Dαf(x) =
∑

γ≤α

(
α

γ

)
Dγm(x)Dα−γψ(x)

by the Leibniz formula, it is sufficient to show

Dγm(x)Dα−γψ(x)→ 0 (|x| → 0)

for γ ≤ α, which follows from (2.1), ψ ∈ Ψ and Lemma 2.2 again. Hence
we obtain (2.2), and hence f ∈ C∞(Rn) by Lemma 2.3. Further, (2.2) also
implies Dαf(0) = 0 for any multi-index α, and hence f ∈ H. Similarly, the
condition (2.1) and ψ ∈ Ψ imply f ∈ S. Thus we obtain f ∈ H ∩ S = Ψ .

The dual space of S is denoted by S ′.
Proposition 2.5. Suppose T : Φ → S ′ is a linear operator , and for

ϕ ∈ Φ,
F(Tϕ)(x) = m(x)Fϕ(x) in S ′,

where m ∈ C∞(Rn−{0}) and for any multi-index γ there exist lγ ∈ N and
Cγ > 0 such that

|Dγm(x)| ≤ Cγ
{
|x|lγ , |x| ≥ 1,
|x|−lγ , 0 < |x| < 1.

Then the operator T carries Φ into Φ.

Proof. For ϕ ∈ Φ, by Lemma 2.4 the function

ψ(x) =
{
m(x)Fϕ(x), x 6= 0,
0, x = 0,

is in Ψ since Fϕ ∈ Ψ . Therefore we have

Tϕ = FF(Tϕ) = Fψ ∈ Φ.



104 T. Kurokawa

For a positive integer m, the Riesz kernel κm(x) of order m is given by

κm(x) =
1

γm,n

{
|x|m−n, m− n 6∈ 2N,
(δm,n − log |x|)|x|m−n, m− n ∈ 2N,

with

γm,n =
{
πn/22mΓ (m/2)/Γ ((n−m)/2), m− n 6∈ 2N,
(−1)(m−n)/22m−1πn/2Γ (m/2)((m− n)/2)!, m− n ∈ 2N,

and

δm,n =
Γ ′(m/2)
2Γ (m)

+
1
2

(
1 +

1
2

+ . . .+
1

(m− n)/2
− C

)
− log π

where C is Euler’s constant. For f ∈ S, we define the Riesz potential κfm of
f as follows:

κfm(x) =
�
κm(x− y)f(y) dy.

The Fourier transform of the Riesz kernel κm is given by

Fκm(x) = Pf.|x|−m ([Sc: Sect. 7 in Chap. VII])

where Pf. stands for the pseudo function ([Sc: Sect. 4 in Chap. II]). Since

Pf.|x|−mψ(x) = |x|−mψ(x)

for ψ ∈ Ψ , we have

(2.3) Fκfm(x) = |x|−mFf(x)

for f ∈ Φ. Further, we define the Riesz transforms Rj (j = 1, . . . , n) as
follows:

Rjf(x) = lim
ε→0

Γ ((n+ 1)/2)
π(n+1)/2

�

|x−y|≥ε

xj − yj
|x− y|n+1 f(y) dy.

The Riesz transforms are bounded operators on Lp:

(2.4) ‖Rjf‖p ≤ C‖f‖p, j = 1, . . . , n,

and for f ∈ L2, the Fourier transform of Rjf is given by

(2.5) F(Rjf)(x) = − ixj|x| Ff(x).

For a multi-index γ = (γ1, . . . , γn), we set

Rγ = Rγ1
1 . . . Rγnn .

For f ∈ L2, it follows from (2.5) that

(2.6) F(Rγf)(x) =
(−i)|γ|xγ
|x||γ| Ff(x).

Corollary 2.6. The differential operator Dγ , the Riesz potential oper-
ator κfm and the Riesz transforms Rj (j = 1, . . . , n) carry Φ into Φ.
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Proof. This follows from the formula F(Dγf)(x) = (ix)γFf(x), (2.3),
(2.5) and Proposition 2.5.

Remark 2.7. The invariance of Φ relative to the Riesz potential opera-
tor was proved in [He] and [SKM].

For f ∈ Lpm we put

Dmf =
∑

|γ|=m

m!
γ!
RγDγf.

Corollary 2.8. If u ∈ Φ, then f = Dmu ∈ Φ and u = κfm.

Proof. That Dmu ∈ Φ follows from Corollary 2.6. Since

F(Dmu)(x) = |x|mFu(x)

for u ∈ Φ by (2.6), we see that

Fκfm(x) = Fκm(x)Ff(x) = Fκm(x)F(Dmu)(x)

= Pf.|x|−m|x|mFu(x) = Fu(x).

3. Local integral representations of smooth functions. If u is a
Cm-function with compact support, then it can be represented by its partial
derivatives of order m as follows:

(3.1) u(x) =
∑

|α|=m

m

α!σn

� (x− y)α

|x− y|n D
αu(y) dy

([Re]) where σn is the surface area of the unit sphere, and

(3.2) u(x) =
∑

|α|=m

(−1)mm!
α!

�
Dακ2m(x− y)Dαu(y) dy

([Wa]). In this section we give two kinds of integral representations of
Cm-functions, which correspond to (3.1) and (3.2). One is based on Tay-
lor’s formula, and the other is deduced from the fact that the Riesz kernel
κ2m is a fundamental solution for the iterated Laplace operator ∆m, namely

(3.3) ∆mκ2m = (−1)mδ

where δ is the point mass at the origin.
Let 0 < ε1 < ε2. We take a function η ∈ C∞(R) such that supp η ⊂

{ε1 ≤ t ≤ ε2} and
∞�

0

η(t)tn−1 dt =
1
σn
,

and set

τ(t) =
∞�

t

η(s)sn−1 ds.
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Moreover we put

ω(x) = η(|x|),(3.4)

χ(x) = σn

∞�

|x|
ω(tx/|x|)tn−1 dt.(3.5)

Then � ω(x) dx = 1 and χ(x) = σnτ(|x|). Since τ ∈ C∞([0,∞)) and

τ(t) =
{

1/σn for 0 ≤ t ≤ ε1,
0 for t ≥ ε2,

we have χ ∈ D and

χ(x) =
{

1 for |x| ≤ ε1,
0 for |x| ≥ ε2.

Proposition 3.1. Let 0 < ε1 < ε2. Then there exist functions µ, χ ∈ D
such that suppµ, suppχ ⊂ {|x| ≤ ε2}, µ(x) = 0 on {|x| ≤ ε1}, χ(x) = 1 on
{|x| ≤ ε1}, and if u ∈ Cm(Rn), then

(3.6) u(x) =
�
µ(x−y)u(y) dy+

∑

|α|=m

m

α!σn

� (x− y)α

|x− y|n χ(x−y)Dαu(y) dy.

Proof. By Taylor’s formula we have

u(x) =
∑

|γ|<m

Dγu(y)
γ!

(x− y)γ(3.7)

+m
∑

|α|=m

(x− y)α

α!

1�

0

(1− t)m−1Dαu(y + t(x− y)) dt.

We take functions ω and χ defined by (3.4) and (3.5). Multiplying (3.7) by
ω(x− y) and integrating with respect to y, we get

u(x) =
∑

|γ|<m

1
γ!

�
Dγu(y)(x− y)γω(x− y) dy

+
∑

|α|=m

m

α!

�
(x− y)αω(x− y)

1�

0

(1− t)m−1Dαu(y + t(x− y)) dt dy

=
∑

|γ|<m

1
γ!

�
Dγu(y)(x− y)γω(x− y) dy

+
∑

|α|=m

m

α!

1�

0

(1− t)m−1
( �

(x−y)αω(x−y)Dαu(y + t(x−y)) dy
)
dt

= I1(x) + I2(x).
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By integration by parts we have

I1(x) =
�
µ(x− y)u(y) dy where µ(x) =

∑

|γ|<m

1
γ!
Dγ(xγω(x)).

Since ω ∈ D and suppω ⊂ {ε1 ≤ |x| ≤ ε2} by (3.4), µ also has the same
properties. Further by the change of variables y + t(x− y) = z, we obtain

I2(x) =
∑

|α|=m

m

α!

1�

0

(1− t)m−1
( � (x− z)α

(1− t)mω
(
x− z
1− t

)
Dαu(z)

dz

(1− t)n
)
dt

=
∑

|α|=m

m

α!

�
Dαu(z)(x− z)α

( 1�

0

ω

(
x− z
1− t

)
dt

(1− t)n+1

)
dz

because x−y = (x−z)/(1− t). By the change of variable |x−z|/(1− t) = s,
we get

I2(x) =
∑

|α|=m

m

α!

�
Dαu(z)(x− z)α

( ∞�

|x−z|
ω

(
s
x− z
|x− z|

)
sn−1

|x− z|n ds
)
dz

=
∑

|α|=m

m

α!σn

�
Dαu(z)

(x− z)α

|x− z|n χ(x− z) dz

because (x− z)/(1− t) = s(x− z)/|x− z|. Thus we obtain (3.6).

Proposition 3.2. Let 0 < ε1 < ε2. Then there exist functions ζ, ξ ∈ D
such that supp ζ, supp ξ ⊂ {|x| ≤ ε2}, ζ(x) = 0 on {|x| ≤ ε1}, ξ(x) = 1 on
{|x| ≤ ε1}, and if u ∈ Cm(Rn), then

(3.8) u(x) =
�
ζ(x−y)u(y) dy+

∑

|α|=m

(−1)mm!
α!

�
Dα(ξκ2m)(x−y)Dαu(y) dy.

Proof. First we assume that u ∈ D. Since u(x − y) belongs to D as a
function of y, the formula (3.3) gives

u(x) = 〈δ(y), u(x− y)〉 = 〈(−1)m∆mκ2m(y), u(x− y)〉
= 〈(−1)mκ2m(y),∆mu(x− y)〉 =

�
(−1)mκ2m(y)∆mu(x− y) dy

where 〈·, ·〉 stands for the pairing between distributions and test functions.
We take a function ξ ∈ D such that

(3.9) ξ(x) =
{

1, |x| ≤ ε1,
0, |x| ≥ ε2.

If we set ζ(x) = (−1)m∆m((1− ξ)κ2m)(x), then by integration by parts we
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have

u(x) =
�
(1− ξ(y))(−1)mκ2m(y)∆mu(x− y) dy

+
�
ξ(y)(−1)mκ2m(y)∆mu(x− y) dy

=
�
ζ(y)u(x− y) dy +

∑

|α|=m

(−1)mm!
α!

�
Dα(ξκ2m)(y)Dαu(x− y) dy

=
�
ζ(x− y)u(y) dy +

∑

|α|=m

(−1)mm!
α!

�
Dα(ξκ2m)(x− y)Dαu(y) dy.

By (3.3) and (3.9) we see that ζ(x) = 0 for |x| ≤ ε1 and |x| ≥ ε2, and hence
ζ ∈ D. Therefore we obtain the proposition for u ∈ D. In case u ∈ Cm(Rn),
the proposition is obtained by approximating u by a sequence {uj} ⊂ D
such that Dαuj converges to Dαu locally uniformly as j →∞ for |α| ≤ m.
This completes the proof.

By taking differentiation under the integral sign in (3.6) and (3.8), we
obtain the following corollary.

Corollary 3.3. Let 0<ε1<ε2. Then there exist functions µ, χ, ζ, ξ ∈D
such that suppµ, suppχ, supp ζ, supp ξ ⊂ {|x| ≤ ε2}, µ(x) = ζ(x) = 0 on
{|x| ≤ ε1}, χ(x) = ξ(x) = 1 on {|x| ≤ ε1}, and if u ∈ Cm(Rn), then for
|γ| ≤ m− 1,

Dγu(x) =
�
Dγµ(x− y)u(y) dy +

∑

|α|=m

m

α!σn

�
Dγχα(x− y)Dαu(y) dy

where χα(x) = xαχ(x)/|x|n, and

Dγu(x) =
�
Dγζ(x− y)u(y) dy

+
∑

|α|=m

(−1)mm!
α!

�
Dγ+α(ξκ2m)(x− y)Dαu(y) dy.

We set B1 = {|x| < 1}. By cutting off functions belonging to Cm(B1),
we obtain integral representations for u ∈ Cm(B1).

Corollary 3.4. Let r > 0, 0 < ε1 < ε2 and r+ε2 < 1. Then there exist
functions µ, χ, ζ, ξ ∈ D such that suppµ, suppχ, supp ζ, supp ξ ⊂ {|x| ≤ ε2},
µ(x) = ζ(x) = 0 on {|x| ≤ ε1}, χ(x) = ξ(x) = 1 on {|x| ≤ ε1}, and if
u ∈ Cm(B1), then for |γ| ≤ m− 1 and |x| ≤ r,

Dγu(x) =
�
Dγµ(x− y)u(y) dy

+
∑

|α|=m

m

α!σn

�
Dγχα(x− y)Dαu(y) dy
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and

Dγu(x) =
�
Dγζ(x− y)u(y) dy

+
∑

|α|=m

(−1)mm!
α!

�
Dγ+α(ξκ2m)(x− y)Dαu(y) dy.

By Corollaries 3.3 and 3.4 we get interpolation inequalities.

Corollary 3.5. Let r ≥ 0 and ε > 0. Then for u ∈ Cm(Rn) and
|γ| < m− n/p,

max
|x|≤r

|Dγu(x)| ≤ C1
ε

( �

|y|≤r+ε
|u(y)| dy +

∑

|α|=m

( �

|y|≤r+ε
|Dαu(y)|p dy

)1/p)

where C1
ε is independent of r.

Proof. Let |x| ≤ r and |γ| < m − n/p. By applying Corollary 3.3 for
ε1 = ε/2 and ε2 = ε, we have

|Dγu(x)|
≤

�

|x−y|≤ε
|Dγµ(x− y)u(y)| dy

+
∑

|α|=m

m

α!σn

�

|x−y|≤ε
|Dγχα(x− y)Dαu(y)| dy

≤ max
|y|≤ε

|Dγµ(y)|
�

|y|≤r+ε
|u(y)| dy

+
∑

|α|=m

m

α!σn

( �

|x−y|≤ε
|Dγχα(x−y)|p′ dy

)1/p′( �

|y|≤r+ε
|Dαu(y)|p dy

)1/p

≤ C1
ε

( �

|y|≤r+ε
|u(y)| dy +

∑

|α|=m

( �

|y|≤r+ε
|Dαu(y)|p dy

)1/p)

where

C1
ε = max

|γ|<m−n/p

(
max
|y|≤ε

|Dγu(y)|+ max
|α|=m

m

α!σn

( �

|y|≤ε
|Dγχα(y)|p′ dy

)1/p′
)

<∞.
Corollary 3.6. Let 0 < ε < 1 and 0 ≤ r < 1−ε. Then for u ∈ Cm(B1)

and |γ| ≤ m− 1,

max
|x|≤r

|Dγu(x)| ≤ C2
ε

(
max
|y|≤r+ε

|u(y)|+
∑

|α|=m
max
|y|≤r+ε

|Dαu(y)|
)

where C2
ε is independent of r.
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Proof. Let |x| ≤ r and |γ| ≤ m − 1. By applying Corollary 3.4 for
ε1 = ε/2 and ε2 = ε, we have

|Dγu(x)| ≤
�

|x−y|≤ε
|Dγζ(x− y)u(y)| dy

+
∑

|α|=m

m!
α!

�

|x−y|≤ε
|Dα+γ(ξκ2m)(x− y)Dαu(y)| dy

≤ max
|y|≤r+ε

|u(y)|
�
|Dγζ(y)| dy

+
∑

|α|=m

m!
α!

max
|y|≤r+ε

|Dαu(y)|
�
|Dα+γ(ξκ2m)(y)| dy

≤ C2
ε

(
max
|y|≤r+ε

|u(y)|+
∑

|α|=m
max
|y|≤r+ε

|Dαu(y)|
)

where

C2
ε = max

|γ|≤m−1

( �
|Dγζ(y)| dy + max

|α|=m

m!
α!

�
|Dα+γ(ξκ2m)(y)| dy

)
<∞.

4. The closure of Φ in spaces of Beppo Levi type. In order to
define the Riesz potential of an Lp-function, we introduce the modified Riesz
kernel κm,k(x, y). For an integer k < m, we set

κm,k(x, y) =




κm(x− y)−

∑

|γ|≤k

Dγκm(−y)
γ!

xγ , 0 ≤ k < m,

κm(x− y), k < 0.

Moreover, for a locally integrable function f we define

Ufm,k(x) =
�
κm,k(x, y)f(y) dy

if it exists. Concerning the existence of U fm,k, we have the following.

Lemma 4.1 (cf. [Ku: Corollary 5.9 and Proposition 5.15]). Let f ∈ Lp
and k = [m− n/p] be the integral part of m− n/p.

(i) In case m− n/p 6∈ N, Ufm,k exists and

( �
|Ufm,k(x)|p|x|−mp dx

)1/p
≤ C‖f‖p.

(ii) In case m− n/p ∈ N, if we denote by f1 and f2 the restriction of f
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to {|x| < 1} and to {|x| ≥ 1} respectively , then U f1
m,k−1 and Uf2

m,k exist and
( �
|Uf1
m,k−1(x)|p|x|−mp

(
1 +

∣∣log |x|
∣∣)−p dx

)1/p
≤ C‖f1‖p,

( �
|Uf2
m,k(x)|p|x|−mp

(
1 +

∣∣log |x|
∣∣)−p dx

)1/p
≤ C‖f2‖p.

For a set E ⊂ Rn, we denote by Lp(E) the set of Lp-functions f such
that f(x) = 0 on the complement of E.

Lemma 4.2 (cf. [Ku: Theorem 4.4]). Let k = [m− n/p] and |α| = m.

(i) In case m− n/p 6∈ N, for f ∈ Lp,
DαUfm,k = (−1)mRαf.

(ii) In case m− n/p ∈ N, for f ∈ Lp(B1) and g ∈ Lp(Bc
1),

DαUfm,k−1 = (−1)mRαf, DαUgm,k = (−1)mRαg.

where Bc
1 is the complement of B1.

The Riesz potential space Rpm is defined by

Rpm =

{
{Ufm,k : f ∈ Lp}, m− n/p 6∈ N,

{Uf1
m,k−1 + Uf2

m,k : f ∈ Lp, f1 = f |B1 , f2 = f |Bc
1
}, m− n/p ∈ N,

with k = [m− n/p] where f |B1 is the restriction of f to B1. Concerning the
relation between the Riesz potential spaces and the spaces of Beppo Levi
type, we have

Lemma 4.3 (cf. [Ku: Theorem 6.7]). Let k = [m− n/p]. Then

Rpm + Pk =
{
Lpm ∩ Lp,−m,(log)0

, m− n/p 6∈ N,
Lpm ∩ Lp,−m,(log)−1

, m− n/p ∈ N,

where Pk is the set of polynomials of degree k with complex coefficients.

We introduce the following notation:

B = {f ∈ C∞ : Dαf is bounded for each α}.
The following lemma holds.

Lemma 4.4. (i) If u ∈ S and v ∈ H ∩ B, then uv ∈ Ψ .
(ii) If u ∈ Ψ and v ∈ B, then uv ∈ Ψ .

We take a function λ ∈ D such that λ(x) = 1 on |x| ≤ 1. We put

h(x) = λ(x) + e−|x|
2−1/|x|2 ,

g(x) = 1− λ(x)− e−|x|2−1/|x|2 = 1− h(x).

We note that g ∈ H ∩ B. For a function f and a positive number ε, we set

f(ε)(x) = f(εx).
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We can easily check

Lemma 4.5. (i) For a multi-index α, Dαf(ε)(x) = ε|α|Dαf(εx).
(ii) If f ∈ L1, then Ff(ε)(x) = (1/εn)Ff(x/ε).

We put

ν(x) =
1

(2π)n
e−|x|

2
, %ε(x) = ν(ε)(x)g(1/ε)(x) = ν(εx)g(x/ε).

Since ν(ε) ∈ S and g(1/ε) ∈ H ∩ B, it follows from Lemma 2.1(i) that

(4.1) %ε ∈ Ψ.
Further, we have

%ε(x) = ν(ε)(x)− ν(ε)(x)h(1/ε)(x).

We set

Kε(x) = F%ε(x), K1
ε(x) = Fν(ε)(x), Hε(x) = Fh(ε)(x)

and
K2
ε(x) = F(ν(ε)h(1/ε))(x) = K1

ε ∗H1/ε(x)

where the symbol ∗ means convolution. Since %ε ∈ Ψ by (4.1), we have
Kε ∈ Φ on account of (1.2). By elementary calculations we have K1

1(x) =
2−nπ−n/2e−|x|

2/4, and hence

(4.2)
�
K1

1(x) dx = 1.

Moreover, by Lemma 2.2(ii) we have

(4.3) K1
ε(x) =

1
εn
K1

1

(
x

ε

)
, H1/ε(x) = εnH1(εx).

Lemma 4.6. If (1 + |x|)mu(x) ∈ L1 for every nonnegative integer m,
then Kε ∗ u ∈ Φ.

Proof. By (1.2) it suffices to show that F(Kε ∗u) ∈ Ψ . Since Kε ∈ S and
u ∈ L1, we see that

F(Kε ∗ u)(x) = FKε(x)Fu(x) = (2π)n%ε(x)Fu(x)

by (1.1). The condition (1 + |x|)mu(x) ∈ L1 (m = 0, 1, . . .) implies Fu ∈ B.
Therefore (4.1) and Lemma 4.4(ii) give the assertion.

We denote by Φpm the closure of Φ in Lpm.

Lemma 4.7. Let k = [m− n/p]. Then Φpm ⊃ Pk.

Proof. Let Q ∈ Pk. We take a function φ ∈ C∞(R) such that φ(t) = 1
on t ≤ 1 and φ(t) = 0 on t ≥ 2. If we set
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ϕj(x) =




φ

(
log |x|
log j

)
, x 6= 0,

1, x = 0,

then ϕj ∈ D and ϕj(x) = 1 on |x| ≤ j and ϕj(x) = 0 on |x| ≥ j2. We put
hj = ϕjQ ∈ D. We shall show that hj converges to Q as j → ∞ in Lpm. It
is clear that �

|x|<1

|hj(x)−Q(x)| dx→ 0 (j →∞).

Let |α| = m. Since Q ∈ Pk and k < m, by the Leibniz formula we have

Dα(hj −Q)(x) = Dαhj(x) =
∑

γ≤α

(
α

γ

)
Dα−γϕj(x)DγQ(x)

=
∑

γ≤α, |γ|≤k

(
α

γ

)
Dα−γϕj(x)DγQ(x).

Since α− γ 6= 0 for |γ| ≤ k, we see that
( �
|Dα(hj −Q)(x)|p dx

)1/p

≤
∑

γ≤α, |γ|≤k

(
α

γ

)( �

j≤|x|≤j2
|Dα−γϕj(x)DγQ(x)|p dx

)1/p

≤ C
∑

γ≤α, |γ|≤k

( �

j≤|x|≤j2
|Dα−γϕj(x)|p|x|(k−|γ|)p dx

)1/p
.

Since

|Dα−γϕj(x)| ≤ C

(log j)|x||α−γ|

on j ≤ |x| ≤ j2, we obtain
�

j≤|x|≤j2
|Dα−γϕj(x)|p|x|(k−|γ|)p dx

≤ C

(log j)p





�

j≤|x|
|x|(k−m)p dx, k < m− n/p,

�

j≤|x|≤j2
|x|−n dx, k = m− n/p,

=
C

(log j)p

{
j(k−m)p+n, k < m− n/p,
log j, k = m− n/p,

→ 0 (j →∞)
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since (k −m)p+ n < 0 for k < m− n/p. Thus we get

(4.4) ‖hj −Q‖Lpm → 0 (j →∞).

Further, we put hj,ε = Kε ∗ hj = K1
ε ∗ hj −K2

ε ∗ hj . Since hj ∈ D, (4.2) and
(4.3) imply

(4.5) ‖K1
ε ∗ hj − hj‖Lpm → 0 (ε→ 0).

Since K2
ε ∗ hj = K1

ε ∗H1/ε ∗ hj , we obtain

(4.6) ‖K2
ε ∗ hj‖Lpm → 0 (ε→ 0)

because ‖K1
ε‖1 = 1 and ‖H1/ε‖p → 0 (ε→ 0). Since hj,ε ∈ Φ by Lemma 4.6,

(4.4)–(4.6) give the lemma.

Now we are in a position to prove our main theorem.

Theorem 4.8.

Φpm =

{
Lpm ∩ Lp,−m,(log)0

, m− n/p 6∈ N,

Lpm ∩ Lp,−m,(log)−1
, m− n/p ∈ N.

Proof. We begin with the proof that the left-hand side is contained in
the right-hand side. Let u ∈ Φpm. By the definition there exists a sequence
{uj} ⊂ Φ which converges to u as j → ∞ in Lpm. We put f = Dmu and
fj = Dmuj (j = 1, 2, . . .). It follows from u ∈ Lpm that f ∈ Lp, and by
Corollary 2.8, fj ∈ Φ and uj = κ

fj
m . Moreover, we see that

‖fj − f‖p ≤
∑

|α|=m

m!
α!
‖RαDα(uj − u)‖p(4.7)

≤ C|uj − u|m,p → 0 (j →∞).

Let k = [m− n/p]. We first consider the case m− n/p 6∈ N. We have

uj(x) =
�
κm(x− y)fj(y) dy = U

fj
m,k(x) +

∑

|γ|≤k
aγ,jx

γ

with

aγ,j =
1
γ!

�
Dγκm(−y)fj(y) dy =

Dγuj(0)
γ!

.

Lemma 4.1(i) and (4.7) give
�

|x|<1

|Ufjm,k(x)− Ufm,k(x)| dx→ 0 (j →∞).

Further, for |α| = m, by Lemma 4.2(i), (2.4) and (4.7) we see that

‖Dα(Ufjm,k − U
f
m,k)‖p = C‖Rαfj −Rαf‖p ≤ C‖fj − f‖p → 0 (j →∞).
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Thus we conclude that U fjm,k converges to Ufm,k as j →∞ in Lpm. For |γ| ≤ k,
by applying Corollary 3.5 with r = 0 and ε = 1, we have

|aγ,j − aγ,l| =
1
γ!
|Dγuj(0)−Dγul(0)|

≤ C
( �

|y|≤1

|uj(y)− ul(y)| dy +
∑

|α|=m

( �

|y|≤1

|Dαuj(y)−Dαul(y)|p dy
)1/p)

≤ C‖uj − ul‖Lpm → 0 (j, l→∞).

Thus {aγ,j}∞j=1 is a Cauchy sequence for each |γ| ≤ k, and hence there
exist aγ (|γ| ≤ k) such that aγ,j tends to aγ as j → ∞. This implies that∑
|γ|≤k aγ,jx

γ converges to
∑
|γ|≤k aγx

γ as j →∞ in Lpm. Consequently, we
have

u = Ufm,k +
∑

|γ|≤k
aγx

γ ∈ Rpm + Pk.

This implies that u ∈ Lpm ∩ Lp,−m,(log)0
by Lemma 4.3.

We next consider the case m−n/p ∈ N. In this case, putting fj,1 = fj |B1

and fj,2 = fj |Bc
1
, we have

uj(x) =
�
κm(x− y)fj(y) dy = U

fj,1
m,k−1(x) + U

fj,2
m,k(x) +

∑

|γ|≤k
aγ,jx

γ

with

aγ,j =





1
γ!

�
Dγκm(−y)fj(y) dy, |γ| ≤ k − 1,

1
γ!

�

|y|≥1

Dγκm(−y)fj(y) dy, |γ| = k.

Lemma 4.1(ii) and (4.7) give
�

|x|<1

|Ufj,1m,k−1(x)− Uf1
m,k−1(x)| dx→ 0 (j →∞),

and �

|x|<1

|Ufj,2m,k(x)− Uf2
m,k(x)| dx→ 0 (j →∞)

where f1 = f |B1 and f2 = f |Bc
1
. Further, Lemma 4.2(ii), (2.4) and (4.7) give

|Ufj,1m,k−1 − U
f1
m,k−1|m,p → 0, |Ufj,2m,k − U

f2
m,k|m,p → 0 (j →∞).

Thus Ufj,1m,k−1+Ufj,2m,k converges to Uf1
m,k−1+Uf2

m,k as j →∞ in Lpm. For |γ| ≤ k,
we shall show that {aγ,j}∞j=1 is a Cauchy sequence. First let m − n/p ∈ N
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and m− n/p 6= 0. For |γ| ≤ k − 1, by using Corollary 3.5 we have

|aγ,j − aγ,l| =
1
γ!
|Dγuj(0)−Dγul(0)| ≤ C‖uj − ul‖Lpm

because |γ| < m− n/p. This shows that {aγ,j}∞j=1 is a Cauchy sequence for
|γ| ≤ k − 1. Let |γ| = k. We put

vj(x) =
�

|y|<1

κm(x− y)fj(y) dy, wj(x) =
�

|y|≥1

κm(x− y)fj(y) dy.

We show that {vj}∞j=1 and {wj}∞j=1 are Cauchy sequences in Lpm. Since

vj(x) = U
fj,1
m,k−1(x) +

∑

|β|≤k−1

xβ

β!

�

|y|<1

Dβκm(−y)fj(y) dy,

for |α| = m by Lemma 4.2(ii) we have

Dαvj = DαU
fj,1
m,k−1 = (−1)mRαfj,1.

Hence we see that

|vj − vl|m,p =
∑

|α|=m
‖Rαfj,1 −Rαfl,1‖p ≤ C‖fj,1 − fl,1‖p

≤ C‖fj − fl‖p → 0 (j, l→∞).

Further we obtain
�

|x|<1

|vj(x)− vl(x)| dx =
�

|x|<1

∣∣∣
�

|y|<1

κm(x− y)(fj(y)− fl(y) dy
∣∣∣dx

≤
�

|x|<2

|κm(x)| dx
�

|y|<1

|fj(y)− fl(y)| dy

≤ C‖fj − fl‖p → 0 (j, l→∞).

Thus {vj}∞j=1 is a Cauchy sequence in Lpm. Since uj = vj + wj and
{uj}∞j=1, {vj}∞j=1 are Cauchy sequences in Lpm, so is {wj}∞j=1. Furthermore
we shall show

(4.8) max
|x|≤1/2

|wj(x)− wl(x)| ≤ C‖wj − wl‖Lpm ,

(4.9)
∑

|α|=m
max
|x|≤1/2

|Dαwj(x)−Dαwl(x)| ≤ C‖wj − wl‖Lpm .

Since wj − wl ∈ C∞(B1), by applying Corollary 3.4 with r = 1/2, 0 < ε1 <
ε2 < 1/2 and γ = 0, for |x| ≤ 1/2 we have
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|wj(x)− wl(x)|
≤
∣∣∣

�

|x−y|≤ε2
ζ(x− y)(wj(y)− wl(y)) dy

∣∣∣

+
∑

|α|=m

m!
α!

∣∣∣
�

|x−y|≤ε2
Dα(ξκ2m)(x− y)Dα(wj − wl)(y) dy

∣∣∣

≤ ‖ζ‖∞
�

|y|<1

|wj(y)− wl(y)| dy

+
∑

|α|=m

m!
α!

( �

|y|<1

|Dα(ξκ2m)(y)|p′ dy
)1/p′( �

|y|<1

|Dα(wj−wl)(y)|p dy
)1/p

≤ C‖wj − wl‖Lpm
with ‖ζ‖∞ = supx |ζ(x)|, because m− n/p > 0 implies

( �

|y|<1

|Dα(ξκ2m)(y)|p′ dy
)1/p′

<∞.

Thus we obtain (4.8). Further, for |α| = m and |x| ≤ 1/2 we have

|Dαwj(x)−Dαwl(x)| =
∣∣∣

�

|y|≥1

Dακm(x− y)(fj(y)− fl(y)) dy
∣∣∣

≤
( �

|y|≥1

|Dακm(x− y)|p′ dy
)1/p′( �

|y|≥1

|fj(y)− fl(y)|p dy
)1/p

≤
( �

|y|≥1/2

|Dακm(y)|p′ dy
)1/p′( �

|y|≥1

|fj(y)− fl(y)|p dy
)1/p

≤ C‖fj,2 − fl,2‖p = C

∥∥∥∥
∑

|γ|=m

m!
γ!
RγDγ(wj − wl)

∥∥∥∥
p

≤ C|wj − wl|m,p ≤ C‖wj − wl‖Lpm
because

( �

|y|≥1/2

|Dακm(y)|p′ dy
)1/p′

≤ C
( �

|y|≥1/2

|y|−np′ dy
)1/p′

<∞.

Thus we obtain (4.9). Consequently, by taking |γ| = k, r = 0 and ε = 1/2
in Corollary 3.6, we obtain

|aγ,j − aγ,l| =
1
γ!
|Dγwj(0)−Dγwl(0)| ≤ C‖wj − wl‖Lpm .
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This shows that {aγ,j}∞j=1 is a Cauchy sequence for |γ| = k. Next let
m− n/p = 0. In this case we have

uj(x) = κfjm(x) = U
fj,1
m,−1(x) + U

fj,2
m,0(x) + a0,j .

By putting ωn = � |x|<1 dx, we see that

|a0,j − a0,l| =
1
ωn

�

|x|<1

|a0,j − a0,l| dx

=
1
ωn

�

|x|<1

|uj(x)−ul(x) + U
fl,1
m,−1(x)−Ufj,1m,−1(x) + U

fl,2
m,0(x)−Ufj,2m,0 (x)| dx

≤ 1
ωn

�

|x|<1

|uj(x)− ul(x)| dx+ ω−1/p
n

( �

|x|<1

|Ufl,1−fj,1m,−1 (x)|p dx
)1/p

+ ω−1/p
n

( �

|x|<1

|Ufl,2−fj,2m,0 (x)|p dx
)1/p

.

Therefore, Lemma 4.1(ii) gives

|a0,j − a0,l| ≤ C‖uj − ul‖Lpm + C‖fl,1 − fj,1‖p + C‖fl,2 − fj,2‖p
≤ C‖uj − ul‖Lpm + C‖fl − fj‖p ≤ C‖uj − ul‖Lpm .

This shows that {a0,j}∞j=1 is a Cauchy sequence. Thus we conclude that
{aγ,j}∞j=1 is a Cauchy sequence for |γ| ≤ k. Hence there exist aγ (|γ| ≤ k)
such that aγ,j tends to aγ as j → ∞. This implies that

∑
|γ|≤k aγ,jx

γ con-
verges to

∑
|γ|≤k aγx

γ as j →∞ in Lpm. Consequently, we have

u = Uf1
m,k−1 + Uf2

m,k +
∑

|γ|≤k
aγx

γ ∈ Rpm + Pk.

This implies that u ∈ Lpm ∩ Lp,−m,(log)−1
by Lemma 4.3.

Next, we show the converse inclusion. Let

u ∈
{
Lpm ∩ Lp,−m,(log)0

, m− n/p 6∈ N,

Lpm ∩ Lp,−m,(log)−1
, m− n/p ∈ N.

By Lemma 4.3 there exists an Lp-function f such that

u =

{
Ufm,k +

∑
|γ|≤k aγx

γ , m− n/p 6∈ N,

Uf1
m,k−1 + Uf2

m,k +
∑
|γ|≤k aγx

γ , m− n/p ∈ N,

with k = [m−n/p], f1 = f |B1 and f2 = f |Bc
1
. Since Φ is dense in Lp ([Li1]),

there exists a sequence {fj} ⊂ Φ such that fj converges to f as j → ∞ in
Lp. We consider the case m−n/p 6∈ N. Since fj converges to f as j →∞ in
Lp, Ufjm,k converges to Ufm,k as j → ∞ in Lpm by Lemmas 4.1(i) and 4.2(i).
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Hence, for given ε > 0, there exists a function fl ∈ Φ such that

ε/2 > ‖Ufm,k − U
fl
m,k‖Lpm(4.10)

=
∣∣∣∣
∣∣∣∣U

f
m,k − κflm +

∑

|γ|≤k

xγ

γ!

�
Dγκm(−y)fl(y) dy

∣∣∣∣
∣∣∣∣
Lpm
.

We put

P (x) =
∑

|γ|≤k
aγx

γ , Pl(x) =
∑

|γ|≤k

xγ

γ!

�
Dγκm(−y)fl(y) dy.

Since P − Pl ∈ Pk, by Lemma 4.7 there exists a function ϕ ∈ Φ such that

(4.11) ‖P − Pl − ϕ‖Lpm < ε/2.

By (4.10) and (4.11) we have

‖u− κflm − ϕ‖Lpm = ‖Ufm,k + P + Pl − Pl − κflm − ϕ‖Lpm
≤ ‖Ufm,k − κflm + Pl‖Lpm + ‖P − Pl − ϕ‖Lpm
= ‖Ufm,k − U

fl
m,k‖Lpm + ‖P − Pl − ϕ‖Lpm

< ε/2 + ε/2 = ε.

Since κflm + ϕ ∈ Φ by Corollary 2.6, this implies that u ∈ Φpm. In case
m − n/p ∈ N, we can prove that u ∈ Φpm in the same way. Thus we have
completed the proof of the theorem.

Remark 4.9. Since Lpm = Rpm+Pm−1 ([Ku: Theorems 6.1 and 6.3]), by
Lemma 4.3 and Theorem 4.8 we conclude that if p ≥ n, then Φ is dense in
Lpm, and if p < n, then Φ is not dense in Lpm.

References

[He] S. Helgason, The Radon Transform, Birkhäuser, Boston, MA, 1980.
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