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The Bergman projection on weighted spaces:
L1 and Herz spaces

by

Oscar Blasco (Valencia) and Salvador Pérez-Esteva (Cuernavaca)

Abstract. We find necessary and sufficient conditions on radial weights w on the
unit disc so that the Bergman type projections of Forelli–Rudin are bounded on L1(w)
and in the Herz spaces Kq

p(w).

1. Introduction and preliminaries. The purpose of this paper is to
study spaces of analytic functions on the unit disc D provided with a norm
of a weighted Herz space. More precisely we consider the classical family
of Bergman projections Ps, s > −1, and we give necessary and sufficient
conditions on the weight making these projections continuous in the cor-
responding weighted Herz space. We also consider the continuity of these
projections in the weighted L1 space. The continuity of the projections Ps
has been studied by many authors in several settings like weighted Lp conti-
nuity or weighted mixed norms (see for example [2, 5, 8, 12, 15, 16, 18] and
[1, 3, 4, 17, 19] for related literature on Bergman type spaces).

Throughout the paper dm(z) is the normalized area measure on the
disc, that is, dm(z) = π−1rdrdθ. By a weight we understand a function
w such that 0 < w(z) < ∞. If f is a function on D and s ≥ −1, we set
fs(z) = (1 − |z|2)sf(z). We write rn = 1 − 2−n, In = {r : rn < r < rn+1}
and An = {z ∈ D : rn < |z| < rn+1}. We define

‖f‖Lp(w) =
( �

D
|f(z)|pw(z) dm(z)

)1/p
,

and

Mp(f, r) =
( 2π�

0

|f(reiθ)|p dθ
2π

)1/p

.
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We write w(A) = � Aw(z) dm(z) for any measurable subset A of D. Given
a function ψ integrable on [0, 1) we denote by Mn(ψ) = � 1

0 ψ(r)rn dr the
moment of order n for n ∈ N or n = 0.

Define the spaces Kα,p
q to consist of all measurable functions f on D such

that
∞∑

n=1

2−αqn
( �

An

|f(z)|p dm(z)
)q/p

<∞.

These spaces are a variant of those introduced by C. Herz in [10]. In this
paper we will consider a more general class of spaces, the weighted Herz
spaces Kp

q (w), 1 ≤ p, q ≤ ∞, introduced by Lu and Yang in [14] (see also
[13] for power weights). These spaces consist of all measurable functions f
on the disc such that (‖f‖Lpw(An)) ∈ `q. The norm in Kp

q (w) is defined by

‖f‖Kp
q (w) = ‖(‖f‖Lpw(An))‖`q .

Example 1.1. (a) If f =
∑∞

m=1 anχAn then f ∈ Kp
q (w) if and only if

∞∑

m=1

|an|qw(An)q/p <∞.

(b) Let w be a radial weight and f(z) = φ(r)ψ(θ) for z = reiθ where
φ, ψ are measurable functions in [0, 1) and [0, 2π) respectively. Then

‖f‖Kp
q (w) = ‖ψ‖Lp([0,2π))

( ∞∑

n=1

( �

In

|φ(r)|pw(r)r dr
)q/p)1/q

.

For s > −1 we consider the family of Bergman projections

Psf(z) =
�

D
Ks(z, ξ)f(ξ)(1− |ξ|2)s dm(ξ),

where

Ks(z, ξ) =
1

(1− zξ)2+s
=

1
Γ (s+ 2)

∞∑

n=0

Γ (n+ s+ 2)
n!

znξ
n
.

Lemma 1.2. (a) If f(z) = φ(r)ψ(θ) for z = reiθ then

Psf(z) =
2

Γ (s+ 2)

∞∑

n=0

Γ (n+ s+ 2)
n!

Mn+1(φs)ψ̂(n)zn.

(b) Fix s > −1. Then PsχAn(z) = cn,s ∼ 2−n(s+1) for all z ∈ D.

Proof. To prove (a), we use polar coordinates to get

Psf(z) = 2
1�

0

( 2π�

0

ψ(θ)
(1− re−iθz)2+s

dθ

2π

)
(1− r2)sφ(r)r dr
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=
2

Γ (s+ 2)

1�

0

( ∞∑

n=0

Γ (n+ s+ 2)
n!

ψ̂(n)rnzn
)

(1− r2)sφ(r)r dr

=
2

Γ (s+ 2)

∞∑

n=0

Γ (n+ s+ 2)
n!

Mn+1(φs)ψ̂(n)zn.

The proof of (b) easily follows from (a).

Define now the spaces Hpq(w) to consist of all functions f holomorphic
on the disc D such that

( 1�

0

Mp(f, r)qw(r)r dr
)1/q

<∞.

For the weight w(r) = (1− r2)qα−1 the spaces are sometimes denoted by
H(p, q, α).

Using the fact that Mp(f, r) is increasing for holomorphic functions one
gets the following

Proposition 1.3. Let w be a weight such that w(An) ≤ Cw(An+1), for
instance w(r) = (1− r2)β or w =

∑
anχAn with an/an+1 ≤M . Then

1. f ∈ Hpq(w) if and only if
∑∞

n=1Mp(f, rn)qw(An) <∞.
2. f ∈ Kp

q (w) ∩ Hol(D) if and only if
∑∞

n=1Mp(f, rn)qw(An)q/p <∞.
In particular , Kp

q (w) ∩Hol(D) = Hpq(wq/p).

1.1. The class Bp
s . In [2] Bekollé introduced the class Bp

s of weight func-
tions. Let 1 < p <∞. A radial weight w = w(r) belongs to Bp

s if
( 1�

1−h
w(r)(1− r2)sr dr

)( 1�

1−h
w(r)−p

′/p(1− r2)sr dr
)p/p′

≤ Ch(s+1)p.(1)

Example 1.4. (a) If w =
∑∞

n=1 anχAn with an > 0, then w ∈ Bp
s if and

only if ( ∞∑

k=n

ak2−(s+1)k
)( ∞∑

k=n

a
−p′/p
k 2−(s+1)k

)p/p′
≤ C2−(s+1)np.

(b) If w(r) = (1− r2)α−s then w ∈ Bp
s if and only if

0 < α+ 1 < p(s+ 1).(2)

In [2] it was proved that Bp
s is precisely the class of weight functions

making Ps a continuous projection:

Theorem 1.5. Let 1 < p < ∞. Ps is continuous in Lp(ws) if and only
if w ∈ Bp

s .

Notice in particular that Ps is continuous on Lp((1 − r2)α) if and only
if the inequality (2) holds. Also for p = 1 a weak type continuity result
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was obtained in [2] and the Bp
s condition was shown to be equivalent to the

boundedness in Lp(ws) of P ∗s where

P ∗s f(z) =
�

D

(1− |ξ|2)sf(ξ)

|1− ξz|2+s
dm(ξ).

2. Continuity on L1(w). If we write the condition Bp
s as the existence

of a constant C > 0 such that for all 0 < h < 1,

‖w1/p‖Lp([h,1),dνh,s)‖w−1/p‖Lp′ ([h,1),dνh,s)
≤ C(3)

with

dνh,s =
(1− r2)srdr
(1− h)s+1 ,

then the natural substitute of (3) for p = 1 is true:

Proposition 2.1. Let w = w(r) and let Ps be bounded on L1(ws). Then

(a) Mn+1(ws) sup0<r<1 r
nw(r)−1 ≤ C/(n+ 1)s+1.

(b) ‖w‖L1([h,1),dνh,s)‖w−1‖L∞([h,1),dνh,s) ≤ C.

Proof. Let fn(reiθ) = φ(r)einθ with φ ≥ 0. Then

Psfn(z) = 2
Γ (n+ s+ 2)
Γ (s+ 2)n!

Mn+1(φs)zn,

and

‖Psfn‖L1(ws) = 2
Γ (n+ s+ 2)
Γ (s+ 2)n!

Mn+1(ws)
( 1�

0

φ(r)(1− r2)srn+1 dr
)
.

Therefore, using the boundedness of Ps, one gets

2
Γ (n+ s+ 2)
Γ (s+ 2)n!

Mn+1(ws)
( 1�

0

φ(r)w(r)w(r)−1(1− r2)srn+1 dr
)

≤ C
1�

0

φ(r)ws(r)r dr.

This, by duality, implies that for all n ≥ 0,

sup
0<r<1

rnw(r)−1 ≤ Csn!
Γ (n+ s+ 2)Mn(ws)

≤ Cs
(n+ 1)s+1Mn(ws)

,

since by the Stirling formula we have

Γ (n+ s+ 2)/n! ∼ (n+ 1)s+1.

Notice in particular that ws is integrable on D and w−1 is bounded.
To see (b) observe that for each 0 < h < 1 we can take n ∈ N such

that 1 − 1/(n+ 1) < h ≤ 1 − 1/n and that for r > 1 − 1/n we have
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rn ≥ (1− 1/n)n ≥ C, provided n ≥ 2. Hence

‖w‖L1([h,1),dνh,s)‖w−1‖L∞([h,1),dνh,s)

=
(

1
(1− h)s+1

1�

h

w(r)(1− r2)sr dr
)

sup
h<r<1

w(r)−1

≤ C
(

(n+ 1)s+1
1�

1−1/n

w(r)(1− r2)sr dr
)

sup
1−1/(n+1)<r<1

w(r)−1rn

≤ C(n+ 1)s+1Mn(w) sup
0<r<1

w(r)−1rn ≤ C.

Remark 2.2. If Ps is bounded on L1(ws) then Ps is also bounded on
Lp(ws) for all 1 < p < ∞. Indeed, part (b) in Proposition 2.1 implies
Bekollé’s condition as in (3).

Let us now get a necessary condition for the boundedness of Ps on L1(w)
for a general weight w.

Theorem 2.3. Let w be a radial weight. If Ps is bounded on L1(w) then
there exists a constant C > 0 so that

1�

0

w(r)
(1− rt)s+1 r dr ≤ C

w(t)
(1− t)s log

(
1

1− t

)
,

and there exist Cα > 0 for all α > 0 such that
1�

0

w(r)
(1− rt)s+α+1 dr ≤ Cα

w(t)
(1− t)s+α .

Proof. Take f = φ(r)ψ(θ) where ψ ∈ H1(T) = {ψ∈L1([0, 2π) : ψ̂(n)= 0
for n < 0}. Recall that the Hardy inequality (see [7]) gives that, for all
0 < r < 1,

∞∑

n=0

|ψ̂(n)|rn
n+ 1

≤ CM1(ψ, r).

Then

‖Psf‖L1(w) =
1�

0

w(r)M1(Psf, r) r dr

≥ Cs
1�

0

w(r)
( ∞∑

n=0

Γ (n+ s+ 2)
(n+ 1)!

Mn+1(φs)|ψ̂(n)|rn
)
r dr

= Cs

1�

0

G(t)(1− t2)sφ(t)t dt,
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where

G(t) =
1�

0

( ∞∑

n=0

Γ (n+ s+ 2)
(n+ 1)!

tnrn|ψ̂(n)|
)
w(r)r dr.

Using the continuity of Ps we deduce by duality that

sup
0<t<1

(1− t2)sw(t)−1G(t) ≤ C‖ψ‖1.

If for each α ≥ 0 and 0 < t < 1 we let ψ(z) = 1/(1− tz)α+1, we have

‖ψ‖1 ∼





1
(1− t)α , α > 0,

log
(

1
1− t

)
, α = 0.

For this ψ we obtain

G(t) =
1�

0

( ∞∑

n=0

Γ (n+ s+ 2)
(n+ 1)!

· Γ (n+ α+ 1)
Γ (α+ 1)n!

t2nrn
)
w(r)r dr.

Then from Γ (n+ λ)/n! ∼ nλ−1 and the expansion

1
(1− t)λ =

∞∑

n=0

Γ (n+ λ)
Γ (λ)n!

tn,

it follows that

G(t) ∼
1�

0

w(r)
(1− rt2)s+α+1 r dr ∼

1�

0

w(r)
(1− rt)s+α+1 r dr,

and the proof is complete.

We finish this section by showing that
1�

0

w(r)
(1− rt)s+1 r dr ≤ C

w(t)
(1− t)s

implies the continuity of Ps on L1(w). Actually this will be equivalent to
the boundedness of P ∗s .

Lemma 2.4. Let w be weight. Then P ∗s is bounded on L1(w) if and only
if

�

D

w(z)
|1− yz|2+s dm(z) ≤ C w(y)

(1− |y|2)s
a.e.

Proof. For any positive function f one has
�

D
P ∗s f(z)w(z) dm(z) =

�

D
f(y)(1− |y|2)s

( �

D

w(z)
|1− yz|2+s dm(z)

)
dm(w).

Then the lemma follows by duality.
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Proposition 2.5. Let w be a radial weight. The following are equiva-
lent :

(a) P ∗s is bounded on L1(w).
(b) There exists a constant C > 0 so that

1�

0

w(r)
(1− rt)s+1 r dr ≤ C

w(t)
(1− t)s a.e.

(c)
t�

0

w(r)
(1− r)s+1 r dr ≤ C

w(t)
(1− t)s a.e.,

1
1− t

1�

t

w(r)r dr ≤ Cw(t) a.e.

Proof. (a) is equivalent to (b) according to the previous lemma since

1
2π

2π�

0

dθ

|1− zre−iθ|2+s ∼
C

(1− |z|2r2)1+s .

To see that (b) is equivalent to (c) observe that

1�

0

w(r)
(1− rt)s+1 r dr =

t�

0

w(r)
(1− rt)s+1 r dr +

1�

t

w(r)
(1− rt)s+1 r dr

∼
t�

0

w(r)
(1− r)s+1 dr +

1
(1− t)s+1

1�

t

w(r)r dr.

Let us recall that a weight w is called normal (see [8] or [18]) if there
exist a and b, 0 < a < b, such that

(i) w(r)/(1− r)a is nonincreasing with limr→1w(r)/(1− r)a = 0,
(ii) w(r)/(1− r)b is nondecreasing with limr→1w(r)/(1− r)b =∞.

Set b(w) = inf{b : b satisfies (ii)}.
Corollary 2.6. Let w be a normal weight. If s > b(w) then P ∗s is

bounded on L1(w).

Proof. Let us check that (c) of Proposition 2.5 is satisfied. Set b = b(w).
Then

t�

0

w(r)
(1− r)s+1 r dr =

t�

0

w(r)
(1− r)b ·

(1− r)b
(1− r)s+1 r dr ≤ C

w(t)
(1− t)s

and

1
1− t

1�

t

w(r)r dr =
1

1− t

1�

t

w(r)
(1− r)a (1− r)ar dr ≤ Cw(t).
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3. Necessary conditions for the boundedness on Herz spaces

Proposition 3.1. Let 1 ≤ p, q <∞, and assume the constant functions
belong to Kp

q (w), that is,
∑∞

n=1w(An)q/p <∞. If Ps is bounded on Kp
q (w)

then the sequence (2−n(s+1)w(An)−1/p) ∈ `q′.
Proof. Fix N and take

f =
N∑

n=1

an

w(An)1/p
χAn.

From Lemma 1.2,

Psf =
N∑

n=1

an

w(An)1/p
cn,s.

Hence

‖Psf(z)‖Kp
q (w) =

∣∣∣∣
N∑

n=1

an

w(An)1/p
cn,s

∣∣∣∣
( ∞∑

n=1

w(An)q/p
)1/q

and

‖f‖Kp
q (w) =

( ∞∑

m=1

|an|q
)1/q

.

Now the result follows by duality.

Corollary 3.2. Let α > −1. If Ps is bounded on Kp
q ((1 − r2)α) then

α+ 1 < (s+ 1)p.

Proof. This follows from Proposition 3.1 and the fact that w(An) ∼
2−n(α+1) in this case.

Let us now give some more accurate necessary conditions for the bound-
edness of Ps on Kp

q (ws).

Proposition 3.3. Let w be a radial weight. If 1 < p, q < ∞ and Ps is
bounded on Kp

q (ws), then there exists a constant C such that for all n ∈ N,

‖rn‖Kp
q (ws)‖rn‖Kp′

q′ ((w
−p′/p)s)

≤ C

(n+ 1)s+1 .(4)

Proof. Applying the boundedness to the functions fn(z) = φ(r)einθ with
φ ≥ 0 and n ∈ Z we have

Psfn(z) = 2
Γ (n+ s+ 2)
Γ (s+ 2)n!

Mn+1(φs)zn,

hence

‖Psfn‖Kp
q (ws) = 2Mn+1(φs)

Γ (n+ s+ 2)
Γ (s+ 2)n!

‖rn‖Kp
q (ws) ≤ C‖φ‖Kp

q (ws),
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which implies that for all n ≥ 0,
1�

0

φ(r)rn+1(1− r2)s dr ≤ CΓ (s+ 2)n!
Γ (n+ s+ 2)‖rn‖Kp

q (ws)
‖φ‖Kp

q (ws).(5)

Writing
1�

0

φ(r)rn+1(1− r2)s dr =
∞∑

k=1

�

Ik

φ(r)w(r)1/pw(r)−1/prn(1− r2)sr dr

and taking the supremum over all ‖φ‖Kp
q (ws) ≤ 1 one deduces from the

duality in Herz spaces (see [9, Th. 2.1]) that
( ∞∑

k=1

( �

Ik

w(r)−p
′/prnp

′
(1− r2)sr dr

)q′/p′)1/q′

≤ CΓ (s+ 2)n!
Γ (n+ s+ 2)‖rn‖Kp

q (w)

≤ Cs
(n+ 1)s+1‖rn‖Kp

q (w)
.

Corollary 3.4. Let w be a radial weight. If 1 < p, q < ∞ and Ps is
bounded on Kp

q (ws) then there exists a constant C such that for all n ∈ N,

‖χ[h,1)‖Kp
q (ws)‖χ[h,1)‖Kp′

q′ ((w
−p′/p)s)

≤ C(1− h)s+1.(6)

Proof. Notice that there exists C > 0 such that χ[1−1/n,1) ≤ Crn for all
n ∈ N. Given 0 < h < 1 take n such that 1−1/n < h ≤ 1−1/(n+ 1). Then
the lattice structure of these spaces gives

‖χ[h,1)‖Kp
q (ws)‖χ[h,1)‖Kp′

q′ ((w
−p′/p)s)

≤ C(1− h)s+1.

Remark 3.5. (a) If w(r) = v(r2), then for p = q = 2, the condition (4)
can be written as

Mn((1− r2)sv)1/2Mn((1− r2)sv−1)1/2 ≤ C

(n+ 1)s+1 .

(b) If p = q, then inequality (6) is precisely Bekollé’s condition (1).

4. Sufficient conditions for the boundedness on Herz spaces.
Let us start with some conditions on the weight to have w ∈ Bp

t for s− ε <
t < s+ ε.

Lemma 4.1. If there exists γ > 1 such that
1�

0

w(r)γ(1− r2)s

(1− rt)s+1 r dr ≤ Cw(t)γ

then (1− r2)±εw ∈ Bp
s for all 0 < ε < min{(s+ 1)/γ ′, (p/p′)(s+ 1)}.
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Proof. By Proposition 2.5, P ∗s is continuous in L1((wγ)s). Then Propo-
sition 2.1 implies that

( 1�

1−h
w(r)γ(1− r2)s r dr

)
sup

1−h<r<1
w(r)−γ ≤ Chs+1.

Let −(s+ 1)/γ′ < ε < (p/p′)(s+ 1). Then

( 1�

1−h
w(r)(1− r2)ε+sr dr)

)( 1�

1−h
w(r)−p

′/p(1− r2)−εp
′/p+sr dr

)p/p′

≤
( 1�

1−h
w(r)γ(1− r2)sr dr

)1/γ( 1�

1−h
(1− r2)γ

′ε+sr dr
)1/γ′

× sup
1−h<r<1

w(r)−1
( 1�

1−h
(1− r2)−εp

′/p+sr dr
)p/p′

≤ C
(

sup
1−h<r<1

w(r)−γ
1�

1−h
w(r)γ(1− r2)sr dr

)1/γ
hε+(s+1)/γ′h−ε+(s+1)p/p′

≤ Ch(s+1)p.

Theorem 4.2. If there exists γ > 1 such that

1�

0

w(r)γ(1− r2)s

(1− rt)s+1 r dr ≤ Cw(t)γ,

then Ps is bounded on Kp
q (ws) for every 1 < p <∞ and 1 ≤ q <∞.

Proof. By Lemma 4.1, there exists ε > 0 such that (1 − r2)±εw ∈ Bp
s ,

hence Ps is continuous in Lp((1− r2)±εws), that is, there exists C > 0 such
that

�

D

|Psf(z)|p(1− r2)±εws(z) dm(z) ≤ C
�

D

|f(z)|p(1− r2)±εws(z) dm(z).

In particular, given n,m ∈ N, if supp(f) ⊂ An then
�

Am

|Psf(z)|pws(z) dm(z) ≤ C2±ε(m−n)
�

D

|f(z)|pws(z) dm(z).

Let f be any function in Kp
q (w). Write f =

∑
fn with fn = fχAn.

Assume that the series is a sum with only a finite number of terms. Then

‖Psf‖Lpws(Am) ≤ C
∑

n

‖Psfn‖Lpws (Am) = C
∑

n

2±ε(m−n)/p‖fn‖Lpws(An)



Bergman projection on weighted spaces 161

= C
∑

n<m

2±ε(m−n)/p‖fn‖Lpws (An) + C
∑

n≥m
2±ε(m−n)/p‖fn‖Lpws (An)

= I1 + I2.

Consider the sequences X = (xn) and Y = (yn) where xn = 2−ε|n|/p and

yn =
{
‖fn‖Lpws (An), n ≥ 0,
0, n < 0.

Then
‖Psf‖Lpws (Am) ≤ CX ∗ Y (m), m ∈ N.

Finally from Young’s inequality it follows that

‖Psf‖Kpq(ws) ≤ C‖X‖`1‖f‖Kp
q (ws).

We notice that the proof of Theorem 4.2 was based on the existence of a
positive number ε such that (1− r2)±εw ∈ Bp

s . With the same idea we have
the following

Theorem 4.3. If w ∈ Bp
t then Ps is bounded on Kp

q (ws) for every s > t.

Proof. An easy calculation shows that for ε > 0 we have

(1− r2)−εw ∈ Bp
t+ε, (1− r2)εw ∈ Bp

t+εp′/p.

If we take ε > 0 small enough so that max(t + εp′/p, t + ε) < s, we obtain
(1− r2)±εw ∈ Bp

s since the class Bp
t increases in t.

Corollary 4.4. Let α > −1 and w(r) = (1− r2)α. Then Ps is contin-
uous in Kp

q (w) if and only if α+ 1 < p(s+ 1). In this case Ps maps Kp
q (w)

onto Hpq(wq/p).
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[2] D. Bekollé, Inégalité à poids pour le projecteur de Bergman dans la boule unité de
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[12] M. Jevtić, Bounded projections and duality in mixed-norm spaces of analytic func-
tions, Complex Variables 8 (1987), 293–301.

[13] S. Lu and F. Soria, On the Herz spaces with power weights, in: Fourier Analysis and
Partial Differential Equations, CRC Press, 1995, 227–236.

[14] S. Lu and D. Yang, The decomposition of weighted Herz space on Rnand its appli-
cations, Sci. China Ser. A 38 (1995), 147–158.
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