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Generalization of the Newman–Shapiro isometry theorem
and Toeplitz operators. II

by

Dariusz Cichoń (Kraków)

Abstract. The Newman–Shapiro Isometry Theorem is proved in the case of Segal–
Bargmann spaces of entire vector-valued functions (i.e. summable with respect to the
Gaussian measure on Cn). The theorem is applied to find the adjoint of an unbounded
Toeplitz operator Tϕ with ϕ being an operator-valued exponential polynomial.

1. Introduction. The study of Segal–Bargmann spaces (also called
Fock spaces) dates back to early 60’s, when the papers by Segal [23] and
Bargmann [1] were published. They introduced a Hilbert space of entire func-
tions summable with respect to the Gaussian measure as a natural model for
Canonical Commutation Relations. This approach corresponds to Fock’s re-
sults [13] in Quantum Mechanics. It seems that Newman and Shapiro [21, 22]
discovered those spaces independently, motivated by Fischer’s work on dif-
ferential operators. It turned out that the Segal–Bargmann space provides
a model for differential and pseudodifferential operators, which in these set-
tings are strictly related to Toeplitz operators. We give a list of references,
which could be twice as long, showing that the subject of Segal–Bargmann
spaces and Toeplitz operators defined in them was intensively studied during
the last century.

The isometry theorem, which is the main subject of the present paper,
was first given in [22]. It turned out to be a powerful tool in the study of
analytic Toeplitz operators. Our efforts focused on generalizing the theorem
to vector-valued functions. Part of the job was done in [9] and what we
present here may be regarded as a sequel. Another recent paper devoted
to this subject [10] provides an exposition of the spectral synthesis problem
in connection with Teoplitz operators. It is worth pointing out that the
isometry theorem was also established for abstract operators (cf. [17, 18]),
but it seems that this general idea would not be beneficial in our approach.
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We organized the material to make it as self-contained as possible, though
we have to repeat some material from [9] without proofs.

2. Prerequisites. In what follows,H and K stand for separable Hilbert
spaces. Basic properties of functions taking values in H or B(H,K) such as
analyticity, measurability or integrability are understood in a weak sense (cf.
[7]). Consider L2(µ) ⊗ H, the Hilbert space of all complex Borel functions
taking values in H which are square-integrable on Cn with respect to the
measure µ given by the formula dµ(z) = π−ne−‖z‖

2
dV (z), where V is the

Lebesgue measure in Cn and ‖z‖2 = |z1|2 + . . .+ |zn|2 for z = (z1, . . . , zn) ∈
Cn. The inner product in L2(µ)⊗H is given by

〈f, g〉(H) =
�

Cn
〈f(ζ), g(ζ)〉 dµ(ζ), f, g ∈ L2(µ)⊗H,

where 〈·, ·〉 stands for the inner product inH. The norm induced by this inner
product is denoted by ‖ · ‖(H). The Segal–Bargmann space Bn⊗H (for short
B ⊗ H) is a closed subspace of L2(µ) ⊗H consisting of all entire functions
belonging to L2(µ) ⊗ H. We denote P ⊗ IH the orthogonal projection of
L2(µ) ⊗ H onto B ⊗ H. We will use the following identifications: L2(µ) =
L2(µ)⊗ C, B = B ⊗ C, 〈·, ·〉 = 〈·, ·〉(C), ‖ · ‖ = ‖ · ‖(C) and P = P ⊗ IC.

Given f : Cn → C and h ∈ H we define (f ⊗ h)(z) := f(z)h, z ∈
Cn. Put ea(z) := ez·a, where z · a :=

∑n
k=1 zkak and a := (a1, . . . , an) for

a = (a1, . . . , an) ∈ Cn and z = (z1, . . . , zn) ∈ Cn. It can be checked that
〈f(z), h〉 = 〈f, ez⊗h〉(H) for f ∈ B⊗H, h ∈ H and z ∈ Cn (cf. [9]), which is
referred to as the reproducing property for B⊗H. By the Schwarz inequality
we deduce that ‖f(z)‖ ≤ ‖f‖(H)e

‖z‖2/2, z ∈ Cn, for all f ∈ B ⊗H.
We denote by P (= Pn) the space of all analytic polynomials in Cn, which

is a dense subset of B. The sequence fk(z) := zk/
√
k!, k ∈ Nn, z ∈ Cn, forms

an orthonormal basis for B, where according to the standard multiindex
notation zk := zk1

1 . . . zknn , k! := k1! . . . kn! and |k| := k1 + . . . + kn for all
z = (z1, . . . , zn) ∈ Cn and k = (k1, . . . , kn) ∈ Nn (N = {0, 1, 2, . . .}).

Write P⊗H for the space of polynomials (in Cn) taking values in H, i.e.
functions of type

∑K
j=0 pj⊗hj , where pj ∈ Pn, hj ∈ H and K ∈ N. The space

of operator-valued polynomials, denoted by P ⊗ B(H,K), can be defined
analogously. Given p ∈ P ⊗ B(H,K), p(z) =

∑
|j|<K Ajz

j, Aj ∈ B(H,K),
z ∈ Cn, define p# ∈ P ⊗B(K,H) via p#(z) = p(z)∗, z ∈ Cn, and a differen-
tial operator (p(D)F )(z) =

∑
|j|<K AjD

jF (z), z ∈ Cn, where F : Cn → H
is an analytic function (here Dj = ∂|j|/∂zj11 . . . ∂zjnn for j = (j1, . . . , jn)).

We adhere to the following convention concerning the “dot” notation:
‖ϕ(·)‖(H) means the norm of the H-valued function z 7→ ϕ(z), while ‖ϕ(·)‖
∈ Y , where Y is a set of functions, means that the function z 7→ ‖ϕ(z)‖
belongs to Y .
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Lemma 1. Let f : Cn → C be an entire function such that fez ∈ L1(µ)
for all z ∈ Cn and let p ∈ P. Then f(z) = � Cn f(ζ)ez·ζ dµ(ζ) for z ∈ Cn and

(p#(D)f)(z) =
�

Cn
p(ζ)f(ζ)ez·ζ dµ(ζ), z ∈ Cn.

In particular, this holds for f of the form q(D)g, where g ∈ B and q ∈ P.

Proof. Cf. [9, Lemma 2.3].

Given f ∈ L2(µ) we define

Gf (z, w) = e−z·w
�

Cn
f(ζ)ez·ζ+w·ζ dµ(ζ), z, w ∈ Cn.(1)

Note that this integral is meaningful, because the integrand is a product of
two L2(µ)-functions. Let Xa denote the space of scalar functions ϕ for which
|ϕ(z)| ≤ Ce‖z‖2/2−a‖z‖, z ∈ Cn, with some C ≥ 0. It was shown in [22] that
Gf ∈ B2n and ‖Gf‖ = ‖f‖ for f of the form ϕg, where ϕ ∈ ⋂a>0Xa ∩ B
and g ∈ B are chosen so that ϕg ∈ B. The proof of the following theorem is
based on ideas from [20], which were inspired by those in [22].

Lemma 2. Let f : Cn → C be a Borel function such that

f(·)ea(·) ∈ L1(µ) and f(·)ea(·)e−‖·‖
2/2 ∈ L2(µ)

for all a ∈ Cn. Let Gf (z, w) be defined by (1). Then Gf is analytic and
�

Cn

�

Cn
|Gf (z, w)|2 dµ(z) dµ(w) =

�

Cn
|f(z)|2 dµ(z)

with both integrals possibly infinite.

Proof. First observe that the integral in (1) is absolutely convergent
because, for any z, w ∈ Cn, |ez·ζ+w·ζ | = |ez+w(ζ)| for ζ ∈ Cn, and fez+w ∈
L1(µ). We now turn to analyticity of Gf . By Lemma 1.1 of [19], Gf (·, w) is
analytic for all w ∈ Cn. By the same lemma and the formula

Gf (z, w) = e−z·w
�

Cn
f(ζ)ez·ζ+w·ζ dµ(ζ), z, w ∈ Cn,

derived by the change of variables ζ 7→ ζ, we deduce that Gf (z, ·) is analytic
for each z ∈ Cn. Thus Gf is entire.

We introduce the notation

Fu(ζ) := f(ζ)e−(‖ζ‖2+‖ζ−u‖2)/2, u, ζ ∈ Cn.
We claim that Fu ∈ L1(V ) ∩ L2(V ) for all u ∈ Cn. This is an immediate
consequence of the assumptions imposed upon f , since

|Fu(ζ)| = e−‖u‖
2/2|f(ζ)eu(ζ)|e−‖ζ‖2, u, ζ ∈ Cn.
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Consider the change of variables (u, v) 7→ (z, w) given by

z = 1
2(u+ iv) and w = 1

2(u+ iv).(2)

Then
e−(‖z‖2+‖w‖2)/2Gf (z, w) = e−(i/2) Reu·vcnF̂u(v),(3)

where F̂u stands for the complex Fourier transform of the function Fu, and
cn is a constant depending only on n. Observe that

(4)
�

Cn

�

Cn
|Fu(ζ)|2 dV (ζ) dV (u)

=
�

Cn
|f(ζ)|2e−‖ζ‖2

�

Cn
e−‖ζ−u‖

2
dV (u)dV (ζ)

= π2n
�

Cn
|f(ζ)|2 dµ(ζ), u ∈ Cn.

Applying (3), the change of variables (2), the Plancherel theorem and
(4) we see that

�

Cn

�

Cn
|Gf (z, w)|2 dµ(z) dµ(w) = π−2nc2

n

�

Cn

�

Cn
|F̂u(v)|2 dV (z) dV (w)

= dn
�

Cn

�

Cn
|F̂u(v)|2 dV (v) dV (u)

= dn
�

Cn

�

Cn
|Fu(v)|2 dV (v) dV (u)

= π2ndn
�

Cn
|f(ζ)|2 dµ(ζ),

where dn is another constant depending only on n. Substituting f ≡ 1,
which satisfies the assumptions of the theorem, we infer that

Gf (z, w) = e−z·w〈ew, ez〉 = 1, z, w ∈ Cn,
thus π2ndn = 1.

Lemma 2 is a refined version of [9, Lemma 2.4], which can also serve as
a prototype of the next lemma.

Lemma 3. Suppose that f, ϕ : Cn →H are Borel functions such that

‖ϕ(·)‖ ∈
⋂

a>0

Xa and ‖f(z)‖ ≤ ce‖z‖2/2, z ∈ Cn,

with some constant c ≥ 0. Then the mapping G given by

G(z, w) = e−z·w
�

Cn
〈f(ζ), ϕ(ζ)〉ez·ζ+w·ζ dµ(ζ)
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belongs to B2n if and only if 〈f(·), ϕ(·)〉 ∈ L2(µ). Moreover,
�

Cn
|〈f(ζ), ϕ(ζ)〉|2 dµ(ζ) =

�

Cn

�

Cn
|G(z, w)|2 dµ(z) dµ(w),

with both integrals possibly infinite.

Proof. It suffices to check that the function 〈f(·), ϕ(·)〉 satisfies the as-
sumptions of Lemma 2. Pick a ∈ Cn and fix any D > ‖a‖. Then

|〈f(ζ), ϕ(ζ)〉ea(ζ)| ≤ ‖f(ζ)‖ · ‖ϕ(ζ)‖e‖a‖·‖ζ‖

≤Mce‖ζ‖
2
e−(D−‖a‖)‖ζ‖, ζ ∈ Cn,

where M := supζ∈Cn ‖ϕ(ζ)‖eD‖ζ‖−‖ζ‖2/2 < ∞. This inequality implies that
〈f(·), ϕ(·)〉ea(·) ∈ L1(µ). Moreover,

|〈f(ζ), ϕ(ζ)〉ea(ζ)|2e−‖ζ‖2 ≤M2c2e‖ζ‖
2
e−2(D−‖a‖)‖ζ‖, ζ ∈ Cn,

so we infer that |〈f(·), ϕ(·)〉ea(·)|e−‖·‖2/2 ∈ L2(µ).

Let us introduce the notation

Λϕf(z) :=
�

Cn
〈f(ζ), ϕ(ζ)〉ez·ζ dµ(ζ), z ∈ Cn,

for all Borel functions f, ϕ : Cn → H for which the above integral is well
defined for all z ∈ Cn.

Lemma 4. Let ϕ : Cn → H be analytic such that ‖ϕ(·)‖ ∈ ⋂a>0Xa.
Then for any two fixed z, w ∈ Cn the following (well-defined) linear func-
tionals are continuous (j being a multiindex ):

(i) B ⊗H 3 f 7→ Λϕ(ewf)(z) ∈ C,

(ii) B ⊗H 3 f 7→∑
j≥0

wj

j! ΛDjϕf(z) ∈ C.

Proof. (i) We prove simultaneously that the functional is well defined
and continuous. Indeed, since ‖f(z)‖ ≤ ‖f‖(H)e

‖z‖2/2, z ∈ Cn, we have
�

Cn
|〈f(ζ), ϕ(ζ)〉ew·ζez·ζ | dµ(ζ) ≤ ‖f‖(H)

�

Cn
‖ϕ(ζ)‖ · |ew·ζez·ζ |e−‖ζ‖2/2 dV (ζ).

The latter integral is convergent, since ϕ is dominated by e‖z‖
2/2−C‖z‖ with

any C ≥ 0.
(ii) We will show that for any C > 0 there exists C ′ ≥ 0 such that

�

Cn
|〈f(ζ),Djϕ(ζ)〉ez·ζ | dµ(ζ) ≤ C ′‖f‖(H)

�

Cn
|ζjez·ζ |e−C‖ζ‖ dV (ζ)(5)

for all j ∈ Nn. Note that this implies that ΛDjϕf(z) is well defined for each
j ∈ Nn. Observe that for fixed a ∈ Cn and α > 0, the change of variables
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x =
√
α ζ yields

�

Cn
|ea(ζ)|e−α‖ζ‖2dV (ζ) =

1
αn

�

Cn

∣∣∣∣ea
(

x√
α

)∣∣∣∣e−‖x‖
2
dV (x)(6)

=
1
αn
‖ea/(2√α)‖2 =

1
αn
e‖a‖

2/(4α).

In order to prove (5) we need to know that

〈f(ζ),Djϕ(ζ)〉 =
�

Cn
ηj〈f(ζ), ϕ(η)〉eζ·η dµ(η), ζ ∈ Cn,

which follows from Lemma 1. This implies that
�

Cn
|〈f(ζ),Djϕ(ζ)〉ez·ζ | dµ(ζ) ≤

�

Cn

�

Cn
|F (ζ, η)| dµ(η) dµ(ζ),(7)

where

F (ζ, η) := ηjeζ·η〈f(ζ), ϕ(η)〉eζ·z, ζ, η ∈ Cn.
Now, (6) yields

�

Cn
|F (ζ, η)| dµ(ζ) ≤ ‖f‖(H)|ηj| · ‖ϕ(η)‖

�

Cn
|eζ·(η+z)|e−‖ζ‖2/2 dV (ζ)

= 2n‖f‖(H)|ηj| · ‖ϕ(η)‖e‖η+z‖2/2

≤ C ′‖f‖(H)|ηj |e−C‖η‖+‖η‖
2/2−‖z‖2/2+‖η+z‖2/2, η ∈ Cn,

with arbitrary C > 0 and another constant C ′ ≥ 0 chosen so that

e−‖z‖
2/22−nC ′ ≥ ‖ϕ(η)‖eC‖η‖−‖η‖2/2

for all η ∈ Cn. Note that C ′ does not depend on j. Hence we infer that
�

Cn

�

Cn
|F (ζ, η)| dµ(ζ) dµ(η) ≤ C ′‖f‖(H)

�

Cn
|ηjeη·z|e−C‖η‖ dV (η),

which combined with (7) gives (5).
Once (5) is established we can prove that the functional defined in (ii) is

continuous. Fix C > ‖z‖+ ‖w‖ and choose C ′ ≥ 0 so that (5) holds. Then

∑

j≥0

|wj |
j!
|ΛDjϕf(z)| ≤ C ′‖f‖(H)

∑

j≥0

|wj|
j!

�

Cn
|ζjeζ·z|e−C‖ζ‖ dV (ζ)

= C ′‖f‖(H)

�

Cn

(∑

j≥0

|wjζj |
j!

)
|eζ·z|e−C‖ζ‖ dV (ζ)

= C ′‖f‖(H)

�

Cn
e|w1ζ1|+...+|wnζn||eζ·z|e−C‖ζ‖ dV (ζ).
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The latter integral is convergent since
n∑

k=1

|wkζk|+ Re ζ · z − C‖ζ‖ ≤ −(C − ‖z‖ − ‖w‖)‖ζ‖, w, z, ζ ∈ Cn.

In the following proof we put ϕh(z) := 〈ϕ(z), h〉 for ϕ : Cn → H and
h ∈ H.

Lemma 5. Let ϕ : Cn → H be an analytic function such that ‖ϕ(·)‖ ∈⋂
a>0Xa. Then

e−z·wΛϕ(ewf)(z) =
∑

j≥0

wj

j!
ΛDjϕf(z)(8)

for all f ∈ B ⊗H and z, w ∈ Cn.

Proof. Choose z, w ∈ Cn. By Lemma 4 the formula (8) can be regarded
as equality of two continuous linear functionals defined for f ∈ B⊗H. Thus
it suffices to check (8) only for f := ea ⊗ h, a ∈ Cn, h ∈ H. Since ezϕh ∈ B,
by the reproducing property of B we see that

e−z·wΛϕ(ewf)(z) = e−z·w〈ew+a, ezϕh〉 = ϕh(w + a) ez·a.

On the other hand,

ΛDjϕf(z) =
�

Cn
ea(ζ)ψj(ζ) dµ(ζ), j ∈ Nn,

where ψj(ζ) := eζ·zDjϕh(ζ), ζ ∈ Cn, j ∈ Nn. But ϕh ∈ B, so by Lemma 1,

ΛDjϕf(z) = ψj(a) = Djϕh(a) ez·a.

To complete the proof of (8) we have to verify the equality

ϕh(w + a)ez·a =
∑

j≥0

wj

j!
Djϕh(a) ez·a,

which follows from the Taylor expansion of ϕh at a.

3. The isometry theorems. In this section we give several formula-
tions of the generalized Newman–Shapiro Isometry Theorem, each of which
can be regarded as an extension of theorems proved in [22] to the case of
vector-valued functions. Let ϕ∗ be defined by ϕ∗(z) := (ϕ(z))∗. We “extend”
the symbol Λ by putting

Λ̃ϕf(z) :=
�

Cn
ϕ∗(ζ)f(ζ)ez·ζ dµ(ζ), z ∈ Cn,

for all Borel functions f : Cn → H and ϕ : Cn → B(K,H) for which the
above integral is well defined for each z ∈ Cn. Applying Lemma 4 one can
show that if ϕ is analytic and ‖ϕ(·)‖ ∈ ⋂a>0Xa, then for every f ∈ B ⊗H,
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j ∈ Nn and z ∈ Cn the integral which defines Λ̃Djϕf(z) is convergent.
Indeed, it suffices to check that for every fixed h ∈ H,

〈Λ̃Djϕf(z), h〉 = ΛDjϕ(·)hf(z), z ∈ Cn, j ∈ Nn,
and ‖ϕ(·)h‖ ∈ ⋂a>0Xa.

Theorem 6. Suppose that ϕ : Cn → B(K,H) is an analytic function
such that ‖ϕ(·)‖ ∈ ⋂a>0Xa. Then

‖ϕ∗f‖2(K) =
∑

j≥0

1
j!
‖Λ̃Djϕf‖2(K)

for f ∈ B ⊗H (with the convention that ‖H‖(K) =∞ whenever H 6∈ L2(µ)
⊗K).

Proof. We first focus on a special case of the theorem. For f, ψ : Cn →H
analytic and such that f ∈ B ⊗H and ‖ψ(·)‖ ∈ ⋂a>0Xa, we show that

‖〈f(·), ψ(·)〉‖2 =
∑

j≥0

1
j!
‖ΛDjψf‖2

(with the convention that ‖F‖ =∞ whenever F 6∈ L2(µ)).
Let

G(z, w) := e−z·w
�

Cn
〈f(ζ), ψ(ζ)〉ez·ζ+w·ζ dµ(ζ), z, w ∈ Cn,

that is, G(z, w) = e−z·wΛψ(ewf)(z). By Lemma 5,

G(z, w) =
∑

j≥0

wj

j!
ΛDjψf(z), z, w ∈ Cn.

For fixed z ∈ Cn, both sides of the above equality represent scalar functions,
analytic in w. Hence

�

Cn
|G(z, w)|2 dµ(w) =

∑

j≥0

1
j!
|ΛDjψf(z)|2.

Integrating with respect to dµ(z) and applying Lemma 3 we obtain the
desired equality.

We now turn to the general case. Let {εk}∞k=0 be an orthonormal basis
for the Hilbert space K. Then

‖ϕ∗f‖2(K) =
∞∑

k=0

‖(ϕ∗f)εk‖2,

where (ϕ∗f)εk(z) := 〈ϕ∗(z)f(z), εk〉. Similarly,

‖Λ̃Djϕf‖2(K) =
∞∑

k=0

‖(Λ̃Djϕf)εk‖2, j ∈ Nn
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(with the convention that ‖F‖ = ∞ whenever F 6∈ L2(µ)). So it suffices to
show that

‖(ϕ∗f)εk‖2 =
∑

j≥0

1
j!
‖(Λ̃Djϕf)εk‖2

for all k ∈ Nn; but this follows from the special case of the theorem.

The above theorem can easily be translated into an “operator version”.
In order to do it, we need to define an extended Toeplitz operator Πϕ with
ϕ : Cn → B(K,H) being a Borel function (in a weak sense). The domain of
Πϕ consists of all f ∈ B ⊗H such that the integral

Πϕ∗f(z) :=
�

Cn
ϕ∗(ζ)f(ζ)ez·ζ dµ(ζ), z ∈ Cn,

exists (i.e. it is weakly convergent, cf. [9]) for all z ∈ Cn and the function of
z defined by it lies in B ⊗ K. If f ∈ D(Πϕ), then the above formula defines
Πϕf .

Theorem 7. Assume that ϕ : Cn → B(K,H) is an analytic function
such that ‖ϕ(·)‖ ∈ ⋂a>0Xa. Then

‖ϕ∗f‖2(K) =
∑

j≥0

1
j!
‖Π(Djϕ)∗f‖2(K)

for f ∈ B ⊗H (with the convention that ‖H‖(K) =∞ whenever H 6∈ L2(µ)
⊗K or H 6∈ D(Π(Djϕ)∗)).

Proof. This is an immediate consequence of Theorem 6.

A special case of Theorem 7 is when ϕ is a polynomial, which always
satisfies the assumption of this theorem. Let p ∈ P ⊗ B(K,H). We know
that Πp∗ = p#(D), where p#(D) is understood as an unbounded operator
acting between B ⊗ H and B ⊗ K with domain D(p#(D)) := {f ∈ B ⊗ H :
p#(D)f ∈ B ⊗ K} (cf. [9, Proposition 6.1] as well as Corollary 10 below).
The isometry theorem can then be rephrased as

‖p∗f‖2(K) =
∑

j≥0

1
j!
‖(Djp#)(D)f‖2(K)

for f ∈ B ⊗ H (with the usual convention). This equality was given in [22]
in the scalar case, and its full version appeared in [9].

One more version of the isometry theorem can be derived from Lemma 3.

Theorem 8. Let ϕ : Cn → B(K,H) be a Borel function such that
‖ϕ(·)‖ ∈ ⋂a>0Xa and f ∈ B ⊗H. Then the mapping G given by

G(z, w) = e−z·w
�

Cn
ϕ∗(ζ)f(ζ)ez·ζ+w·ζ dµ(ζ)
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belongs to B2n ⊗K if and only if ‖ϕ∗(·)f(·)‖ ∈ L2(µ). Moreover,
�

Cn
‖ϕ∗(ζ)f(ζ)‖2 dµ(ζ) =

�

Cn

�

Cn
‖G(z, w)‖2 dµ(z) dµ(w),

with both integrals possibly infinite.

Proof. Fix an orthonormal basis {εk}∞k=0 for K. Observe that ψk(z) :=
ϕ(z)εk satisfies the conditions imposed on ϕ in Lemma 3. So we can write

�

Cn
|〈f(ζ), ψk(ζ)〉|2 dµ(ζ) =

�

Cn

�

Cn
|〈G(z, w), εk〉|2 dµ(z) dµ(w)

for all k ≥ 0. Summation over all k’s completes the proof.

4. Adjointness. Let ϕ : Cn → B(H,K) be an analytic function. An
analytic Toeplitz operator with symbol ϕ is defined by D(Tϕ) = {f ∈ B⊗H :
ϕf ∈ B ⊗ K} and Tϕf = ϕf for f ∈ D(Tϕ), where (ϕf)(z) = ϕ(z)f(z),
z ∈ Cn. One of the basic questions concerning Toeplitz operators, which
remains unanswered, is whether T ∗ϕ = Πϕ∗ for all analytic symbols ϕ, which
is referred to as the adjointness hypothesis. Some partial positive results were
proved, e.g. for exponential polynomials in the scalar case (H = K = C)
[22] or matrix-valued polynomials in one complex variable [10]. For a more
detailed exposition of this subject see [10].

Our goal is to prove the adjointness hypothesis for special operator-
valued exponential polynomials, i.e. functions of the type

ϕ(z) =
∑

|k|≤N
Akpk(z)eak(z), z ∈ Cn,

where Ak ∈ B(K,H), pk ∈ P and ak ∈ Cn for |k| ≤ N .
We will consider analytic functions ϕ : Cn → B(K,H) which have the

following summability property (SP): given f ∈ D(Tϕ) and g ∈ D(Πϕ∗), the
function

Cn × Cn 3 (z, w) 7→ 〈g(w), ϕ(w)f(z)〉ez·w ∈ C(9)

is summable with respect to µ ⊗ µ. Observe that T ∗ϕ = Πϕ∗ whenever ϕ
satisfies (SP). Indeed, for f ∈ D(Tϕ) and g ∈ D(Πϕ∗) we can write

〈Tϕf, g〉(H) =
�

Cn
〈f(z), ϕ(z)∗g(z)〉 dµ(z)

=
�

Cn

�

Cn
〈f(w), ϕ(z)∗g(z)〉ez·w dµ(w) dµ(z)

F=
�

Cn

�

Cn
〈f(w), ϕ(z)∗g(z)〉ez·w dµ(z) dµ(w)

= 〈f,Πϕ∗g〉(H),
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where “F=” denotes an application of the Fubini theorem, which is possible
by (SP).

It now remains to prove (SP) for the class of exponential polynomials.
Recall that a family {Aı}ı∈I of bounded operators on H is called jointly
subnormal if there exists a family {Bı}ı∈I of normal commuting bounded
operators on a larger Hilbert space K containing H as a closed subspace
such that Aı = Bı|H for all ı ∈ I. Note that by the minimality condition on
K, if I is finite and H is separable, then K can be chosen to be separable,
too.

Proposition 9. Suppose that ϕ(z) =
∑
|k|≤N Akpk(z)eak(z), z ∈ Cn,

pk ∈ P and Ak ∈ B(H) are jointly subnormal. Then ϕ satisfies (SP).

Proof. Let f and g be as in (9). The change of variables w = z+a yields
�

Cn
|〈g(w), ϕ(w)f(z)〉ez·w| dµ(w) =

�

Cn
|〈g(z + a), ϕ(z + a)f(z)〉e−z·a| dµ(a).

Thus

J :=
�

Cn

�

Cn
|〈g(w), ϕ(w)f(z)〉ez·w| dµ(w) dµ(z)

≤
�

Cn
‖g(·+ a)e−a(·)‖(H)‖ϕ(·+ a)f(·)‖(H) dµ(a).

But ‖g(·+ a)e−a(·)‖(H) = e‖a‖
2/2‖g‖(H), which implies that

J ≤ ‖g‖(H)

�

Cn
‖ϕ(·+ a)f(·)‖(H)e

‖a‖2/2 dµ(a).

Let {Bk}|k|≤N ⊆ B(K) be a family of normal commuting operators such
that Ak = Bk|H. Put ψ(z) :=

∑
|k|≤N Bkpk(z)eak(z), z ∈ Cn. Observe

that every ψ(z) is a normal operator, z ∈ Cn. Moreover, f ∈ D(Tψ) and
‖ψ(· + a)f(·)‖(K) = ‖ϕ(·+ a)f(·)‖(H), since ϕ(z)h = ψ(z)h for z ∈ Cn and
h ∈ H. Thus, in order to prove that J <∞ we have to show that

�

Cn
‖ψ∗(·+ a)f(·)‖(K)e

‖a‖2/2 dµ(a) <∞.(10)

Let G(z, w) := ez·w � Cn ψ(ζ)∗f(ζ)ez·ζ+w·ζ dµ(ζ). According to Theorem 8 we
know that � Cn � Cn ‖G(z, w)‖2 dµ(z) dµ(w) = ‖ψ∗f‖2(K) < ∞. Fix h ∈ K and
compute

〈G(z, w), h〉 = e−z·w〈few, ψhez〉(K) = e−z·w〈f, P ⊗ I(ewψhez)〉(K).

By the reproducing property of B ⊗ K,

P ⊗ I(ewψhez)(ζ) =
�

Cn
ψ(t)het·ze(w+ζ)·t dµ(t) = ψ(w + ζ)he(w+ζ)·z
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for ζ ∈ Cn, which implies that

G(z, w) =
�

Cn
ψ(w + ζ)∗f(ζ)ez·ζ dµ(ζ)

=
∑

|k|≤N

�

Cn
pk(w + ζ)e(w+ζ)·akB∗kf(ζ)ez·ζ dµ(ζ)

=
∑

|k|≤N

∑

l≥0

�

Cn
eak·w

(Dlp#
k )(w)
l!

ζ
l
B∗kf(ζ)e(z+ak)·ζ dµ(ζ)

=
∑

|k|≤N

∑

l≥0

eak·w
(Dlp#

k )(w)
l!

B∗k(Dlf)(z + ak)

for all z, w ∈ Cn (apply Lemma 1).
For fixed k choose a maximal linearly independent set of functions con-

tained in {Dlp#
s : l ≥ 0, as = ak}; denote it by {pkj : j = 1, . . . , Nk}. Note

that we can write

G(z, w) =
∑

|k|≤N

Nk∑

j=1

eak·wpkj(w)Fkj(z), z, w ∈ Cn,(11)

where every Fkj(·) is a linear combination of properly chosenB∗s (Dlf)(·+as).
We intend to show that each Fkj belongs to B ⊗ K. We first prove that⋃
|k|≤N{eakpkj : j = 1, . . . , Nk} is a set of linearly independent vectors.

Suppose that
∑

|k|≤N

Nk∑

j=1

λkjeakpkj = 0

with some λkj ∈ C. Hence
∑
|k|≤N eakqk = 0, where qk :=

∑Nk
j=1 λkjpkj . This

implies that qk = 0 for all k, which holds true in all generality with arbitrary
polynomials qk (the details are left to the reader). By definition of pkj we
see that all λkj must vanish.

Fix k and j. Then one can construct a function hkj ∈ B such that
‖hkj‖ = 1, hkj ⊥ easpst if (k, j) 6= (s, t), and 〈hkj , eakpkj〉 > 0. Let ε ∈ K be
an arbitrary vector with norm less than one. We infer that

�

Cn
‖G(z, w)‖2 dµ(w) ≥ |〈G(z, ·), hkj(·)ε〉(K)|2

=
∣∣∣

�

Cn

∑

|s|≤N

Ns∑

t=1

eas(w)pst(w)hkj(w)〈Fkj(z), ε〉 dµ(w)
∣∣∣
2

≥ 〈eakpkj , hkj〉2|〈Fkj(z), ε〉|2,
so it follows that Fkj ∈ B ⊗K.
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We now turn to the estimation of ‖ψ(· + a)∗f(·)‖(K). Put G̃(z, w) =

e−z·w � Cn ψ(ζ+a)∗f(ζ)ez·ζ+w·ζ dµ(ζ). Repeating the argument for G, we can
write

G̃(z, w) =
∑

|k|≤N

Nk∑

j=1

eak·(w+a)pkj(w + a)Fkj(z), z, w ∈ Cn,

with pkj and Fkj as in (11). This implies that the growth of ‖ψ(·+a)∗f(·)‖(K)
is at most exponential in a, so the integral in (10) is finite.

Note that the above proof gives a slight strengthening of (SP), because
we have used only the fact that g ∈ B ⊗ H. Presumably, finding a method
of recovering some information on g which satisfies g ∈ D(Πϕ∗) would lead
to progress in proving (or disproving) the adjointness hypothesis in a wider
class of symbols ϕ.

We conclude the paper with a nice description of T ∗ϕ for exponential
polynomials. Let (Eaf)(z) = f(z + a) for f : Cn →H and a ∈ Cn.

Corollary 10. Let ϕ be as in Proposition 9. Then

T ∗ϕf =
∑

|k|≤N
Eakp

#
k (D)A∗kf, f ∈ D(T ∗ϕ),(12)

and D(T ∗ϕ) coincides with the space of those f ∈ B ⊗H for which the right-
hand side of (12) lies in B ⊗H.

Proof. Let f ∈ D(Πϕ∗) and h ∈ H. Applying Lemma 1 we get

〈Πϕ∗f(z), h〉 =
�

Cn
〈f(ζ), ϕ(ζ)h〉ez·ζ dµ(ζ)

=
∑

|k|≤N

�

Cn
pk(ζ)〈f(ζ), Akh〉e(z+ak)·ζ dµ(ζ)

=
〈 ∑

|k|≤N
Eakp

#
k (D)A∗kf(z), h

〉

for z ∈ Cn. By Proposition 9 the result follows.
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