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Compactness of the integration operator
associated with a vector measure

by

S. Okada (Sydney), W. J. Ricker (Sydney and Eichstätt)
and L. Rodŕıguez-Piazza (Sevilla)

Abstract. A characterization is given of those Banach-space-valued vector measures
m with finite variation whose associated integration operator Im : f 7→

�
f dm is compact

as a linear map from L1(m) into the Banach space. Moreover, in every infinite-dimensional
Banach space there exist nontrivial vector measures m (with finite variation) such that
Im is compact, and other m (still with finite variation) such that Im is not compact. If m
has infinite variation, then Im is never compact.

1. Introduction and statement of results. Let X be a (complex)
Banach space with norm ‖ · ‖ and dual space X ′. Let Σ be a σ-algebra of
subsets of a nonempty set Ω and m : Σ → X be a vector measure, i.e.,
a σ-additive set function. Associated with m is the Banach space L1(m)
of all (equivalence classes of) m-integrable functions f : Ω → C together
with the integration operator Im : L1(m) → X given by f 7→

�
Ω f dm. The

operator Im is always linear and continuous. Although vector measures m
and the Banach spaces L1(m) have received considerable attention since
their conception (see [1–4, 6, 7, 11, 14–17, 23] and the references therein,
for example), the same is not true of the integration operator Im. This is
somewhat surprising since, for example, such an important operator as the
Fourier transform map f 7→ f̂ from L1([−π, π]) into c0(Z) is of the form Im
for a suitable c0(Z)-valued measure m (see [18]). The same is also true for
other kernel operators, such as those of Volterra type, for example [4, 20].
Or, the representation of cyclic Banach spaces is given via the integration
operator with respect to a suitable vector measure [8] and so on. Whereas
the weak compactness of integration operators Im has been systematically
treated [18, 19], the same is not true of compactness, although some results
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for particular vector measures are known [4, 20]. The aim of this paper
is to present a systematic investigation of the compactness properties of
integration operators. It is time to be more precise.

The variation |m| of a vector measure m : Σ → X is the smallest
σ-additive, nonnegative scalar measure on Σ satisfying ‖m(E)‖ ≤ |m|(E)
for E ∈ Σ. This is equivalent to the usual definition via the “partition
process” [6, pp. 2–3]. The variation |m| is called finite (resp. σ-finite) if it
is a finite (resp. σ-finite) measure. It turns out always to be the case that
L1(|m|) ⊆ L1(m); see Section 2.

For the definition of Bochner integrals we refer to [6, Ch. II]. Let λ :
Σ → [0,∞) be a finite measure and let B(λ,X) denote the space of all
X-valued, Bochner λ-integrable functions on Ω. Given G ∈ B(λ,X), the
Bochner integral of G over a set E ∈ Σ (with respect to λ) is denoted by
(B)-

�
E Gdλ and is an element of X. The indefinite Bochner λ-integral of G

is defined to be the vector measure G · λ on Σ given by E 7→ (B)-
�
EGdλ.

We point out that the scalar function ‖G(·)‖ is always Σ-measurable and λ-
integrable. Given a vector measure m : Σ → X with finite variation, if there
exists G ∈ B(λ,X), necessarily unique, such that m equals the indefinite
Bochner λ-integral G · λ, then G is called the Radon–Nikodým derivative of
m with respect to λ and we write G = dm/dλ. A function H : Ω → X is
said to have λ-essentially relatively compact range if there exists a λ-null
set E ∈ Σ such that H(Ω \E) is relatively compact in X (i.e. its closure is
compact).

Our first theorem characterizes compactness of Im. Its proof (and of the
other results of this section) is given in Section 3.

Theorem 1. Let X be a Banach space and m : Σ → X be a vector mea-
sure with finite variation. Then the integration operator Im : L1(m) → X
is compact if and only if both of the following conditions hold :

(i) the measure m has a Radon–Nikodým derivative G = dm/d|m| ∈
B(|m|,X) with respect to |m| (i.e., m = G · |m|),

(ii) the function G has |m|-essentially relatively compact range in X.

In this case, the identity L1(m) = L1(|m|) necessarily holds, and
Imf = (B)-

�
Ωf ·Gd|m| for every f ∈ L1(m).

As an immediate consequence of the proof of Theorem 1 (see Section 3)
we have the following useful fact.

Corollary 1.1. Let X be a Banach space and m : Σ → X be a vector
measure with finite variation. If J : L1(|m|) → L1(m) denotes the natural
injection, then the integration operator Im : L1(m) → X is compact if and
only if Im ◦ J : L1(|m|)→ X is compact.
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Condition (i) of Theorem 1 has received some attention in the literature
and so it may be worthwhile to record some equivalent properties, namely:

(i)′ Given any E ∈ Σ with |m|(E) > 0 there exists a Σ-measurable set
F ⊆ E with |m|(F ) > 0 such that

AveF (m) :=
{
m(H)
|m|(H)

: H ∈ Σ, H ⊆ F and |m|(H) > 0
}

is relatively compact in X.
(i)′′ The integration operator Im restricted to the Banach space L∞(|m|)

= L∞(m), equipped with the essential sup-norm, is an X-valued nuclear
operator.

The equivalence (i)⇔(i)′ is due to M. A. Rieffel; see [21, Theorem 4.1]
for the formulation given above. The equivalence (i)⇔(i)′′ can be found in
[21, Theorem 5.1], as a special case of [6, Theorem VI.4.4]. Further equiva-
lences with condition (i) of Theorem 1 can be found in [21, Theorem 5.2],
for example.

If X is finite-dimensional and m is any X-valued measure, then Im is
necessarily compact. The existence of (nontrivial) compact integration op-
erators in general Banach spaces X is guaranteed by the following result.

Theorem 2. Let X be an infinite-dimensional Banach space. Then
there exists an X-valued vector measure m such that m has finite varia-
tion, the range of m is not contained in any finite-dimensional subspace
of X, and the integration operator Im is compact.

It is also the case, for vector measures of finite variation, that noncompact
integration operators exist in every infinite-dimensional space.

Theorem 3. Let X be an infinite-dimensional Banach space. Then
there exists an X-valued vector measure m with finite variation such that
its integration operator Im : L1(m)→ X is not compact. Furthermore, such
an m can be chosen to satisfy L1(|m|) = L1(m) and have a Radon–Nikodým
derivative dm/d|m| ∈ B(|m|,X).

Concerning arbitrary vector measures m, the determination of whether
or not Im is compact reduces to the situation of finite variation.

Theorem 4. Let X be a Banach space and m be an X-valued vector
measure. If the integration operator Im : L1(m) → X is compact , then m
must have finite variation.

If the integration operator Im is compact, then m has finite variation
(cf. Theorem 4), and hence, L1(m) = L1(|m|) by Theorem 1. Moreover, if
L1(m) is infinite-dimensional, then L1(|m|) contains a complemented sub-
space isomorphic to `1. This can be seen by decomposing the finite measure
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|m| into the direct sum of its atomic part |m|a and its (disjointly supported)
nonatomic part |m|na and then applying the argument (and discussion) from
[5, pp. 201–202] to |m|a if |m| has infinitely many atoms, and to |m|na other-
wise. So, Theorem 4 provides an alternative proof of the following (slightly
more general) result due to G. Curbera [3, Claim, p. 3800].

Corollary 4.1. Let X be a Banach space and m be an X-valued vector
measure such that its integration operator Im : L1(m) → X is compact
and L1(m) is infinite-dimensional. Then m has finite variation and L1(m)
contains a complemented copy of `1.

By Theorem 4, if a vector measure has infinite variation, then its integra-
tion operator is not compact. There are many examples of such measures.
To see this, let λ : Σ → [0,∞] be any infinite but σ-finite measure. For the
definition of a function G : Ω → X being Pettis λ-integrable we refer to
[6, Ch. II, §3]. In this case, the indefinite Pettis integral of G with respect
to λ, namely, E 7→ (P)-

�
E Gdλ for E ∈ Σ (where the element (P)-

�
E Gdλ

of X denotes the Pettis integral of G over E with respect to λ) is an X-
valued vector measure with σ-finite variation [10, Proposition 5.6(iv)]. So,
let G : Ω → X be any strongly measurable function (see [6, p. 41] for the
definition) which is Pettis λ-integrable but not Bochner λ-integrable. Then
its indefinite Pettis λ-integral has infinite but σ-finite variation. Whenever
X is infinite-dimensional and λ is Lebesgue measure on the half line [0,∞)
such a function G : [0,∞) → X always exists; see the proof of [21, Theo-
rem 3.3]. For a characterization of vector measures with σ-finite variation
we refer to [22, Theorem 2.4]. In every infinite-dimensional Banach space
there also exist vector measures with infinite but not σ-finite variation, and
such measures can even be chosen to have relatively compact range, [23, p.
90]. See also [9, 12] for further information about such measures.

2. Preliminaries. Let Σ be a σ-algebra of subsets of a nonempty set Ω.
Let X be a Banach space and m : Σ → X be a vector measure. Given x′ ∈
X ′, let 〈m,x′ 〉 denote the complex measure E 7→ 〈m(E), x′ 〉; its variation
|〈m,x′ 〉| is then a finite measure. A Σ-measurable function f : Ω → C is
called m-integrable if it is 〈m,x′ 〉-integrable for all x′ ∈ X ′, and if there is
a set function fm : Σ → X, necessarily unique, satisfying 〈(fm)(E), x′〉 =�
E f d〈m,x′ 〉 for all x′ ∈ X ′ and E ∈ Σ. Then the Orlicz–Pettis theorem

ensures that fm is also a vector measure. The classical notation
�
E f dm :=

(fm)(E), for E ∈ Σ, will also be used. The vector space of all m-integrable
functions is denoted by L1(m). Define a seminorm on L1(m) by

‖f‖m := sup
{ �

Ω

|f | d|〈m,x′ 〉| : x′ ∈ B[X ′ ]
}
, f ∈ L1(m),
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where for any Banach space Y we define B[Y ] := {y ∈ Y : ‖y‖ ≤ 1}. The
space L1(m) is then a complete seminormed space which contains the set
of all C-valued, Σ-simple functions as a dense subspace; see [14, Ch. IV] or
[15, Theorem 2.4]. Associated with m is its integration operator Im : L1(m)
→ X defined by

Imf :=
�

Ω

f dm, f ∈ L1(m).

It is clear that Im is linear. Moreover, since ‖Imf‖ ≤ ‖f‖m for f ∈ L1(m),
the operator Im is also continuous.

For each set E ∈ Σ, its characteristic function is denoted by χE . The
semivariation ‖m‖ of m is the set function ‖m‖ : Σ → [0,∞) defined by
‖m‖(E) := ‖χE‖m for E ∈ Σ. In particular, ‖m‖ is always finite (unlike the
variation |m|, in general). It follows that ‖m‖(E) ≤ |m|(E) for every E ∈ Σ
(see [6, Proposition I.1.11(a)]). An element f ∈ L1(m) is called m-null if
fm is the zero vector measure. This is equivalent to ‖f‖m = 0. The quotient
space of L1(m) modulo the m-null functions and equipped with the quotient
norm induced by ‖ · ‖m is a Banach space; since no confusion will occur, we
denote this quotient Banach space again by L1(m) and identify it with the
seminormed space from which it arises (in the usual manner).

Sets E ∈ Σ satisfying ‖m‖(E) = 0 are called m-null. The m-null and
|m|-null sets coincide. This is immediate from the partition definition of |m|
(see [6, p. 2]) and the inequalities

‖m(E)‖ ≤ ‖m‖(E) ≤ |m|(E), E ∈ Σ.
A property which holds outside an m-null set is said to hold m-almost every-
where (briefly, m-a.e.). A Σ-measurable function f : Ω → C is called m-
essentially bounded if it is bounded m-a.e. The space of all such functions is
denoted by L∞(m) and is equipped with the essential sup-norm ‖ · ‖∞. It is
known that L∞(m) ⊆ L1(m) and that, for each f ∈ L∞(m),∥∥∥

�

E

f dm
∥∥∥ ≤ ‖f‖∞ · ‖m‖(E), E ∈ Σ;(2.1)

see [14, Theorem II.3.1] and [6, p. 6]. The quotient Banach space of L∞(m)
modulo the m-null functions is also denoted by L∞(m). In particular,
L∞(|m|) = L∞(m).

For the following fact we refer to [6, Theorem II.2.4].

Lemma 2.1. Let λ : Σ → [0,∞) be a finite measure and X be a Banach
space. If G : Ω → X is a Bochner λ-integrable function, then its indefinite
Bochner λ-integral G · λ : Σ → X is a vector measure with finite variation
given by

|G · λ|(E) =
�

E

‖G(ω)‖ dλ(ω), E ∈ Σ.
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The next result, [6, Theorem III.2.2 & p. 70], is one of the main tools of
this paper.

Lemma 2.2. Let λ : Σ → [0,∞) be a finite measure and X be a Ba-
nach space. Then a continuous linear operator T : L1(λ) → X is compact
(i.e., the closure T (B[L1(λ)]) is compact in X) if and only if there is a
Bochner λ-integrable function G ∈ B(λ,X) with λ-essentially relatively
compact range such that

Tf = (B)-
�

Ω

f(ω)G(ω) dλ(ω), f ∈ L1(λ).

In this case, on the complement of some λ-null set the function G takes its
values in the closure (in X) of {Tf : ‖f‖L1(λ) = 1}.

Recall that the weak topology of a Banach space X is determined by the
saturated family of seminorms

qF (x) :=
∑

x′∈F
|〈x, x′ 〉|, x ∈ X,(2.2)

as F varies through all finite subsets of X ′. The following notion will play
a crucial role. A subset W ⊆ X is said to be w-seminorm dominated (the
“w” denotes “weak”) if there exists a finite set F ⊆ X ′ such that

‖x‖ ≤ qF (x), x ∈W,
where qF is given by (2.2).

Example 2.3. (i) Every finite-dimensional subspace Y of a Banach
space X is w-seminorm dominated. In fact, let dimY = n. Take a basis
{e1, . . . , en} of Y and elements {x′1, . . . , x′n} ⊆ X ′ such that 〈ej, x′k〉 = δjk
for all j, k ∈ {1, . . . , n}. Since the norm on Y induced by X is equivalent
to the norm y 7→∑n

j=1 |〈y, x′j〉| for y ∈ Y , it follows that Y is w-seminorm
dominated.

(ii) Let λ : Σ → [0,∞] be any measure. Then the positive cone W :=
{f ∈ L1(λ) : f ≥ 0} of X := L1(λ) is w-seminorm dominated. Indeed, the
subset of X ′ consisting of the single function � (constantly equal to 1 on Ω)
satisfies

‖f‖ =
�

Ω

|f | dλ =
�

Ω

f dλ = 〈f, � 〉 = |〈f, � 〉| = q{ � }(f), f ∈W.

An important class of sets which are w-seminorm dominated is given by
the following result.

Lemma 2.4. Let X be a Banach space and S[X] := {x∈X : ‖x‖= 1} be
its unit sphere. Then every relatively compact subset of S[X] is w-seminorm
dominated.
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Proof. Let W ⊆ S[X] be a relatively compact set and define U(x) :=
{y ∈ X : ‖x − y‖ < 1/2} for every x ∈ W . The compact set W ⊆ S[X]
includes finitely many points x1, . . . , xn satisfying W ⊆ ⋃n

j=1 U(xj). Fix
j ∈ {1, . . . , n} and let Cj denote the closed, convex hull of W ∩U(xj) in X.
Then ‖y‖ ≤ 3/2 for all y ∈ Cj . Since 0 6∈ Cj , there is x′j ∈ X ′ such that

inf{|〈y, x′j〉| : y ∈ Cj} ≥ 3/2;

x′j is the complexification of uj ∈ (XR)′, with uj suitably chosen as in [13,
Theorem 7.3.4] for A = {0} and B = Cj . Thus ‖y‖ ≤ 3/2 ≤ |〈y, x′j〉| for
every y ∈ Cj . Consequently,

‖x‖ ≤
n∑

j=1

|〈x, x′j〉|, x ∈W,

because W ⊆W ⊆ ⋃n
j=1Cj .

The converse of the previous result fails in general.

Lemma 2.5. Let X be an infinite-dimensional Banach space. Then there
exists a subset of S[X] which is w-seminorm dominated but not relatively
compact.

Proof. Choose any basic sequence {xn}∞n=1 of unit vectors in X. That is,
it is a Schauder basis for its closed linear span Y in X and there is a constant
K > 0 satisfying ‖∑n

j=1 ajxj‖ ≤ K‖∑k
j=1 ajxj‖ for all choices of n, k ∈ N

with n < k and scalars {aj}kj=1 ⊆ C (see [5, Theorem V.1 & Corollary V.3]).
Given n ≥ 2 choose any an+1 > 0 satisfying

∥∥1
2x1+ 1

4xn+an+1xn+1
∥∥ = 1 and

define yn := 1
2x1 + 1

4xn + an+1xn+1. Then, for all n, k ∈ N with 2 ≤ n < k,

‖yn−yk‖ =
∥∥1

4xn+
(
an+1xn+1− 1

4xk−ak+1xk+1
)∥∥ ≥ K−1

∥∥1
4xn
∥∥ = (4K)−1.

So, the subset W := {yn : n ≥ 2} of S[X] is not relatively compact. To see
that W is w-seminorm dominated, choose any ξ ∈ Y ′ such that 〈x1, ξ〉 = 1
and 〈xj, ξ〉 = 0 for j ≥ 2. By the Hahn–Banach theorem there is x′ ∈ X ′
which coincides with ξ on Y . Since

|〈yn, 2x′ 〉| = 2|〈yn, x′ 〉| = 1 = ‖yn‖, n ≥ 2,

we see that W is w-seminorm dominated.

Given a vector measure m : Σ → X, we always have the inclusion
L1(|m|) ⊆ L1(m). Moreover, a function f ∈ L1(m) belongs to L1(|m|) if
and only if its indefinite integral fm : Σ → X has finite variation, in which
case |fm|(E) =

�
E |f | d|m| (see [16, Theorem 4.2]). The natural inclusion

J : L1(|m|)→ L1(m) is continuous because

‖f‖m ≤ |fm|(Ω) =
�

Ω

|f | d|m| = ‖f‖L1(|m|), f ∈ L1(|m|).
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In the case when L1(m) = L1(|m|) as vector spaces, the open mapping
theorem implies that the Banach spaces L1(m) and L1(|m|) are isomorphic.
If |m|(Ω) = ∞, then the inclusion L1(|m|) ⊆ L1(m) is always proper as

� ∈ L1(m) \ L1(|m|). Even if |m|(Ω) < ∞, this inclusion may be proper.
Indeed, such measures m exist in every infinite-dimensional Banach space
[18, Remark 2(d)].

Given a function G : Ω → X and x′ ∈ X ′, let 〈G(·), x′ 〉 denote the
scalar-valued function ω 7→ 〈G(ω), x′ 〉 for ω ∈ Ω.

Lemma 2.6. Let X be a Banach space and m : Σ → X be a vector
measure with finite variation.

(i) If there exists a nonempty finite set F ⊆ X ′ such that

|m|(E) ≤
∑

x′∈F
|〈m,x′ 〉|(E), E ∈ Σ,(2.3)

then necessarily L1(m) = L1(|m|).
(ii) Suppose that there exists a finite measure λ : Σ → [0,∞) with the

property that m has a Radon–Nikodým derivative G ∈ B(λ,X) with respect
to λ (i.e., m = G · λ). Then there exists an m-null set E ∈ Σ such that
G(Ω \E) ⊆ X is w-seminorm dominated if and only if (2.3) holds for some
nonempty finite set F ⊆ X ′.

Proof. (i) This is an immediate consequence of the inclusion L1(|m|) ⊆
L1(m) and (2.3) since

L1(|m|) ⊆ L1(m) ⊆
⋂

x′∈F
L1(|〈m,x′ 〉|) ⊆ L1(|m|).

(ii) It follows from Lemma 2.1 that |〈m,x′ 〉| = |〈G(·), x′ 〉| · λ on Σ for
all x′ ∈ F , and |m| = ‖G(·)‖ · λ on Σ. Therefore (2.3) holds if and only if

�

E

‖G(ω)‖ dλ(ω) ≤
�

E

∑

x′∈F
|〈G(ω), x′ 〉| dλ(ω), E ∈ Σ,

which is the case if and only if ‖G(ω)‖ ≤ ∑x′∈F |〈G(ω), x′ 〉| for m-almost
every ω ∈ Ω.

Remark 2.7. (i) If the range of a vector measure m : Σ → X is w-semi-
norm dominated, then m has finite variation and satisfies (2.3) for some
nonempty finite set F ⊆ X ′. In particular, L1(m) = L1(|m|).

The converse is false in general, i.e. there exists a vector measure m
(it can even be chosen with Im compact!) such that (2.3) holds for some
nonempty finite set F ⊆ X ′ but the range of m is not w-seminorm domi-
nated. Indeed, let X := `2 and let Σ denote the σ-algebra of all Borel subsets
of Ω := [0, 2]. Let αn > 0 for n = 2, 3, . . . be any sequence decreasing to 0
and, for each n ≥ 1, let An := [1/(n+ 1), 1/n). Define G : Ω → X by
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G(ω) := −χ[1,2](ω) · e1 +
∞∑

n=1

χAn(ω) · (e1 + αn+1en+1), ω ∈ Ω,

where {en}∞n=1 is the standard orthonormal basis of X. Since 〈G(·), e1〉 =
χ(0,1)(·)−χ[1,2](·) and ‖G(ω)‖ ≤ (1 +α2

2)1/2 for every ω ∈ Ω, it follows that

‖G(ω)‖ ≤ |〈G(ω), (1 + α2
2)1/2e1〉|, ω ∈ Ω,

i.e. the range of G is w-seminorm dominated. But G is easily seen to be
Bochner integrable with respect to Lebesgue measure λ on Σ. Hence, if we
let m := G ·λ, then it follows from Lemma 2.6(ii) that m satisfies (2.3) with
F := {(1 + α2

2)1/2e1}.
For each n ≥ 1, let Bn := ((n+ 2)/(n+ 1), (n+ 1)/n) and note that

m(An ∪Bn) = λ(An)αn+1en+1. Suppose that there exists a nonempty finite
set H ⊆ X ′ such that

‖m(E)‖ ≤
∑

x′∈H
|〈m(E), x′〉|, E ∈ Σ.

By choosing E to be An∪Bn it would follow that 1 ≤∑x′∈H |〈en+1, x
′〉| for

every n ∈ N, which is impossible. So, m(Σ) is not w-seminorm dominated.
Since dm/d|m| is the function ω 7→ G(ω)/‖G(ω)‖ for ω ∈ Ω, and

this function has |m|-essential range equal to the relatively compact sub-
set {−e1}∪{(1+α2

n+1)−1/2(e1 +αn+1en+1) : n ∈ N} of S[X], it follows from
Theorem 1 that Im is compact.

(ii) The converse of Lemma 2.6(i) is not valid in general. To see this, let
X := c0 and consider the functions

gn := rnχAn , n ∈ N,
where An := [0, 1 − 1/(n+ 1)] and {rn}∞n=1 ⊆ L∞([0, 1]) is the sequence
of Rademacher functions. Since {gn}∞n=1 is a weak-star null sequence in the
dual space L∞([0, 1]) of L1([0, 1]), it is clear that the set function m : Σ → X
defined by

m(E) :=
( �

E

gn dλ
)∞
n=1
∈ c0, E ∈ Σ,

is a vector measure, where Σ is the σ-algebra of all Borel subsets of Ω :=
[0, 1] and λ is Lebesgue measure on Σ. From the fact that |rn(ω)| = 1 for all
ω ∈ Ω and n ∈ N, it follows that m has finite variation given by |m| = λ. Let
{e′n}∞n=1 ⊆ X ′ = `1 be the standard basis of `1. For each f ∈ L1(m) we have

1−1/(n+1)�

0

|f | dλ =
1�

0

|f | d|〈m, e′n〉| ≤ ‖f‖m, n ∈ N.

The monotone convergence theorem implies that
� 1−1/(n+1)
0 |f | dλ→‖f‖L1(λ)

as n → ∞, from which it is clear that L1(m) = L1(|m|) with equality
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of norms. If x′ = (x′n)∞n=1 ∈ X ′, then d|〈m,x′〉|/dλ ≤ ∑∞
n=1 |x′n| · |gn(·)|

pointwise a.e. on Ω. So, if (2.3) holds for some nonempty finite set F ⊆ X ′,
then there exists ξ = (ξn)∞n=1 ∈ X ′, with ξn > 0 for all n ∈ N, such that

∑

x′∈F
|〈m,x′〉|(E) ≤

∞∑

n=1

ξn

�

E

|gn(ω)| dλ(ω), E ∈ Σ.

Choosing E := [1− 1/k, 1] gives
∑

x′∈F
|〈m,x′〉|([1− 1/k, 1]) ≤

∑

n≥k
ξn · λ([1− 1/k, 1]), k ∈ N.

It then follows from the identity |m| = λ and (2.3) that

λ([1− 1/k, 1]) = |m|([1− 1/k, 1]) ≤
∑

n≥k
ξn · λ([1− 1/k, 1]), k ∈ N,

which is impossible as ξ ∈ `1. So, there is no nonempty finite set F ⊆ X ′

such that (2.3) holds.

We conclude with the following result needed later.

Lemma 2.8. Let Y be a Banach space and Z be a closed subspace of Y
having finite codimension. For each ε > 0 there exists a finite set Fε ⊆ B[Y ]
such that

B[Y ] ⊆ (1 + ε)(bco(Fε) + 2B[Z]),

where bco(H) denotes the balanced convex hull of any set H ⊆ Y .

Proof. Let δ := ε/(2(1 + ε)). For y ∈ Y , let ỹ denote its equivalence
class in the quotient Banach space Y/Z which is equipped with the quotient
norm ‖·‖Y/Z. Since 0 < δ < 1/2 and dim(Y/Z) <∞, there are finitely many
(say N) open balls of radius δ, having their centres in the open unit ball of
Y/Z, which cover B[Y/Z]. So, there exists a finite set Fε := {w1, . . . , wN} ⊆
B[Y ] with the property that for every y ∈ B[Y ] there is j(y) ∈ {1, . . . , N}
such that ‖ỹ − (wj(y))∼‖Y/Z < δ, and hence, there is also z ∈ Z (depending
on y) such that

‖y − z − wj(y)‖ < δ.(2.4)

Observe that z also satisfies ‖z‖ ≤ 1 + δ + ‖y‖. Define a closed, balanced,
convex set G ⊆ Y by G := 2B[Z] + bco(Fε). Then we have just established
that for every y ∈ (1− δ)B[Y ] ⊆ B[Y ] there exists x ∈ G (depending on y)
with ‖y−x‖ < δ. Indeed, the choice x := z+wj(y) as in (2.4) has the desired
property since ‖z‖ ≤ 1+ δ+‖y‖ ≤ 1+ δ+(1− δ) = 2 shows that z ∈ 2B[Z].

Fix y′ ∈ Y ′. Then we have

(2.5) sup{|〈y, y′〉| : y ∈ (1− 2δ)B[Y ]}
= sup{|〈y, y′〉| : y ∈ (1− δ)B[Y ]} − δ‖y′‖.
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But, for each y ∈ (1−δ)B[Y ], choose a vector xy ∈ G satisfying ‖y−xy‖ < δ.
Then

|〈y, y′〉| ≤ |〈y − xy, y′〉|+ |〈xy, y′〉| ≤ δ‖y′‖+ sup{|〈x, y′〉| : x ∈ G},
from which it is clear that

sup{|〈y, y′〉| : y ∈ (1− δ)B[Y ]} ≤ δ‖y′‖+ sup{|〈x, y′〉| : x ∈ G}.
Then (2.5) implies

(2.6) sup{|〈y, y′〉| : y ∈ B[Y ]}
≤ sup{|〈x, y′〉| : x ∈ (1− 2δ)−1G}, y′ ∈ Y ′.

It follows that
B[Y ] ⊆ (1− 2δ)−1G.(2.7)

In fact, assume the contrary. Then there would exist a vector y0 ∈ B[Y ] \
(1 − 2δ)−1G. Since {y0} is compact and convex and since (1 − 2δ)−1G is
balanced, convex and closed, by [13, Corollary 5, p. 131] there would exist
y′0 ∈ Y ′ satisfying

sup{|〈x, y′0〉| : x ∈ (1− 2δ)−1G} < |〈y0, y
′
0〉|.

But this contradicts the inequality

|〈y0, y
′
0〉| ≤ sup{|〈x, y′0〉| : x ∈ (1− 2δ)−1G}

which follows from (2.6) because y0 ∈ B[Y ]. Thus (2.7) holds, and hence,

B[Y ] ⊆ (1− 2δ)−1G = (1 + ε)G = (1 + ε)(bco(Fε) + 2B[Z]).

The previous result is optimal in the sense that there exist a Banach
space Y and a closed subspace Z of Y (with finite codimension) having the
property that if

B[Y ] ⊆ K + βB[Z](2.8)

for any compact set K ⊆ Y , then necessarily β > 2. Moreover, if (2.8) holds
for some K of the form K = α bco(F ) with F a finite subset of B[Y ], then
necessarily α > 1. Indeed, take Y := `1 and Z := ker(ψ), where ψ ∈ (`1)′ is
the linear functional given by

〈y, ψ〉 :=
∞∑

n=1

(1− n−1)yn, y = (yn)∞n=1 ∈ Y.

The point is that ‖ψ‖ = 1 but |〈y, ψ〉| < 1 for every y ∈ B[Y ].
Suppose that there exist β > 0 and a compact set K ⊆ Y such that (2.8)

holds. It can be seen (argue by contradiction) that there exists ε > 0 with
the property that |〈y, ψ〉| ≤ 1 − ε for all y ∈ K ∩ (1 + ε)B[Y ]. Choose any
n0 ∈ N satisfying

|yj | < ε/3 for all y ∈ K and j ≥ n0.
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Now choose an integer n > n0 such that n−1 < ε and let en ∈ B[Y ] be the
corresponding nth standard basis vector of Y . By (2.8) there are y ∈ K and
z ∈ B[Z] such that en = y + βz. Then

1− ε < 1− n−1 = 〈en, ψ〉 = 〈y, ψ〉
and, by the above property of ε, we have ‖y‖ > 1 + ε. It follows that β > 2
since

β ≥ ‖βz‖ = ‖en − y‖ = |1− yn|+
∑

j∈N\{n}
|yj|

= ‖y‖ − |yn|+ |1− yn| > 1 + ε+ 1− 2|yn|
> 2 + ε− (2ε/3) > 2.

Suppose now that (2.8) holds for some β > 2 and K of the form K :=
α bco(F ) with 0 < α ≤ 1 and F a finite subset of B[Y ]. Then K ⊆ B[Y ]
and, by compactness, there exists u ∈ K such that

sup{|〈y, ψ〉| : y ∈ K} = |〈u, ψ〉| < 1.

But this is a contradiction since
1 = ‖ψ‖ ≤ sup{|〈y, ψ〉| : y ∈ K}+ sup{|〈y, ψ〉| : y ∈ βB[Z]}

= sup{|〈y, ψ〉| : y ∈ K} < 1.

Accordingly, we must have α > 1.

3. Proofs of Theorems 1–4. The aim of this final section is to give
the proofs of the theorems listed in Section 1 and to discuss some relevant
examples.

Proof of Theorem 1. If Im is compact, then so is Im ◦ J : L1(|m|)→ X,
where J : L1(|m|)→ L1(m) is the natural injection. By Lemma 2.2 there is
G ∈ B(|m|,X) satisfying condition (ii) of Theorem 1 such that

(Im ◦ J)f = (B)-
�

Ω

f ·Gd|m|, f ∈ L1(|m|).

Since (Im ◦ J)f =
�
Ω f dm for every f ∈ L1(|m|), we see upon substituting

f = χE for E ∈ Σ that m = G · |m|, i.e., condition (i) of Theorem 1 also
holds.

Conversely, assume conditions (i) and (ii) of Theorem 1 are satisfied.
Then (i) yields |m| = ‖G(·)‖ · |m| (via Lemma 2.1). In particular, Im ◦ J is
compact from L1(|m|) into X; see Lemma 2.2. If µ : Σ → [0,∞) is any finite
measure and f ≥ 0 is any µ-integrable function satisfying µ(E) =

�
E f dµ for

all E ∈ Σ, then it is routine to check that f = � (µ-a.e.). With µ := |m| and
f := ‖G(·)‖ we conclude that G(ω) ∈ S[X] for |m|-almost every ω ∈ Ω. So,
we assume that the range of G lies within S[X] and hence, by condition (ii)
and Lemma 2.4, the range of G is w-seminorm dominated. Now Lemma 2.6
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ensures that L1(|m|) = L1(m). Since J is then the identity operator and
Im ◦ J = Im, the compactness of Im follows from that of Im ◦ J .

Some additional comments concerning Theorem 1 are in order. If X
has the Radon–Nikodým property and m : Σ → X has finite variation,
then condition (i) of Theorem 1 is automatically satisfied. Accordingly, the
compactness of Im is then solely determined by whether or not dm/d|m| ∈
B(|m|,X) has |m|-essentially relatively compact range in X. This is not
always the case.

Example 3.1. LetΩ := [0, 1] andΣ be the σ-algebra of all Borel subsets
of Ω. Fix p ∈ (1,∞), in which case the reflexive Banach space X := Lp([0, 1])
has the Radon–Nikodým property [6, p. 218]. Define m : Σ → X by

m(E) : t 7→
t�

0

χE(s) ds, t ∈ [0, 1],(3.1)

for E ∈ Σ. Then m is a vector measure with finite variation and |m|(E) =�
E(1 − s)1/p ds for every E ∈ Σ. Moreover, G = dm/d|m| is the func-

tion G(s) = (1 − s)−1/p · χ[s,1](·) for s ∈ Ω. It is shown in the proof of
[20, Proposition 5.2(ii)] that G (called hp in [20]) does not have |m|-essen-
tially relatively compact range, and hence Im is not compact.

A similar phenomenon to that in Example 3.1 can occur in spaces with-
out the Radon–Nikodým property.

Example 3.2. Let Ω and Σ be as in Example 3.1. Then X := L1([0, 1])
does not have the Radon–Nikodým property [6, p. 219]. Define a vector
measure m : Σ → X again by the formula (3.1), in which case m has
finite variation given by |m|(E) =

�
E(1 − s) ds for E ∈ Σ. It is shown in

[18, Lemma 2.1] that G := dm/d|m| exists and is the X-valued function
G(s) = (1 − s)−1χ[s,1](·) for s ∈ Ω. Since Im is not even weakly compact
[18, Proposition 2.7], it cannot be compact. By Theorem 1, G does not have
|m|-essentially relatively compact range.

For examples of vector measures of finite variation which have no Radon–
Nikodým derivative with respect to their variation (i.e. condition (i) of Theo-
rem 1 fails) we refer to the Volterra measures considered in [20] in the spaces
C([0, 1]) and L∞([0, 1]). Neither of these spaces has the Radon–Nikodým
property [6, p. 219].

Remark 3.3. (i) The vector measure m of Example 3.2 satisfies L1(m)
= L1(|m|); see [18, Lemma 2.4], or use Example 2.3(ii) and Remark 2.7.
This shows that the compactness of Im is not equivalent to the equality
L1(m) = L1(|m|); see the statement of Theorem 1.
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(ii) The compactness of Im clearly implies the relative compactness of
m(Σ) in X. The converse is not true in general. To see this let X :=
Lp([0,∞]) for any 1 ≤ p ≤ ∞ and define m as in Examples 3.1 and 3.2.
It is known that the classical Volterra operator V : X → X defined by
V f : t 7→

� t
0 f(s) ds, for t ∈ [0, 1] and every f ∈ X, is a compact opera-

tor. Since m(E) = V (χE) for all E ∈ Σ, it follows that m(Σ) is relatively
compact in X.

Proof of Theorem 2. Let Ω := [0, 1] and λ be Lebesgue measure on
the Borel σ-algebra Σ of Ω. Choose any basic sequence {xn}∞n=1 of unit
vectors in X (see [5, Corollary V.3]). By using the fact that the sequence
{n−3einωxn}∞n=1 is absolutely summable in X for every ω ∈ Ω, we can
define a function H : Ω → X by H(ω) :=

∑∞
n=1 n

−3einωxn for ω ∈ Ω. Then
H is continuous because ‖H(ω) − H(u)‖ ≤ |ω − u|(∑∞n=1 n

−2) whenever
u, ω ∈ Ω. Moreover, H(ω) 6= 0 for each ω ∈ Ω. This is a consequence of
the fact that {xn}∞n=1 is a Schauder basis for its closed linear span Y and
the fact that H(ω) = 0 if and only if n−3einω = 0 for every n ∈ N, which
never occurs. Clearly 〈H(·), x′ 〉 is Σ-measurable for each x′ ∈ X ′. Since H
takes its values in the separable subspace Y of X, it follows from the Pettis
measurability theorem [6, p. 42] that H is strongly measurable. Accordingly,
H ∈ B(λ,X). Let m := H ·λ be the indefinite Bochner λ-integral of H with
respect to λ. By Lemma 2.1, m has finite variation |m| = ‖H(·)‖ · λ. Since
ω 7→ 1/‖H(ω)‖ is continuous and strictly positive on Ω, it follows that
G := H(·)/‖H(·)‖ is continuous on Ω and so has compact range in S[X].
In particular, G = dm/d|m| is Bochner |m|-integrable. Theorem 1 ensures
that Im is compact.

Proof of Theorem 3. Let W := {yn : n ≥ 2} ⊆ S[X] be a set which
is not relatively compact but is w-seminorm dominated; see Lemma 2.5.
Let Ω := N and Σ := 2N, and define a vector measure m : Σ → X by
m(E) =

∑
n∈E 2−nyn+1 for E ∈ Σ. Then m has finite variation given by

|m|(E) =
∑

n∈E 2−n for E ∈ Σ. Define G : Ω → X by G(n) := yn+1 for
n ∈ Ω. Since 〈G(·), x′ 〉 is Σ-measurable for each x′ ∈ X ′ (as Σ = 2N) and G
takes its values in the separable subspace of X generated by W , the Pettis
measurability theorem ensures that G is strongly measurable. Moreover,�
Ω ‖G(·)‖ d|m| = |m|(Ω) < ∞ and so G ∈ B(|m|,X). It is routine to verify

that m = G · |m| and so dm/d|m| = G ∈ B(|m|,X). Since G(Ω) = W is w-
seminorm dominated, Lemma 2.6 implies that L1(m) = L1(|m|). But G does
not have |m|-essentially relatively compact range in X and so Theorem 1
shows that Im is not compact.

Proof of Theorem 4. Denote the domain of m by Σ and let λ : Σ →
[0,∞) be a control measure for m. That is, λ is a finite measure such that
λ(E) → 0 implies m(E) → 0, or equivalently λ(E) = 0 implies m(E) = 0;
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see [6, p. 10 & p. 14]. By Rybakov’s theorem [6, Theorem IX.2.2], it is
possible to choose (which we do) λ = |〈m,x′0〉| for a suitable x′0 ∈ X ′. It is
then clear that

L∞(m) = L∞(λ) ⊆ L1(m) ⊆ L1(λ).

Moreover, if we define ψx′ := d〈m,x′ 〉/dλ for x′ ∈ X ′, then ψx′ ∈ L1(λ) and

‖f‖m = sup
{ �

Ω

|f | · |ψx′ | dλ : x′ ∈ B[X ′ ]
}
, f ∈ L1(m).(3.2)

Suppose that m : Σ → X does not have finite variation. Then for ev-
ery h ∈ L1(λ) there exists A ∈ Σ (depending on h) such that ‖m(A)‖ >�
A |h| dλ. It is to be proved that Im is not compact. To this end we construct,

inductively, a sequence {gn}∞n=1 ⊆ B[L1(m)] such that ‖Im(gn) − Im(gk)‖
≥ 1/4 whenever n 6= k.

Choose g1 ∈ B[L1(m)] arbitrarily and suppose that functions g1, . . . , gn
∈ B[L1(m)] have been constructed with the stated property. Let H ⊆ X
be the finite-dimensional subspace spanned by {Im(g1), . . . , Im(gn)}. By
Lemma 2.8 with ε := 1/4, Y :=X ′ and Z :=H⊥= {x′ ∈ X ′ : 〈Im(gj), x′ 〉= 0
for 1 ≤ j ≤ n}, there is a finite set F = {x′1, . . . , x′N} in B[X ′ ] with N ∈ N
such that

B[X ′ ] ⊆ 5
4(bco(F ) + 2B[H⊥]).(3.3)

Define ψ by ω 7→ ψ(ω) := max{|ψx′j (ω)| : 1 ≤ j ≤ N} for ω ∈ Ω. Since

5ψ ∈ L1(λ) and |m|(Ω) =∞, we noted above that there is a set A ∈ Σ with
‖m(A)‖ > 5

�
A ψ dλ. Then α := ‖χA‖m satisfies

α ≥ ‖m(A)‖ > 5
�

A

ψ dλ ≥ 0.

Moreover, α = sup{
�
A |ψu′ | dλ : u′ ∈ B[X ′ ]} by (3.2), and so we can choose

x′ ∈ B[X ′ ] such that 7
8α <

�
A |ψx′ | dλ. By (3.3) there exist complex numbers

αj , for 1 ≤ j ≤ N , with
∑N

j=1 |αj | ≤ 1 and z′ ∈ B[H⊥] such that x′ =
5
4(
∑N

j=1 αjx
′
j + 2z′). Then ψx′ = 5

4(
∑N

j=1 αjψx′j + 2ψz′) satisfies |ψx′ | ≤
5
4(ψ + 2|ψz′ |) and hence

7
8
α <

5
4

�

A

ψ dλ+
5
2

�

A

|ψz′ | dλ <
α

4
+

5
2

�

A

|ψz′ | dλ.

It follows that α/4 <
�
A |ψz′ | dλ. Now define

gn+1 := α−1χA · |ψz′ |/ψz′ ,
with the understanding that 0/0 = 1, and note that gn+1 ∈ L∞(λ) =
L∞(m) ⊆ L1(m). Moreover, |gn+1| = α−1χA, from which it follows that
‖gn+1‖m = 1, i.e., gn+1 ∈ B[L1(m)]. Now fix k ∈ {1, . . . , n}. Then we have
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〈Im(gk), z′〉 = 0, since z′ ∈ H⊥. Accordingly, since also ‖z′‖ ≤ 1, we see
that

‖Im(gn+1)− Im(gk)‖ ≥ |〈Im(gn+1)− Im(gk), z′〉| = |〈Im(gn+1), z′〉|

=
∣∣∣

�

Ω

ψz′gn+1 dλ
∣∣∣ = α−1

�

A

|ψz′ | dλ >
1
4
.

This completes the construction of gn+1, and hence also the proof.
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[21] L. Rodŕıguez-Piazza, Derivability, variation and range of a vector measure, Studia
Math. 112 (1995), 165–187.
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