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Dual spaces to Orlicz–Lorentz spaces
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Abstract. For an Orlicz function ϕ and a decreasing weight w, two intrinsic exact
descriptions are presented for the norm in the Köthe dual of the Orlicz–Lorentz function
space Λϕ,w or the sequence space λϕ,w, equipped with either the Luxemburg or Amemiya
norms. The first description is via the modular inf{

	
ϕ∗(f

∗/|g|)|g| : g≺w}, where f∗ is the
decreasing rearrangement of f , ≺ denotes submajorization, and ϕ∗ is the complementary
function to ϕ. The second description is in terms of the modular

	
I
ϕ∗((f

∗)0/w)w, where
(f∗)0 is Halperin’s level function of f∗ with respect to w. That these two descriptions are
equivalent results from the identity inf{

	
ψ(f∗/|g|)|g| : g ≺ w} =

	
I
ψ((f∗)0/w)w, valid

for any measurable function f and any Orlicz function ψ. An analogous identity and dual
representations are also presented for sequence spaces.

1. Introduction. The main goal of the paper is to give an isometric
description of the Köthe dual space of the Orlicz–Lorentz space Λϕ,w, where
ϕ is an Orlicz function and w is a decreasing locally integrable weight func-
tion. Orlicz–Lorentz spaces have been studied extensively for the past two
decades, since when their basic properties were established in [7]. So far,
however, no satisfactory isometric description of their dual spaces has been
given. There are several different isomorphic representations of the Köthe
dual space (Λϕ,w)′ given for example in [6] or [8]. Problem XIV in [3] asks
for an isometric representation of (Λϕ,w)′.

Orlicz–Lorentz spaces can be treated as a special case of more gen-
eral Calderón–Lozanovskĭı spaces. Lozanovskĭı [18] (see also [13]–[17], [20]
and [21]) proved a duality theorem, which in particular can be applied to
Orlicz–Lorentz spaces. However his original formulas are too general and not
explicit enough for application in the setting of Lorentz type spaces. Here
we show that Lozanovskĭı’s formulas for dual norms and Köthe dual spaces
can be expressed in terms of the recently introduced modular Pϕ,w and the
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corresponding modular space Mϕ,w (see [9]). In fact Mϕ,w = {f ∈ L0 :
Pϕ,w(λf) <∞ for some λ > 0}, where L0 is the space of Lebesgue measur-
able real functions on I = [0, α) and

Pϕ,w(f) = inf
{�
I

ϕ(f∗/|g|)|g| : g ≺ w
}
.

The notation g ≺ w means that g is submajorized by w, that is,
	t
0 g
∗ ≤

	t
0w

for all t ∈ I.
In the case ϕ(u) = up, 1 < p < ∞, when Λϕ,w becomes the classical

Lorentz space Λp,w, a different explicit isometric description of its dual was
given by Halperin [4]. He introduced the notion of level intervals and level
functions with respect to w, and applied them to obtain a formula for the
norm of the dual space. Here we study level functions and modulars in the
environment of Orlicz–Lorentz spaces, which allows us to extend Halperin’s
theorem to those spaces.

Consequently, we give two different isometric representations of dual
spaces of Orlicz–Lorentz spaces, one by means of submajorization by the
weight w, and the other by level functions with respect to w. They are valid
for both function and sequence spaces.

The paper is organized as follows. In Section 1 we give basic notations
and notions needed further. Among others we define Calderón–Lozanovskĭı
spaces and Orlicz–Lorentz spaces equipped with the standard Amemiya and
Luxemburg norms.

In Section 2 we recall the definition of the function space Mϕ,w and
then applying the general duality theorem of Lozanovskĭı, we prove that the
Köthe dual space (Λϕ,w)′ isMϕ∗,w with equality of norms. In the case when
the space Λϕ,w is separable, it is also an isometric representation of its dual
space. This representation is given for both the Amemiya and Luxemburg
norms.

Section 3 is devoted to a number of specific properties of the modular
Pϕ,w(f). A sequence of technical results leads to the main theorem describing
an algorithm for calculating the infimum in the formula for Pϕ,w(f) when f
is a simple decreasing function. This is Theorem 3.9 which states that the
function gf produced by Algorithm A minimizes the modular Pϕ,w(f). It is
interesting to observe that gf depends only on f and w, but not on ϕ.

In Section 4 we give another isometric representation of the Köthe dual
spaces using the so called level functions f0 with respect to w, introduced
by Halperin [4]. Applying the results of the previous section, in particular
Algorithm A, we first prove that Pϕ,w(f) =

	
I ϕ(f/gf )gf =

	
ϕ(f0/w)w for

a decreasing simple function f . In the next step we extend this result to
any f ∈ Λϕ,w, which in fact yields the second duality theorem. Theorem 4.8
summarizes all Köthe duality formulas for the function space Λϕ,w equipped
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with either the Amemiya or Luxemburg norm. Halperin’s duality result for
Λp,w, 1 < p <∞, is then a corollary from Theorem 4.8.

In the last fifth section we present analogous results for Orlicz–Lorentz
sequence spaces λϕ,w. We show first that the sequence spaces as well as their
Köthe dual spaces can be isometrically embedded into appropriate Orlicz–
Lorentz function spaces. Next applying the results of the previous sections
for function spaces we quickly obtain the analogous isometric representations
of the dual spaces of λϕ,w in terms of the sequence spaces mϕ∗,w introduced
in [9] as well as in terms of the spaces generated by ϕ∗, w and level sequences.

Let us agree first on the notation and basic notions used in this paper.
We denote by ϕ an Orlicz function, that is, ϕ : [0,∞)→ [0,∞), ϕ(0) = 0, ϕ
is convex and ϕ is strictly increasing. Let ϕ∗ be the complementary function
to ϕ, that is, ϕ∗(s) = supt≥0{st−ϕ(t)}, s ≥ 0. We denote by ϕ−1 the inverse
function to ϕ. We say that ϕ is an N -function whenever limt→0+ ϕ(t)/t = 0
and limt→∞ ϕ(t)/t =∞. It is well known that ϕ∗ is an N -function whenever
ϕ is [10]. Recall also that the function t 7→ ϕ(a/t)t is decreasing and convex
on (0,∞) for every a > 0. The first property results from ϕ(t)/t being
increasing for t > 0, while for the second one we see, by convexity of ϕ, that
for any t1, t2 ≥ 0,

ϕ

(
2a

t1 + t2

)
t1 + t2

2
= ϕ

(
at1

(t1 + t2)t1
+

at2
(t1 + t2)t2

)
t1 + t2

2

≤ t1
2
ϕ

(
a

t1

)
+
t2
2
ϕ

(
a

t2

)
.

This also shows that t 7→ ϕ(a/t)t is strictly convex if ϕ is strictly convex.
We say that ϕ satisfies the ∆2-condition for all arguments, respectively for
large arguments, whenever ϕ(2u) ≤ Kϕ(u) for all u ≥ 0, respectively for all
u ≥ u0 and some u0 ≥ 0.

Given an Orlicz function ϕ, define its associated Calderón–Lozanovskĭı
function as

(1.1) ρ(t, s) = ρϕ(t, s) = ϕ−1(s/t)t, s ≥ 0, t > 0,

and the conjugate function to ρ as

ρ̂(t, s) = ρ̂ϕ(t, s) = inf
u,v>0

us+ vt

ρ(u, v)
, s, t ≥ 0.

It is well known that the function ρϕ(t, s) is concave on (0,∞) × [0,∞).
Moreover, if ϕ is an N -function then

(1.2) ρ̂ϕ(t, s) = ϕ−1
∗ (t/s)s, t ≥ 0, s > 0,

(see [17, Example 3], or [21, Example 7]).
Let further I = [0, α) where 0 < α ≤ ∞, and let | · | be the Lebesgue

measure on I. Denote by L0 the set of all Lebesgue measurable real-valued
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functions on I. Given f ∈ L0 define its distribution function as

df (λ) = |{t ∈ I : |f(t)| > λ}|, λ ≥ 0,

and its decreasing rearrangement f∗ as

f∗(t) = inf{λ > 0 : df (λ) ≤ t}, t ∈ I.
Here decreasing or increasing means non-increasing or non-decreasing, re-
spectively. We say that f ∈ L0 is submajorized by g ∈ L0 and we write

f ≺ g whenever
t�

0

f∗ ≤
t�

0

g∗ for every t ∈ I.

For any decreasing locally integrable function h let

H(t) =

t�

0

h, t ∈ I.

A Banach space (E, ‖ · ‖E) is called a Banach function space (or a Köthe
space) if E ⊂ L0 and whenever f ∈ L0, g ∈ E and |f | ≤ |g| a.e. then f ∈ E
and ‖f‖E ≤ ‖g‖E . We will also assume that each Banach function space
contains a weak unit, i.e. there is f ∈ E such that f(t) > 0 for a.a. t ∈ I. We
denote by E′ the Köthe dual space to E, which consists of all f ∈ L0 such
that ‖f‖E′ = sup{

	
I fg : ‖g‖E ≤ 1} < ∞. The space E′ equipped with the

norm ‖·‖E′ is a Banach function space. It is well known that E′ is non-trivial
and contains a weak unit [24, Ch. 15, §71, Theorem 4(a)].

Given a Calderón–Lozanovskĭı function ρ and a couple of Banach function
spaces E,F , the Calderón–Lozanovskĭı space is defined as

ρ0(E,F ) = {f ∈ L0 : ‖f‖0ρ = inf{‖g‖E + ‖h‖F : |f | = ρ(|g|, |h|)} <∞},
ρ(E,F ) = {f ∈ L0 : ‖f‖ρ = inf{max(‖g‖E , ‖h‖F ) : |f | = ρ(|g|, |h|)} <∞}.
Recall that the spaces ρ0

ϕ(L∞, L1) and ρϕ(L∞, L1) coincide isometrically
with the Orlicz space Lϕ equipped with its Amemiya and Luxemburg norm
respectively [18]. Moreover, in the above definitions one may take equiva-
lently |f | ≤ ρ(|g|, |h|) instead of |f | = ρ(|g|, |h|). In fact it is enough to
apply Lemma 1 from [21], which states that if ‖g‖E , ‖h‖F ≤ 1 are such that
0 ≤ f ≤ ρ(g, h), then there exist 0 ≤ g1 ≤ g and 0 ≤ f1 ≤ f satisfying
f = ρ(g1, h1). It is also known [19] that

‖f‖ρ(E,F ) = inf{C > 0 : |f | ≤ Cρ(|g|, |h|), ‖g‖E ≤ 1, ‖h‖F ≤ 1}
= inf{C > 0 : |f | = Cρ(|g|, |h|), ‖g‖E ≤ 1, ‖h‖F ≤ 1}.

Both spaces ρ(E,F ) and ρ0(E,F ) coincide as sets, and the norms ‖ · ‖ρ and
‖·‖0ρ are equivalent. The spaces ρ̂(E,F ), ρ̂0(E,F ) are defined analogously to
ρ(E,F ) and ρ0(E,F ) with ρ replaced by ρ̂. Moreover, the notation ρϕ(E,F )
stands for the function ρ = ρϕ defined by (1.1).
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Let w be a weight function on I, that is, w ∈ L0, w is positive and
decreasing on I, and locally integrable, i.e. W (t) =

	t
0w <∞, t ∈ I. Denote

W (∞) =
	∞
0 w when α =∞. The Lorentz space Λw is classically defined as

Λw =
{
f ∈ L0 : ‖f‖Λw =

�

I

f∗w =
�

I

f∗ dW <∞
}
,

and the Marcinkiewicz space MW is

MW =
{
f ∈ L0 : ‖f‖MW

= sup
t∈I

( t�
0

f∗/W (t)
)
<∞

}
.

Both are Banach function spaces and each is the Köthe dual space of the
other [11]. Note that ‖f‖MW

≤ 1 if and only if f ≺ w. Let ϕ be an Orlicz
function and w a decreasing weight function on I. Then the Orlicz–Lorentz
space [7] is the set

Λϕ,w = {f ∈ L0 : ∃λ>0 Iϕ,w(λf) <∞},
where Iϕ,w(f) =

	
I ϕ(f∗)w. It is equipped with either the Luxemburg norm

‖f‖Λ = inf{ε > 0 : Iϕ,w(f/ε) ≤ 1},
or the Amemiya norm

‖f‖0Λ = inf
k>0

1

k
(1 + Iϕ,w(kf)).

We denote by Λϕ,w the Orlicz–Lorentz space equipped with the Luxemburg
norm ‖ · ‖Λ, and by Λ0

ϕ,w the same space equipped with the Amemiya norm
‖ · ‖0Λ. Orlicz–Lorentz spaces are Calderón–Lozanovskĭı spaces relative to the
couple (L∞, Λw), and we have

(1.3) Λϕ,w = ρϕ(L∞, Λw), Λ0
ϕ,w = ρ0

ϕ(L∞, Λw)

with equality of norms. The first equality may be found in [19] (cf. [5] and
[6]). As for the second, letting f ∈ ρ0

ϕ(L∞, E), we have

‖f‖0ρϕ(L∞,E) = inf{‖x‖E + ‖y‖L∞ : |x| = |y|ϕ(|f |/|y|)}

= inf
k>0

{
inf{‖ |y|ϕ(|f |/|y|)‖E + ‖y‖L∞ : ‖y‖L∞ = k}

}
= inf

k>0
{‖kϕ(|f |/k)‖E + k} = inf

k>0

1

k
(‖ϕ(k|f |)‖E + 1),

where the third equality is a consequence of |y| ≤ ‖y‖L∞ and the monotonic-
ity of s 7→ sϕ(a/s). The desired equality follows for E = Λw.

2. The dual space of an Orlicz–Lorentz space. In this section we
will show that the Köthe dual spaces to the Orlicz–Lorentz spaces Λϕ,w and
Λ0
ϕ,w coincide isometrically withM0

ϕ∗,w andMϕ∗,w, respectively. The spaces
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Mϕ,w have been recently introduced in [9]. Given an Orlicz function ϕ and
a weight w let

Mϕ,w = {f ∈ L0 : ∃λ>0 Pϕ,w(λf) <∞},

where the modular Pϕ,w is defined as

Pϕ,w(f) = inf

{ �

I

ϕ

(
f∗

|g|

)
|g| : g ≺ w

}
= inf

{∥∥∥∥ϕ(f∗|g|
)
g

∥∥∥∥
1

: g ≺ w
}
.

Here and further, we denote by ‖ · ‖1 the norm in the space L1 of integrable
functions on I. To avoid any ambiguity in the definition of Pϕ,w let us agree
that for any measurable functions f, g ≥ 0 on I, if g(t) = 0 then

ϕ

(
f(t)

g(t)

)
g(t) =

{
0 if f(t) = 0,
∞ if f(t) 6= 0.

It is also worth observing that

(2.1) Pϕ,w(f) = inf

{∥∥∥∥ϕ(f∗|g|
)
g

∥∥∥∥
1

: ‖g‖W = 1

}
.

In fact by convexity of ϕ one has 1
aϕ(at) ≤ ϕ(t) for each t > 0 and 0 < a ≤ 1.

Therefore, if ‖g‖MW
= a < 1 then∥∥∥∥ϕ(af∗|g|

)
g

a

∥∥∥∥
1

≤
∥∥∥∥ϕ(f∗|g|

)
g

∥∥∥∥
1

.

We introduce two equivalent norms onMϕ,w. The first one is of Luxemburg
type,

‖f‖M = ‖f‖Mϕ,w = inf{λ > 0 : Pϕ,w(f/λ) ≤ 1},

and the second one is of Amemiya type,

‖f‖0M = ‖f‖0Mϕ,w
= inf

k>0

1

k
(Pϕ,w(kf) + 1).

We denote byMϕ,w the space equipped with the norm ‖ · ‖M, and byM0
ϕ,w

the same space endowed with the norm ‖ · ‖0M. Our first result expresses
the spacesMϕ,w andM0

ϕ,w as Calderón–Lozanovskĭı spaces relative to the
couple (MW , L

1).

Proposition 2.1. Let ϕ be an N -function. Then

ρϕ(MW , L
1) =Mϕ,w, ρ0

ϕ(MW , L
1) =M0

ϕ,w,

ρ̂ϕ(L1,MW ) =Mϕ∗,w, ρ̂0
ϕ(L1,MW ) =M0

ϕ∗,w,

with equality of norms.
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Proof. Let f ∈ ρϕ(MW , L
1). Then

‖f‖ρϕ(MW ,L1)

= ‖f∗‖ρϕ(MW ,L1) = inf
{

max{‖g‖MW
, ‖h‖1} : f∗ = ρϕ(|g|, |h|)

}
= inf{C > 0 : f∗ = Cρϕ(|g|, |h|), ‖g‖MW

≤ 1, ‖h‖1 ≤ 1}

= inf

{
C > 0 : ϕ

(
f∗

C|g|

)
|g| = |h|, ‖g‖MW

≤ 1, ‖h‖1 ≤ 1

}
= inf

{
C > 0 :

∥∥∥∥ϕ( f∗

C|g|

)
g

∥∥∥∥
1

≤ 1, ‖g‖MW
≤ 1

}
= inf

{
C > 0 : inf

{∥∥∥∥ϕ( f∗

C|g|

)
g

∥∥∥∥
1

: g ≺ w
}
≤ 1

}
= ‖f‖Mϕ,w .

Applying (2.1) we also get the second of the first two equalities:

‖f‖0ρϕ(MW ,L1) = ‖f∗‖0ρϕ(MW ,L1) = inf{‖g‖MW
+ ‖h‖1 : f∗ = ρϕ(|g|, |h|)}

= inf

{
‖g‖MW

+

∥∥∥∥ϕ(f∗|g|
)
g

∥∥∥∥
1

: g ∈MW

}
= inf

k>0

{
inf

{
k +

∥∥∥∥ϕ( f∗

k|g|

)
kg

∥∥∥∥
1

: ‖g‖MW
= 1

}}
= inf

k>0

{
inf

{
k +

∥∥∥∥ϕ( f∗

k|g|

)
kg

∥∥∥∥
1

: ‖g‖MW
≤ 1

}}
= inf

k>0

1

k
(Pϕ,w(kf) + 1) = ‖f‖0Mϕ,w

.

The remaining equalities are proved analogously by (1.2).

Now we are ready to state an isometric characterization of the (Köthe)
dual spaces of Orlicz–Lorentz spaces.

Theorem 2.2. Let w be a decreasing weight and ϕ be an N -function.
Then:

(1) The Köthe dual spaces to the Orlicz–Lorentz spaces Λϕ,w and Λ0
ϕ,w

are
(Λϕ,w)′ =M0

ϕ∗,w and (Λ0
ϕ,w)′ =Mϕ∗,w,

with equality of norms.
(2) Let ϕ satisfy the appropriate ∆2-condition, that is: (i) for large argu-

ments if I = [0, α) with α < ∞; (ii) for all arguments if I = [0,∞)
and W (∞) =∞. Then the dual spaces (Λϕ,w)∗ and (Λ0

ϕ,w)∗ are iso-
metrically isomorphic to the respective Köthe dual spaces. In fact
for any functional Φ ∈ (Λϕ,w)∗ (resp., Φ ∈ (Λ0

ϕ,w)∗) there exists
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φ ∈M0
ϕ∗,w (resp., φ ∈Mϕ∗,w) such that

Φ(f) =
�

I

fφ, f ∈ Λϕ,w,

and ‖Φ‖(Λϕ,w)∗ = ‖φ‖0Mϕ∗,w
(resp., ‖Φ‖(Λ0

ϕ,w)∗ = ‖φ‖Mϕ∗,w).

Proof. By Lozanovskĭı’s representation theorem [18], for any Banach
function spaces E,F we have

(ρ(E,F ))′ = ρ̂0(E′, F ′) and (ρ0(E,F ))′ = ρ̂(E′, F ′),

with norm equalities. Notice that (Λw)′ = MW . This was proved in [11,
Theorem 5.2, p. 112] under the assumption that W (∞) = ∞ in the case of
I = [0,∞), but the same proof works for any decreasing locally integrable
weight function w. Thus by (1.2), (1.3) and Proposition 2.1 we get

(Λϕ,w)′ = (ρ(L∞, Λw))′ = ρ̂0(L1,MW ) =M0
ϕ∗,w.

The second equality of (1) can be shown analogously.
The second statement follows from the well known fact that Orlicz–

Lorentz spaces are order continuous [7] under the appropriate ∆2-condition,
and the general theorem stating that the Köthe dual space E′ of an order
continuous Banach function space E is isometrically isomorphic via integral
functionals to the dual space E∗ [1, Theorem 4.1, p. 20].

3. An algorithm for computing Pϕ,w(f) for a decreasing simple
function f . In this section our goal is to find a function g which minimizes
Pϕ,w(f) for a given decreasing simple function f =

∑n
i=1 aiχ[ti−1,ti) with

a1 > · · · > an > 0 and 0 = t0 < t1 < · · · < tn <∞. This process consists of
several steps and leads to an algorithm which reveals that such a function g
exists and depends only on f and w, but not on ϕ.

First in Lemma 3.1 we show that the minimizing function g has to be
also simple and decreasing. In the second step in Lemma 3.3 we show that
such a g exists. Next, in Lemma 3.4 it is proved that G(tn) = W (tn), and
then Theorem 3.7 demonstrates that

g =

m−1∑
j=0

λjfχ[tij ,tij+1
)

for some (λi)
m−1
j=0 , (tij )

m−1
j=0 and m ≤ n, where W (tij ) = G(tij ). This shows

that g has to be piecewise proportional to f and the ratios λj are determined
by the points tij . Therefore in order to find g it is sufficient to determine
the points tij . This process will be described by Algorithm A. Applying
finally Theorem 3.7 and Lemma 3.6, we finish by proving that Algorithm A
produces a function g that minimizes Pϕ,w(f).
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Lemma 3.1. If f =
∑n

i=1 aiχAi where a1 > · · · > an > 0 and Ai =
[ti−1, ti) with 0 = t0 < t1 < · · · < tn <∞, then

(3.1) Pϕ,w(f) = inf

{
‖ϕ(f/g)g‖1 : g ≺ w,
and g =

∑n
i=1 biχAi with b1 ≥ · · · ≥ bn > 0

}
.

Proof. Let f =
∑n

i=1 aiχAi satisfy the assumptions. Corollary 4.5 in [9]
states that

Pϕ,w(f) = inf{‖ϕ(f/g)g‖1 : g ≺ w, 0 ≤ g ↓},
where g ↓ means that g is decreasing. Fix some g ≺ w, g ↓ and put

h = ϕ

(
f

g

)
g and h̃ = ϕ

(
f

Tg

)
Tg,

where

T : g 7→
n∑
i=1

(
1

|Ai|

�

Ai

g

)
χAi .

Since g is decreasing, so is Tg. Hence it is enough to show that ‖h̃‖1 ≤ ‖h‖1
and Tg ≺ w.

By Proposition 3.7 in [1, Chap. 2] we have Tg ≺ g and so Tg ≺ w. By
convexity of the function s 7→ ϕ(a/s)s, a > 0, and Jensen’s inequality for
convex functions we have, for every i = 1, . . . , n,

ϕ

(
ai

(1/|Ai|)
	
Ai
g

)
1

|Ai|

�

Ai

g ≤ 1

|Ai|

�

Ai

ϕ

(
ai
g

)
g,

which gives

‖h̃‖1 =

n∑
i=1

|Ai|ϕ
(

ai
(1/|Ai|)

	
Ai
g

)
1

|Ai|

�

Ai

g ≤
n∑
i=1

�

Ai

ϕ

(
ai
g

)
g = ‖h‖1,

and the proof is finished.

Lemma 3.2. Suppose that g = g∗ =
∑n

i=1 biχ[ti−1,ti) where 0 = t0 < t1 <
· · · < tn <∞. Then

inf
0<t≤tn

W (t)

G(t)
= min

i=1,...,n

W (ti)

G(ti)
.

In particular, g ≺ w if and only if G(ti) ≤W (ti) for each i = 1, . . . , n.

Proof. The left-hand side is clearly majorized by the right-hand side.
Conversely, if for some θ ≥ 0,

W (ti) ≥ θG(ti), i = 1, . . . , n,

which remains trivially true for i = 0, then by concavity of W and the fact
that G is affine on each segment [ti, ti+1], we have, for every λ ∈ [0, 1] and
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i = 0, . . . , n− 1,

W ((1− λ)ti + λti+1) ≥ (1− λ)W (ti) + λW (ti+1)

≥ (1− λ)θG(ti) + λθG(ti+1) = θG((1− λ)ti + λti+1),

which proves the converse inequality.

Lemma 3.3. Let ϕ be an N -function. Then for a simple function f =∑n
i=1 aiχAi such that a1 > · · · > an > 0 and Ai = [ti−1, ti) where 0 = t0 <

t1 < · · · < tn < ∞, there exists g =
∑n

i=1 biχAi with b1 ≥ · · · ≥ bn > 0,
‖g‖MW

= 1 and such that Pϕ,w(f) = ‖ϕ(f/g)g‖1. Consequently, the infimum
in the definition of Pϕ,w(f) is attained.

Proof. In fact, by Lemma 3.1 the above infimum may be taken over
g =

∑n
i=1 biχAi with b1 ≥ · · · ≥ bn > 0 such that g ≺ w. By Lemma 3.2

the condition g ≺ w is equivalent to G(tk) =
∑k

i=1 bi|Ai| ≤ W (tk) for each
k = 1, . . . , n. But those constraints define the set

C =
{
b = (bi)

n
i=1 : b1 ≥ · · · ≥ bn > 0,

k∑
i=1

bi|Ai| ≤W (tk), k = 1, . . . , n
}
,

which is relatively compact in Rn. Hence if the sequence (bk) = (bki )
n,∞
i,k=1 ⊂

Rn is minimizing for the infimum in (3.1), then there is a subsequence (bkj )
such that bkj → b ∈ C̄, where C̄ denotes the closure of C in Rn.

Let us show that b ∈ C. Indeed, if b ∈ C̄ \ C then bi = 0 for some
i = 1, . . . , n, which means that bkji → 0 if j →∞. Setting gkj =

∑n
i=1 b

kj
i χAi ,

since ϕ is an N -function we get, for j →∞,∥∥∥∥ϕ( f

gkj

)
gkj

∥∥∥∥
1

≥ ϕ
(
ai

b
kj
i

)
b
kj
i |Ai| → ∞,

so (bkj ) cannot be minimizing for the relevant infimum, a contradiction.

Example. We present an example which shows that for decreasing
simple functions f the functions g that minimize Pϕ,w(f) depend on f .

Let ϕ(t) = t2, w(t) = 1/(2
√
t), t > 0. Define the family of functions

fx := xχ(0,1) + 1χ(1,4) on (0,∞) for x ≥ 1. Then by Lemmas 3.1–3.3,

Pϕ,w(fx) = min

{
x2/b1 + 3/b2 : g = b1χ[0,1) + b2χ[1,4)

with 1 ≥ b1 ≥ b2 and b1 + 3b2 = 2

}
.

Applying Lagrange multipliers to minimize the function ψ(b1, b2) = x2/b1 +
3/b2 with constraint b1 + 3b2 = 2 gives the solution b1 = 2x/(x + 3), b2 =
2/(x+ 3). We have b1 ≥ b2 for x ≥ 1. Moreover, if 1 ≤ x ≤ 3 then b1 ≤ 1. If
x ≥ 3 then there is no extremum in the set defined by the constraints 1 ≥
b1 ≥ b2 and b1 + 3b2 = 2, so ψ attains its minimum at (1, 1/3) or (1/2, 1/2).
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Finally, we get

Pϕ,w(fx) =

{
x(x+ 3)/2 + 3(x+ 3)/2 for 1 ≤ x ≤ 3,
x2 + 9 for x ≥ 3,

and it is clear that g cannot be chosen independently of fx.

Lemma 3.4. Let ϕ be an N -function. Let f =
∑n

i=1 aiχAi for some ai
with a1 > · · · > an > 0 and Ai = [ti−1, ti) where 0 = t0 < t1 < · · · < tn <∞.
If g =

∑n
i=1 biχAi = g∗ is a minimizing function for Pϕ,w(f) then

(3.2) G(tn) =

tn�

0

g =

tn�

0

w = W (tn).

Proof. One may assume that ‖g‖MW
= 1. By Lemma 3.3 we also have

b1 ≥ · · · ≥ bn > 0, so g > 0 on [0, tn). Suppose g does not satisfy (3.2), that
is, G(tn) < W (tn). We will then find a new function h such that h ≺ w and
‖ϕ(f/h)h‖1 < ‖ϕ(f/g)g‖1, contradicting the minimality of g.

In fact, by Lemma 3.2, ‖g‖MW
= 1 is equivalent to

1 = sup
tn≥t>0

G(t)

W (t)
= inf

tn≥t>0

W (t)

G(t)
= min

i=1,...,n

W (ti)

G(ti)
.

It follows that {i > 0 : W (ti) = G(ti)} 6= ∅. Let

i1 = max{i > 0 : W (ti) = G(ti)} and γ1 = min
i1<i≤n

W (ti)−W (ti1)

G(ti)−G(ti1)
.

Since G(tn) < W (tn) we have i1 < n. Then W (ti) > G(ti) for all i > i1, and
thus it is clear that γ1 > 1. Set

g1 = gχ[0,ti1 ) + γ1gχ[ti1 ,tn).

Note that g1 = g∗1. In fact, since g is decreasing, it is sufficient to show that
bi1 ≥ γ1bi1+1. We have G(ti1) = G1(ti1) = W (ti1) and G1(ti1+1) ≤W (ti1+1)
by definition of γ1. Then

w(ti1)(ti1+1 − ti1) ≥W (ti1+1)−W (ti1)

≥ G1(ti1+1)−G1(ti1) = γ1bi1+1(ti1+1 − ti1).

On the other hand, G(ti1−1) = G1(ti1−1) ≤W (ti1−1), so

bi1(ti1 − ti1−1) = G1(ti1)−G1(ti1−1)

≥W (ti1)−W (ti1−1) ≥ w(ti1)(ti1 − ti1−1).

Therefore bi1 ≥ w(ti1) ≥ γ1bi1+1.
We also have g1 ≺ w. Indeed, in view of Lemma 3.2 and the definition of

i1 it is enough to check that G1(ti) ≤W (ti) for i > i1. We have

G1(ti) = G(ti1) + γ1(G(ti)−G(ti1))

≤ G(ti1) +
W (ti)−W (ti1)

G(ti)−G(ti1)
(G(ti)−G(ti1)) = W (ti).
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However, ‖ϕ(f/g1)g1‖1 < ‖ϕ(f/g)g‖1 in view of g1 ≥ g and g1 6= g and
the fact that ϕ(a/t)t is a strictly decreasing function of t for each a > 0 (by
the assumption that ϕ is an N -function). This contradicts the fact that g
realizes the infimum in the definition of Pϕ,w(f).

Lemma 3.5. Let ϕ be an N -function. Let f =
∑n

i=1 aiχAi for some ai
with a1 > · · · > an > 0, Ai = [ti−1, ti) where 0 = t0 < t1 < · · · < tn < ∞,
and g =

∑n
i=1 biχAi = g∗ be a minimizing function for Pϕ,w(f). Assume also

that for some k = 1, . . . , n − 1 we have G(tk) = W (tk). Then gχ[0,tk) is a
minimizing function for Pϕ,w(fχ[0,tk)), that is,

‖ϕ(f/g)gχ[0,tk)‖1 = Pϕ,w(fχ[0,tk)),

while

(3.3) ‖ϕ(f/g)gχ[tk,tn)‖1

= inf

{∑n
i=k+1 ϕ(ai/ci)ci|Ai| : ck+1 > · · · > cn > 0,∑j
i=k+1 ci|Ai| ≤W (tj)−W (tk), k < j ≤ n

}
.

Proof. By Lemma 3.3 we have b1 ≥ · · · ≥ bn > 0, and from g ≺ w and
G(tk) = W (tk) we deduce that

j∑
i=k+1

bi|Ai| ≤W (tj)−W (tk), k < j ≤ n.

Note that minimizing (3.3) is equivalent to minimizing Pϕ,wk(fk), where for
t ∈ I we let

fk(t) = (fχ[tk,tn))(t+ tk), wk(t) = (wχ[tk,tn))(t+ tk).

By Lemma 3.3 applied to the interval [0, tn− tk) there is a decreasing simple
function h(1) =

∑n
i=k+1 hiχAi−tk ≺ wk that minimizes Pϕ,wk(fk). On the

other hand, by Lemmas 3.3 and 3.4 applied to [0, tk) there is a decreasing
simple function h(2) =

∑k
i=1 hiχAi ≺ wχ[0,tk) that minimizes Pϕ,w(fχ[0,tk)),

and we have H(2)(tk) =
	tk
0 h(2) = W (tk). Thus

k∑
i=1

ϕ(ai/hi)hi|Ai| = Pϕ,w(fχ[0,tk)) ≤
k∑
i=1

ϕ(ai/bi)bi|Ai|,(3.4)

n∑
i=k+1

ϕ(ai/hi)hi|Ai| = Pϕ,wk(fk) ≤
n∑

i=k+1

ϕ(ai/bi)bi|Ai|,(3.5)

and so

(3.6)
n∑
i=1

ϕ(ai/hi)hi|Ai| ≤
n∑
i=1

ϕ(ai/bi)bi|Ai|.



Dual spaces to Orlicz–Lorentz spaces 241

Now let h :=
∑n

i=1 hiχAi and note that h is decreasing. Indeed, we
will show that hk ≥ hk+1. Since H(tk−1) = H(2)(tk−1) ≤ W (tk−1), and
H(tk) = H(2)(tk) = W (tk) we have

hk|Ak| = H(tk)−H(tk−1) ≥W (tk)−W (tk−1) = wk|Ak|,
while

hk+1|Ak+1| = H(tk+1)−H(tk) =

tk+1−tk�

0

h(1)

≤Wk(tk+1 − tk) = W (tk+1)−W (tk) ≤ wk|Ak+1|,
and thus hk ≥ wk ≥ hk+1. Note also that h ≺ w, since: H(ti) ≤ W (ti),
i = 1, . . . , k, by h(2) ≺ w; H(tk) = H(2)(tk) = W (tk); and H(ti) −H(tk) ≤
W (ti)−W (tk), i = k + 1, . . . , n, in view of h(1) ≺ wk. Then

n∑
i=1

ϕ(ai/hi)hi|Ai| ≥ Pϕ,w(f) =

n∑
i=1

ϕ(ai/bi)bi|Ai|.

Consequently, we have equality in (3.6) and also in both (3.4) and (3.5),
completing the proof.

Lemma 3.6. Let ϕ be a strictly convex N -function. Let f =
∑n

i=1 aiχAi
for some ai with a1 > · · · > an > 0 and Ai = [ti−1, ti) where 0 = t0 <
t1 < · · · < tn < ∞ and g =

∑n
i=1 biχAi with b1, . . . , bn > 0. If g 6= λf for

λ = G(tn)/F (tn) then
‖ϕ(f/g)g‖1 > ‖ϕ(f/[λf ])λf‖1.

Proof. Set λi = bi/ai, i = 1, . . . , n. If all the λi are equal to, say, λ′ then
g = λ′

∑n
i=1 aiχAi = λ′f and G(tn) = λ′F (tn), so λ′ = λ. If g 6= λf , then not

all λi are equal and by Jensen’s inequality and strict convexity of ϕ we have

1

G(tn)

∥∥∥∥ϕ(fg
)
g

∥∥∥∥
1

=

n∑
i=1

ϕ

(
1

λi

)
λiai|Ai|
G(tn)

> ϕ

( n∑
i=1

1

λi

λiai|Ai|
G(tn)

)
= ϕ

(
1

λ

)
=

1

G(tn)
ϕ

(
1

λ

)
‖λf‖1 =

1

G(tn)

∥∥∥∥ϕ( f

λf

)
λf

∥∥∥∥
1

.

Theorem 3.7. Let ϕ be a strictly convex N -function. Let f =
∑n

i=1 aiχAi
for some ai with a1 > · · · > an > 0 and Ai = [ti−1, ti) where 0 = t0 < t1 <
· · · < tn < ∞. If g =

∑n
i=1 biχAi = g∗ is a simple function realizing the

infimum in the definition of Pϕ,w(f) then

(3.7) g =

m−1∑
j=0

λjfχ[tij ,tij+1
)

for some λj, j = 0, 1, . . . ,m− 1, where 0 = i0 < i1 < · · · < im = n and
G(tij ) = W (tij )

for each j = 0, 1, . . . ,m.
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Proof. Let g satisfy the assumptions of the theorem. By Lemma 3.3 we
have b1 ≥ · · · ≥ bn > 0, and by Lemma 3.4, G(tn) = W (tn). Define a finite
sequence (i0, i1, . . . , im) by

i0 = 0 and ij = min{i > ij−1 : G(ti) = W (ti)}, j = 1, . . . ,m.

Applying Lemma 3.5m−1 times, that is, decomposing f first as fχ[0,tim−1
)+

fχ[tim−1
,tn], then fχ[0,tim−1

) as fχ[0,tim−2
) +fχ[tim−2

,tim−1
), etc., we find that

if g = g∗ =
∑n

i=1 biχAi minimizes Pϕ,w(f) and G(tij ) = W (tij ), G(tij+1) =
W (tij+1), then (bij+1, . . . , bij+1) also minimizes the sum

ij+1∑
i=ij+1

ϕ(ai/bi)bi|Ai|

under the constraints Bj(k) :=
∑k

i=ij+1 bi|Ai| ≤ W (tk) − W (tij ) for k =
ij + 1, . . . , ij+1.

Therefore we may consider each interval [tij , tij+1), j = 0, 1, . . . ,m − 1,
separately and we will show that gχ[tij ,tij+1

) = λjfχ[tij ,tij+1
) where

λj =
W (tij+1)−W (tij )

F (tij+1)− F (tij )
.

If tij+1 = tij+1 then

gχ[tij ,tij+1
) =

F (tij+1)− F (tij )

tij+1 − tij
λjχ[tij ,tij+1

) = λjfχ[tij ,tij+1
).

If tij+1 > tij+1 then for all tij < ti < tij+1 one has G(ti) < W (ti). In this case
consider the function ψj : Rij+1−ij

+ → R+ defined for b = (bij+1, . . . , bij+1)
by

ψj(b) = ψj(bij+1, . . . , bij+1) =

ij+1∑
i=ij+1

ϕ(ai/bi)bi|Ai|,

and define the set

Cj =


b ∈ Rij+1−ij

+ : bij+1 ≥ bij+2 ≥ · · · ≥ bij+1 > 0,

∀ij+1≤k<ij+1
Bj(k) < W (tk)−W (tij ),

Bj(ij+1) = W (tij+1)−W (tij )

 .

Notice that the condition

Bj(k) =

k∑
i=ij+1

bi|Ai| < W (tk)−W (tij ), k = ij + 1, . . . , ij+1 − 1,

is a consequence of the relation g ≺ w and the definition of ij and ij+1.
In fact, by Lemma 3.2, g ≺ w is equivalent to G(ti) ≤ W (ti) for each



Dual spaces to Orlicz–Lorentz spaces 243

i = 1, . . . , n, and by definition of ij and ij+1 we have G(tk) < W (tk) for each
k = ij + 1, . . . , ij+1 − 1. It follows that for k = ij + 1, . . . , ij+1 − 1,

G(tij ) +
k∑

i=ij+1

bi|Ai| = G(tk) < W (tk) = W (tij ) +W (tk)−W (tij ),

and so
∑k

i=ij+1 bi|Ai| < W (tk)−W (tij ).

We need to show now that ψj attains its minimum over Cj at the point
λja, a = (aij+1, . . . , aij+1).

Consider first the simplex Sj = Rij+1−ij
+ ∩Hj , where Hj is the hyperplane

in Rij+1−ij given by the equation
∑ij+1

i=ij+1 |Ai|xi = W (tij+1)−W (tij ). Lemma
3.6 tells us that λja is the unique minimizer of ψj over Sj . It remains to
show that λja ∈ Cj ⊂ Sj . Suppose for a contradiction that λja 6∈ Cj . By the
previous reasoning, there exists b̄ ∈ Cj that minimizes ψj over Cj . Define
b(λ) = λb̄+(1−λ)λja for 0 ≤ λ ≤ 1. Then by Lemma 3.6 and since λja 6= b̄,
we get ψj(b̄) > ψj(λja). Moreover the strict convexity of t 7→ ϕ(d/t)t for
each d > 0 implies the strict convexity of ψj . Therefore for each 0 < λ < 1,

ψj(b(λ)) < λψj(b̄) + (1− λ)ψj(λja) < ψj(b̄).

Notice that for every 0 < λ < 1, bij+1(λ) > · · · > bij+1(λ), where b(λ) =
(bij+1(λ), . . . , bij+1(λ)), and

ij+1∑
i=ij+1

bi(λ)|Ai| = λ

ij+1∑
i=ij+1

b̄i|Ai|+ (1− λ)λj(F (tij+1)− F (tij ))

= W (tij+1)−W (tij ).

Moreover for each k = ij + 1, . . . , ij+1 − 1,
k∑

i=ij+1

bi(λ)|Ai| = λ

k∑
i=ij+1

b̄i|Ai|+ (1− λ)λj(F (tk)− F (tij ))

< λ(W (tk)−W (tij )) + (1− λ)λj(F (tk)− F (tij )).

This implies that for 0 < λ < 1 sufficiently close to 1, b(λ) ∈ Cj . Since
ψj(b(λ)) < ψj(b̄), the element b̄ cannot minimize ψj over Cj , which gives the
desired contradiction. We have thus shown that g = λjf on [tij , tij+1), and
since j was arbitrary, the proof is finished.

The following algorithm will be crucial for proving the main Theorem
3.9 which provides a procedure to obtain a minimizing function g for the
modular Pϕ,w(f).

Algorithm A. Let f =
∑n

i=1 aiχAi for some a1 > · · · > an > 0 and
Ai = [ti−1, ti) where 0 = t0 < t1 < · · · < tn <∞. Define first

g−1 = f, γ0 = λ0 = min
1≤i≤n

W (ti)

F (ti)
, g0 = γ0f = λ0f, i0 = 0.
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Then for j > 0 let

ij = max

{
i > ij−1 : γj−1 =

W (ti)−W (tij−1)

Gj−2(ti)−Gj−2(tij−1)

}
,(3.8)

γj = min
ij<i≤n

W (ti)−W (tij )

Gj−1(ti)−Gj−1(tij )
,

gj = gj−1χ[0,tij ) + γjgj−1χ[tij ,tn).

Continue the recurrent steps until im = n for somem and denote gf = gm−1.
Clearly γj > 1 for j = 1, . . . ,m− 1, and

gf =

m−1∑
j=0

λjfχ[tij ,tij+1
), λj =

j∏
i=0

γi.

Hence λ0 < λ1 < · · · < λm−1. We also have, for j = 0, 1, . . . ,m− 1,

γj =
W (tij+1)−W (tij )

Gj−1(tij+1)−Gj−1(tij )

=
W (tij+1)−W (tij )

γj−1(Gj−2(tij+1)−Gj−2(tij ))
=

W (tij+1)−W (tij )∏j−1
i=0 γi(F (tij+1)− F (tij ))

.

Hence

λj =

j∏
i=0

γi =
W (tij+1)−W (tij )

F (tij+1)− F (tij )
.

It follows that for each j = 0, 1, . . . ,m− 1,

Gf (tij ) :=

tij�

0

gf = W (tij ).

Now we will show that gf is decreasing and gf ≺ w. Evidently g0 =
γ0f ≺ w.

Reasoning as in Lemma 3.4 we can show that gj = g∗j for each j. In fact,
since f is decreasing, it is sufficient to show that λj−1aij ≥ λjaij+1 for each
j = 1, . . . ,m−1. Fix j = 1, . . . ,m−1. We have Gj−1(tij ) = Gj(tij ) = W (tij )
and Gj(tij+1) ≤W (tij+1) by definition of γj . Then

w(tij )(tij+1 − tij ) ≥W (tij+1)−W (tij )

≥ Gj(tij+1)−Gj(tij ) = λjaij+1(tij+1 − tij ).

On the other hand Gj−1(tij−1) = Gj(tij−1) ≤W (tij−1), so

λj−1aij (tij − tij−1) = Gj(tij )−Gj(tij−1)

≥W (tij )−W (tij−1) ≥ w(tij )(tij − tij−1).
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Therefore λj−1aij ≥ w(tij ) ≥ λjaij+1. It remains to prove that gj−1 ≺ w
implies gj ≺ w. By (3.8),

gj = gj−1χ[0,tij ) + γjgj−1χ[tij ,tn).

Hence for k ≤ ij ,
Gj(tk) = Gj−1(tk) ≤W (tk).

If k > ij , then by definition of γj ,

Gj(tk) = Gj−1(tij ) + γj(Gj−1(tk)−Gj−1(tij ))

≤W (tij ) +W (tk)−W (tij ) = W (tk),

and then by Lemma 3.2 we have gj ≺ w, which proves that gf ≺ w. It is
also worth noticing that since λ0 < λ1 < · · · < λm−1, the function f/gf is
decreasing.

Remark 3.8. The function gf produced by Algorithm A is of the form
(3.7), but the sequence (tij ) obtained in this way need not be maximal in
the sense that there may exist ti 6∈ (tij ) such that Gf (ti) =

	ti
0 g

f = W (ti).

Now we are ready for our main result describing how to calculate the
infimum in Pϕ,w(f) for a decreasing simple function f .

Theorem 3.9. Let ϕ be an N -function and let f =
∑n

i=1 aiχAi for some
ai with a1 > · · · > an > 0 and Ai = [ti−1, ti) where 0= t0<t1< · · ·<tn<∞.
Then the function gf produced by Algorithm A is a minimizing function for
Pϕ,w(f), that is,

Pϕ,w(f) =

∥∥∥∥ϕ( f

gf

)
gf
∥∥∥∥

1

.

The function gf is independent of ϕ and depends only on f and w.

Proof. We divide the proof into two parts.

(I) Assume first that ϕ is, strictly convex. Let gf be produced by Algo-
rithm A. Suppose that a function h is minimizing as in Theorem 3.7. We
will prove that h = gf . This will be done by induction on the number s of
steps in Algorithm A.

(a) Assume first that s = 1, that is,

min
1≤i≤n

{W (ti)/F (ti)} = W (tn)/F (tn).

Then gf = λ0f with λ0 = W (tn)/F (tn). On the other hand, by Theorem
3.7, h =

∑p−1
j=0 µjfχ[tkj ,tkj+1

), where 0 = k0 < k1 < · · · < kp = n and
H(tkj ) = W (tkj ), j = 1, . . . , p. But since λ0f ≺ w, Lemma 3.6 shows that
µ0 = · · · = µp−1 = λ0, that is, h = λ0f = gf .
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(b) Assume now that s > 1 and that Algorithm A is valid for s−1 steps.
We claim first that

(3.9) W (ti1) = H(ti1),

where i1 = max{i > 0 : λ0 = W (ti)/F (ti)}, λ0 = min1≤i≤n{W (ti)/F (ti)}.
Clearly i1 < n. If the claim is false then H(ti1) < W (ti1). Now since H(ti) ≤
W (ti) for all i = 1, . . . , n, two cases are possible:

(i) H(ti) < W (ti) for each 0 < i ≤ i1, or
(ii) H(tk) = W (tk) for some k < i1 and H(ti1) < W (ti1).

In case (i), by (3.7), hχ[0,tm) = λfχ[0,tm) with H(tm) = W (tm) for some
λ > 0 and tm > ti1 . Hence λF (ti1) = H(ti1) < W (ti1) = λ0F (ti1) and thus
λ < λ0. It follows that

H(tm) = λF (tm) < λ0F (tm) ≤W (tm),

which contradicts H(tm) = W (tm).
In case (ii), suppose that k < i1 is the largest index such that W (tk) =

H(tk). Since h is assumed to be a minimizing function, by Theorem 3.7 there
exist ti1 < tm ≤ tn and λ > 0 such that

hχ[tk,tm) = λfχ[tk,tm) and H(tm) = W (tm).

Since λ0F ≤W and λ0F (ti1) = W (ti1), we have

λ(F (ti1)− F (tk)) = H(ti1)−W (tk)

< W (ti1)−W (tk) ≤ λ0(F (ti1)− F (tk))

and

λ(F (tm)− F (ti1)) = W (tm)−H(ti1)

> λ0F (tm)−W (ti1) = λ0(F (tm)− F (ti1)),

which gives a contradiction. Thus we have shown the claim (3.9).
Next we will show that

(3.10) hχ[0,ti1 ) = λ0fχ[0,ti1 ) = gfχ[0,ti1 ).

Suppose for a contradiction that

hχ[0,ti1 ) =
r−1∑
j=0

δjfχ[tk(j),tk(j+1)),

where 0 = tk(0) < tk(1) < · · · < tk(r) = ti1 with δj 6= λ0 for some j =
0, 1, . . . , r− 1. Then by Lemma 3.6 applied to the interval [0, ti1) and λ0, we
have

‖ϕ(f/h)h‖1 = ‖ϕ(f/h)hχ[0,ti1 )‖1 + ‖ϕ(f/h)hχ[ti1 ,tn)‖1
> ‖ϕ(f/(λ0f))λ0fχ[0,ti1 )‖1 + ‖ϕ(f/h)hχ[ti1 ,tn)‖1.
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It follows that h is not minimizing for Pϕ,w(f), which contradicts our as-
sumption and proves (3.10).

Now in view of H(ti1) = W (ti1) we see by the proof of Lemma 3.5 that
hi1(t) = hχ[ti1 ,tn)(t+ ti1) is a minimizing function for Pϕ,wi1 (fi1), where for
t ∈ I,

fi1(t) = (fχ[ti1 ,tn))(t+ ti1), wi1(t) = (wχ[ti1 ,tn))(t+ ti1).

On the other hand, it is straightforward to see that Algorithm A for fi1 and
the weight wi1 has s − 1 steps and that it yields a function gfi1 which is
nothing else than gfχ[ti1 ,tn) shifted backward by ti1 , that is,

gfi1 (t) = gfχ[ti1 ,tn)(t+ ti1).

Now by induction hypothesis we have gfi1 = hi1 and thus

gfχ[ti1 ,tn) = hχ[ti1 ,tn).

We also know by Lemma 3.5 that hχ[0,ti1 ) is minimizing for Pϕ,w(fχ[0,ti1 )),
while clearly Algorithm A for fχ[0,ti1 ) has only one step and yields gfχ[0,ti1 ).
Thus by part (a), gfχ[0,ti1 ) = hχ[0,ti1 ). Therefore gf = h, and this finishes
the proof of case (I).

(II) Assume now that ϕ is any N -function. Let ϕm(t) = ϕ(t) + (1/m)t2.
Then each ϕm is a strictly convex N -function and ϕm → ϕ uniformly on
compact sets. Let gf be produced by Algorithm A. Suppose gf is not min-
imizing for Pϕ,w(f), i.e. there is h =

∑n
i=1 biχAi ≺ w such that for some

δ > 0 we have
‖ϕ(f/h)h‖1 + δ ≤ ‖ϕ(f/gf )gf‖1.

Since h, f and gf are simple functions,

‖ϕm(f/h)h‖1 → ‖ϕ(f/h)h‖1 and ‖ϕm(f/gf )gf‖1 → ‖ϕ(f/gf )gf‖1.
Hence there is N such that for m > N ,

‖ϕm(f/h)h‖1 ≤ ‖ϕ(f/h)h‖1 + δ/3,

‖ϕm(f/gf )gf‖1 ≥ ‖ϕ(f/gf )gf‖1 − δ/3.
Therefore for each m > N ,

‖ϕm(f/h)h‖1 + δ/3 ≤ ‖ϕm(f/gf )gf‖1,
which means that gf does not minimize Pϕm,w(f). This contradicts case (I),
and the proof is complete.

4. Dual norms of Λϕ,w in terms of level functions. In this section
we develop formulas for the Köthe duals of Orlicz–Lorentz spaces equipped
with the Luxemburg or Amemiya norms in terms of level functions. Let w
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be a weight function on I as defined in the introduction. For f = f∗ locally
integrable on I, define after Halperin [4] for 0 ≤ a < b <∞, a, b ∈ I,

W (a, b) =

b�

a

w, F (a, b) =

b�

a

f, R(a, b) =
F (a, b)

W (a, b)
,

and for b =∞,
R(a, b) = R(a,∞) = lim sup

t→∞
R(a, t).

Then (a, b) ⊂ I is called a level interval (resp. degenerate level interval) of
f with respect to w if b <∞ (resp. b =∞) and for each t ∈ (a, b),

R(a, t) ≤ R(a, b) and R(a, b) > 0.

It is easy to see that the restriction R(a, b) > 0 ensures that any level interval
of f = f∗ is in fact included in the support of f∗, and this is the only differ-
ence with the original definition from [4]. Level intervals can be equivalently
assumed to be open, closed or half-closed. If the weight w is fixed then we
will speak of level intervals of f , or just l.i. for simplicity. If a level interval
is not contained in any larger level interval, then it is called a maximal level
interval of f with respect to w, or just a maximal level interval, for short
m.l.i. In [4], Halperin proved that maximal level intervals of f with respect
to w are pairwise disjoint and unique and so there are at most countably
many such intervals.

Remark 4.1. (1) The whole semiaxis (0,∞) may be a degenerate l.i.
Take for example any weight function w and let f = w.

(2) Given any weight w, if a decreasing function f is constant on (a, b)
then (a, b) is a l.i. of f with respect to w.

First we make a simple observation that the function t 7→ (
	t
a h)/(t−a) is

decreasing for t > a whenever h is decreasing and locally integrable. Letting
now f(t) = c for t ∈ (a, b), as w is decreasing, the inequality R(a, t) ≤ R(a, b)

on (a, b) is equivalent to 1
b−a

	b
aw ≤

1
t−a

	t
aw on (a, b).

(3) If w is a constant weight then (a, b) is a l.i. of f if and only if f
is constant on (a, b). Consequently, any decreasing function with countably
many different values has infinitely many m.l.i. with respect to a constant
weight.

Let indeed w be constant on I, and (a, b) be a l.i. of f with respect to w.
Therefore F (a, t)/(t−a) ≤ F (a, b)/(b−a) on (a, b), and since f is decreasing
we have equality, that is, F (a, t) = F (a, b)(t − a)/(b − a) on (a, b). Hence
f(t) = F (a, b)/(b− a) for all t ∈ (a, b), and so f is constant on (a, b).

Definition 4.2 ([4]). Let f ∈ L0 be decreasing and locally integrable
on I. Then the level function f0 of f with respect to w is defined as
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f0(t) =

{
R(an, bn)w(t) for t ∈ (an, bn),
f(t) otherwise,

where (an, bn) is an enumeration of all maximal level intervals of f .

Lemma 4.3. Let f = f∗ =
∑n

i=1 aiχAi ∈ Mϕ,w, where Ai = [ti−1, ti)
and 0 = t0 < t1 < · · · < tn <∞. Then

Pϕ,w(f) =
�

I

ϕ

(
f

gf

)
gf =

�

I

ϕ

(
f0

w

)
w.

In particular, the intervals (ti−1, ti) are level intervals of f with respect to w.
Moreover, the maximal level intervals of f with respect to w are (tij , tij+1),
where

gf =

m−1∑
j=0

λjfχ[tij ,tij+1
)

is from Algorithm A.

Proof. Let gf =
∑m−1

j=0 λjfχ[tij ,tij+1
) be as in Algorithm A, where λ0 <

λ1 < · · · < λm−1 and

λj =
W (tij , tij+1)

F (tij , tij+1)
, j = 0, 1 . . . ,m− 1.

Hence by Theorem 3.9,

Pϕ,w(f) =

m−1∑
j=0

tij+1�

tij

ϕ

(
f

λjf

)
λjf =

m−1∑
j=0

ϕ

(
F (tij , tij+1)

W (tij , tij+1)

)
W (tij , tij+1).(4.1)

We will now compute the level function f0 with respect to w. Suppose
first that

w = Tw =

n∑
i=1

(
1

|Ai|

�

Ai

w

)
χAi .

We shall show that every (tij , tij+1) is a maximal level interval of f with
respect to w. By Remark 4.1(2) each (ti, ti+1) is a level interval of f . Moreover
one can check that for i < k ≤ n,

∀t∈(ti,tk)
F (ti, t)

W (ti, t)
≤ F (ti, tk)

W (ti, tk)
⇔ ∀i<j<k

F (ti, tj)

W (ti, tj)
≤ F (ti, tk)

W (ti, tk)
.

Let us show that each interval (tij , tij+1) is a level interval for f with respect
to w. In fact, we only need to show that

R(tij , tk) ≤ R(tij , tij+1) for each ij < k < ij+1.
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In the notation of Algorithm A (see (3.8)), we have, for j = 0, 1, . . . ,m− 1,

λj =

j∏
i=0

γi =
W (tij+1)−W (tij )

F (tij+1)− F (tij )
=

1

R(tij , tij+1)
,

gj−1 = λ0fχ[0,ti1 )+ λ1fχ[ti1 ,ti2 ) + · · ·+ λj−2fχ[tij−2
,tij−1

) + λj−1fχ[tij−1
,tn).

Hence Gj−1(tk)−Gj−1(tij ) = λj−1(F (tk)−F (tij )) for ij < k < ij+1, and so

1

R(tij , tij+1)
= λj = γjλj−1 = λj−1 min

ij<i≤n

W (ti)−W (tij )

Gj−1(ti)−Gj−1(tij )

≤ λj−1
W (tk)−W (tij )

Gj−1(tk)−Gj−1(tij )
=
W (tk)−W (tij )

F (tk)− F (tij )
=

1

R(tij , tk)
,

which proves that (tij , tij+1) is a level interval.
To see that each (tij , tij+1) is a maximal level interval we will need Theo-

rem 3.1 from [4], which states that if a1 < a2 < b1 < b2 and (a1, b1), (a2, b2)
are level intervals of f with respect to w, then so is (a1, b2). We also need a
simple observation that (a, b) is a level interval if and only if

(4.2) R(a, b) ≤ R(s, b) for each s ∈ (a, b).

The latter follows from the elementary fact that for v, x, y, z > 0,
y

z
≤ v + y

x+ z
⇔ v + y

x+ z
≤ v

x
,

and from
R(a, b) =

F (a, s) + F (s, b)

W (a, s) +W (s, b)
.

Suppose therefore that (tij , tij+1) is not maximal. Then there is another level
interval (a, b) such that (tij , tij+1) ( (a, b). It follows that a < tij or tij+1 < b.
Suppose tij+1 < b (in the other case the proof is similar). Then by Halperin’s
above mentioned result, (tij , tij+2) is a level interval. But then by definition
of level intervals we get

1

λj
= R(tij , tij+1) ≤ R(tij , tij+2) ≤ R(tij+1 , tij+2) =

1

λj+1
,

which means that λj ≥ λj+1. However by Algorithm A, λj+1 = γj+1λj with
γj+1 > 1, which gives a contradiction.

Let now w be arbitrary. Denote TW (t) =
	t
0 Tw. Notice that TW (ti) =

W (ti) for each i, and TW (t) ≤W (t) for any t > 0, since for any t ∈ (tk−1, tk),

TW (t) = W (tk−1) +

(
1

tk − tk−1

tk�

tk−1

w

)
(t− tk−1) ≤W (tk−1) +

t�

tk−1

w = W (t).

Then for each j and each t ∈ (tij , tij+1) one has W (tij , t) = W (t)−W (tij ) ≥
TW (t)−TW (tij ) = TW (tij , t). Therefore, since by the first part of the proof
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(tij , tij+1) is a l.i. of f with respect to Tw, we have

R(tij , t) =
F (tij , t)

W (tij , t)
≤

F (tij , t)

TW (tij , t)
≤

F (tij , tij+1)

TW (tij , tij+1)

=
F (tij , tij+1)

W (tij , tij+1)
= R(tij , tij+1),

which shows that also (tij , tij+1) is a l.i. of f with respect to w. By the
previous reasoning it is also a m.l.i. of f with respect to w.

Thus the level function f0 with respect to w is given by

f0(t) =

{
R(tij , tij+1)w(t) for t ∈ (tij , tij+1), j = 0, 1, . . . ,m− 1,
0 for t ≥ tn.

Then, by (4.1),
�

I

ϕ(f0/w)w =
m−1∑
j=0

ϕ(R(tij , tij+1))W (tij , tij+1) = Pϕ,w(f),

and the proof is finished.

Remark 4.4. Algorithm A and Lemma 4.3 also suggest another point
of view. Namely, rather than changing the function f , we may change the
weight according to the definition of Pϕ,w(f). Let us define the inverse level
function of w with respect to a decreasing function f as follows:

wf (t) =

{
f(t)/R(an, bn) for t ∈ (an, bn),
w(t) otherwise,

where (an, bn) is an enumeration of all maximal level intervals of f with
respect to w. Then by definition of wf ,

�

I

ϕ

(
f0

w

)
w =

�

I

ϕ

(
f

wf

)
wf .

Notice also that wf ≺ w. In fact, for each m.l.i. (a, b) of f with respect to w
one has W (a, b) = W f (a, b) =

	b
aw

f . Moreover, for t ∈ (a, b),

W f (a, t) =
F (a, t)

R(a, b)
≤ F (a, t)

R(a, t)
= W (a, t).

If t is in no m.l.i., then W (t) = W f (t). Indeed,

W f (t) =
∑
bn≤t

W f (an, bn) +
�

Et

w =
∑
bn≤t

W (an, bn) +
�

Et

w = W (t),

where Et = (0, t) \
⋃
bn≤t(an, bn). If t is in some m.l.i., then we have only

W f (t) ≤W (t).

The next result is a representation of the modular Pϕ,w(f) via the level
function of f∗ in the case when its support is a finite interval.
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Proposition 4.5. Let ϕ be an N -function. Then for any f = f∗ ∈Mϕ,w

such that supp f = (0, s) where s <∞, we have

Pϕ,w(f) =
�

I

ϕ

(
f0

w

)
w =

�

I

ϕ

(
f

wf

)
wf .

Proof. Let f = f∗ ∈ Mϕ,w and let (Cj) be an enumeration of all m.l.i.
of f with respect to w. For every n ∈ N, let

Dn = {(k2−ns, (k + 1)2−ns] : 0 ≤ k < 2n}
be the set of dyadic subdivisions of the interval (0, s], and Cn = {Cj : j ≤ n}.
The endpoints of all the intervals in Dn ∪ Cn, when arranged in increas-
ing order, define a finite partition An of (0, s] into subintervals Ank , k =
1, . . . ,K(n). In other words, An and Dn ∪ Cn generate the same algebra Fn
of subsets of (0, s]. Moreover

(4.3) |Ank | ≤ s/2n, k = 1, . . . ,K(n).

Then for each j ∈ N and n ≥ j there is a finite set I(j, n) ⊂ N such that

Cj =
⋃

k∈I(j,n)

Ank .

SinceMϕ,w ⊂ L1 +L∞ (see [1]), the function f is integrable on [0, s), so
we may define for each n the simple function

fn =

K(n)∑
k=1

(
1

|Ank |

�

Ank

f

)
χAnk ,

which is the conditional expectation of f with respect to the algebra Fn.
We will show that f0

n → f0 a.e., where f0
n, f0 are the level functions for

fn, f , respectively. Fix some m.l.i. Cj = (d, e] of f with respect to w. Then
(d, e] =

⋃
k∈I(j,n)A

n
k for each n ≥ j. Thus since f is decreasing, as in Remark

4.1(2) we have for each t ∈ (d, e],

Fn(d, t) ≤ F (d, t), Fn(d, e) = F (d, e).

Therefore (d, e] is a l.i. of fn with respect to w for all n ≥ j. Clearly for each
n ≥ j, the set Cj is contained in some m.l.i. Cn = (dn, en] of fn. We claim
that

(4.4) |Cn − Cj | → 0 as n→∞.
Indeed, if (4.4) does not hold, there exist a subsequence (nk) and numbers
d0, e0 ∈ [0, s] such that dnk → d0 and enk → e0, and d0 < d or e < e0. More-
over (dn, en] is a union of some intervals Ank and so Rn(dn, en) = R(dn, en),
where Rn is defined as

Rn(s, u) = Fn(s, u)/W (s, u).
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For each t ∈ (d0, e0) we have t ∈ (dnk , enk ] for large k. Choose Ani(n) =

(wn, vn] and Anj(n) = (pn, rn] in such a way that t ∈ Ani(n) and d0 ∈ Anj(n) for
each n. If d0 < dnk , then

|F (d0, t)− Fnk(dnk , t)|
≤ |F (d0, dnk)|+ |F (dnk , wnk)− Fnk(dnk , wnk)|+ |F (wnk , t)− Fnk(wnk , t)|

≤
dnk�

pnk

f +
�

A
nk
i(nk)

f +
�

A
nk
i(nk)

fnk =

dnk�

pnk

f + 2
�

A
nk
i(nk)

f.

Similarly, if d0 > dnk , then

|F (d0, t)− Fnk(dnk , t)| ≤
rnk�

dnk

f + 2
�

A
nk
i(nk)

f.

Consequently, in view of (4.3) we get

|F (d0, t)− Fnk(dnk , t)| → 0,

and so

R(d0, t)← Rnk(dnk , t) ≤ Rnk(dnk , enk) = R(dnk , enk)→ R(d0, e0).

It follows that (d0, e0) is a l.i. of f , which contradicts our assumption on
maximality of Cj and proves (4.4).

Let t ∈ Cj for some j. Then keeping the notation as above we have

(4.5) f0
n(t) = Rn(dn, en)w(t) = R(dn, en)w(t)→ R(d, e)w(t) = f0(t).

Suppose now t ∈ [0, s) \
⋃
j Cj . Then for all n ∈ N there exists k0 = k0(n)

such that t ∈ Ank0
. Since Ank0

are l.i. of fn, there are m.l.i.Mn of fn such that
Ank0
⊂Mn = (mn, hn]. Clearly (mn, hn] is a union of some sets Ank . One can

also establish as in (4.4) that |Mn| → 0 as n→∞, and so for a.a. t,

f0
n(t) = Rn(mn, hn)w(t)(4.6)

= R(mn, hn)w(t) =
F (mn, hn)/|Mn|
W (mn, hn)/|Mn|

w(t)→ f(t).

Thus we infer from (4.5) and (4.6) that f0
n → f0 a.e.

Notice that Pϕ,w(fn) ≤ Pϕ,w(f). In fact, suppose Pϕ,w(f) = k. Consider
the spaceMψ,w, where ψ(t) = ϕ(t)/k, with the Luxemburg norm ‖ · ‖ given
by the modular

Pψ,w(f) =
1

k
Pϕ,w(f).

This is a r.i. Banach function space with the Fatou property by Proposition
2.1. Since fn ≺ f we have ‖fn‖Mψ,w

≤ ‖f‖Mψ,w
= 1 for each n. It follows

from the left continuity of the function (0,∞) 3 λ 7→ Pψ,w(λf) (see [9,
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Lemma 4.6]) that Pψ,w(fn) ≤ 1, and so

Pϕ,w(fn) ≤ Pϕ,w(f).

Applying this, the convergence f0
n → f0 a.e. and wf ≺ w by Remark 4.4, we

get

Pϕ,w(f) ≥ lim inf Pϕ,w(fn)
Lemma 4.3

= lim inf
�

I

ϕ(f0
n/w)w

Fatou Lemma
≥

�

I

ϕ(f0/w)w =
�

I

ϕ(f/wf )wf ≥ Pϕ,w(f),

which finishes the proof.

Lemma 4.6. Let ϕ be an N -function and W (∞) =∞. If f = f∗ ∈Mϕ,w

then it has no degenerate level interval.

Proof. Suppose there is a degenerate m.l.i. (a,∞) of f , that is,

R(a, t) ≤ lim sup
x→∞

R(a, x) = R(a,∞) for each t > a, and R(a,∞) > 0.

Without loss of generality we can also suppose that Pϕ,w(f) <∞, since level
intervals of f are the same for all kf , where k > 0.

We will consider three cases.
(a) Suppose R(a, t) < lim supx→∞R(a, x) for each t > a. Define

xn = max
{
x ∈ [a, a+ n] : R(a, x) = sup{R(a, t) : t ∈ [a, a+ n]}

}
.

We have xn ↗ ∞ and R(a,∞) = limn→∞R(a, xn). In fact if xn → x0

<∞ then by assumption R(a, x0) = limn→∞R(a, xn) = supt∈(a,∞)R(a, t) <
R(a,∞), which is impossible. Therefore xn ↗ ∞ and limn→∞R(a, xn) =
supt∈(a,∞)R(a, t) = lim supt→∞R(a, t) = R(a,∞).

Set gn = fχ(0,xn]. Clearly R(a, t) ≤ R(a, xn) for each a < t < xn.
Hence (a, xn] is a l.i. of f and thus a m.l.i. of gn. Therefore g0

n = f0χ(0,a) +

R(a, xn)wχ[a,xn] → f0χ(0,a) +R(a,∞)wχ[a,∞) = f0, and by Proposition 4.5
applied to gn we have

Pϕ,w(gn) =

xn�

0

ϕ(g0
n/w)w =

a�

0

ϕ(f0/w)w +

xn�

a

ϕ(R(a, xn))w

=

a�

0

ϕ(f0/w)w + ϕ(R(a, xn))(W (xn)−W (a))→∞,

since
	∞
a w = ∞ in view of W (∞) = ∞. On the other hand Pϕ,w(gn) ≤

Pϕ,w(f) and so Pϕ,w(f) =∞, which contradicts our assumption.
Consider now the set

B = {z > a : R(a, z) = R(a,∞)}.
If case (a) does not hold then B 6= ∅.
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(b) Let first supB =∞. Then there exists a sequence (xn) such that a <
xn ↗∞ and R(a, xn) = R(a,∞) for each n ∈ N, and we proceed as in (a).

(c) Suppose now that supB = b < ∞. Clearly R(a, b) = R(a,∞). Let
b < yn ↗ ∞ be such that R(a, yn) ↗ R(a,∞). Then for each σ > 1 there
exists N such that for n > N we have

R(a, yn) ≤ R(a, b) ≤ σR(a, yn).

We will show that for sufficiently large n,

(4.7) R(b, yn) ≤ R(a, yn) ≤ σR(b, yn).

The left inequality follows immediately from (4.2). In order to get the right
one, notice first that

F (a, b)

W (a, b)
= R(a, b) ≤ σR(a, yn) = σ

F (a, b) + F (b, yn)

W (a, b) +W (b, yn)
.

Then

F (a, b)W (b, yn) ≤ σF (b, yn)W (a, b) + (σ − 1)F (a, b)W (a, b),

and since W (b, yn)→∞, we have

F (a, b)W (b, yn) ≤ σF (b, yn)W (a, b) + (σ − 1)F (b, yn)W (b, yn)

for n large enough. Hence

F (a, b)W (b, yn) + F (b, yn)W (b, yn)

≤ σ[F (b, yn)W (a, b) + F (b, yn)W (b, yn)]

and so

R(a, yn) =
F (a, b) + F (b, yn)

W (a, b) +W (b, yn)
≤ σ F (b, yn)

W (b, yn)
= σR(b, yn),

and the right inequality of (4.7) is proved.
Therefore R(b, yn) → R(a, b) = R(a,∞) = R(b,∞). Moreover, once

again using (4.2) for each b < t from R(a, t) < R(a, b) we have

R(b, t) < R(a, t) < R(a, b) = R(a,∞) = R(b,∞),

where the second inequality follows from the definition of B. Hence (b,∞) is
a l.i. of f . Notice also that (b,∞) is of the same type as (a,∞) in case (a).
Choosing (xn) as in that case for b instead of a we define gn = fχ[0,xn]. Then
the m.l.i. of gn are the same as for f in [0, a]. Moreover, by the assumption
supB = b <∞, the interval (a, b] is a m.l.i. of gn, and by definition of (xn),
so is (b, xn]. Hence (gn) is increasing and

g0
n = f0χ(0,a] +R(a, b)wχ(a,b] +R(b, xn)wχ(b,xn].

Thus

gn ↗ f0χ(0,a] +R(a, b)wχ(a,b] +R(b,∞)wχ(b,∞) = f0 a.e.,

and we conclude as in (a).
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Now we state the main theorem of this section.

Theorem 4.7. Let ϕ be an N -function and W (∞) = ∞. Then for any
f = f∗ ∈Mϕ,w we have

Pϕ,w(f) =
�

I

ϕ

(
f0

w

)
w =

�

I

ϕ

(
f

wf

)
wf .

Proof. Let f = f∗ ∈Mϕ,w with Pϕ,w(f) <∞. In view of Proposition 4.5
we may assume that supp f = (0,∞). By Lemma 4.6, f has no degenerate
level interval. Thus it remains to consider the following two cases.

First suppose there is a sequence sn ↗ ∞ such that each sn is on the
boundary of some m.l.i. of f . Define gn = fχ[0,sn]. Then gn ↗ f a.e. and by
Lemma 4.6 in [9],

Pϕ,w(gn)→ Pϕ,w(f).

Moreover, for such (sn) each m.l.i. of gn is also a m.l.i. of f , and therefore
g0
n = f0χ[0,sn]. Then g0

n ↗ f0 and by Proposition 4.5 and the Lebesgue
Convergence Theorem,

Pϕ,w(gn) =
�

I

ϕ(g0
n/w)w →

�

I

ϕ(f0/w)w,

which gives the claim.
Now assume there is s such that each l.i. of f is in [0, s]. Take (sn)

satisfying s < sn ↗∞ and put gn = fχ[0,sn]. Then once again g0
n = f0χ[0,sn],

because there is no l.i. of gn in (s, sn), and we conclude as above.

Summarizing the main results of Sections 2 and 4 (especially Theorems
2.2 and 4.7) we get the following theorem.

Theorem 4.8. Let w be a decreasing weight and ϕ be an N -function.
Then the Köthe dual spaces to the Orlicz–Lorentz spaces Λϕ,w and Λ0

ϕ,w are
expressed as

(Λϕ,w)′ =M0
ϕ∗,w and (Λ0

ϕ,w)′ =Mϕ∗,w,

with

‖f‖(Λϕ,w)′ = ‖f‖0Mϕ∗,w
= inf

k>0

1

k
(Pϕ∗,w(kf) + 1),

‖f‖(Λ0
ϕ,w)′ = ‖f‖Mϕ∗,w = inf{λ > 0 : Pϕ∗,w(f/λ) ≤ 1},

where
Pϕ∗,w(f) = inf

{�
I

ϕ∗(f
∗/|g|)|g| : g ≺ w

}
.

If in addition we assume that W (∞) =∞ for I = [0,∞) then also

Pϕ∗,w(f) =
�

I

ϕ∗((f
∗)0/w)w =

�

I

ϕ∗(f
∗/wf

∗
)wf

∗
,
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where (f∗)0 is the level function of f∗ with respect to w, and wf
∗ is the

inverse level function of w with respect to f∗.

For ϕ(u) = (1/p)up, 1 < p < ∞, we denote the space Λϕ,w by Λp,w.
The next corollary provides an isometric description of (Λp,w)′. The second
formula recovers Halperin’s Theorem 6.1 and Corollary on page 288 in [4].

Corollary 4.9. Let 1 < p < ∞ and 1/p + 1/q = 1. Then for any
f ∈ (Λp,w)′ we have

‖f‖(Λp,w)′ = inf
{( �

I

(f∗/|g|)q|g|
)1/q

: g ≺ w
}
.

If in addition W (∞) =∞ in the case of I = [0,∞), then

‖f‖(Λp,w)′ =
( �
I

((f∗)0/w)qw
)1/q

.

Proof. The first equality follows from Theorem 2.2, while the second one
from Theorem 4.7.

Remark 4.10. In Lorentz’s paper [12] the theorem (Theorem 3.6.5) on
duality of the space Λp,w for 1 < p < ∞ was also stated in terms of “level
functions”, but his definition of a level function is different from the one
introduced earlier by Halperin. A similar notion of level function was later
used by Sinnamon (see [23, Chapter 2.9]). Both Lorentz’s and Halperin’s
representations suggest that f0/w = (f/w)L for every non-negative decreas-
ing function f , where the right side means the level function of f/w in the
Lorentz sense. It is straightforward to check this equality for a decreasing
characteristic function.

5. Sequence case. We complete the discussion on duals of Orlicz–
Lorentz spaces by considering the discrete case. All results given above
for function spaces are valid in Orlicz–Lorentz sequence spaces as well.
Recall that for a given sequence x = (xi), its decreasing rearrangement
x∗ = (x∗i ) is defined as x∗i = inf{λ > 0 : dx(λ) < i}, i ∈ N, where
dx(λ) = |{i ∈ N : |xi| > λ}| for λ > 0, and | · | is the counting measure
on N. Then given an Orlicz function ϕ and a decreasing positive weight
sequence w = (wi), the Orlicz–Lorentz sequence space λϕ,w is defined as

λϕ,w =
{
x = (xi) ∈ l0 : ∃δ>0

∞∑
i=1

ϕ(δx∗i )wi <∞
}
,

where l0 is the space of all real-valued sequences. We consider the space
λϕ,w with the Luxemburg norm ‖ · ‖λϕ,w , denoted further by λϕ,w, or with
the Amemiya norm ‖ · ‖0λϕ,w , denoted by λ0

ϕ,w. Those norms are defined
analogously to those for function spaces. Orlicz–Lorentz sequence spaces are
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Köthe spaces as subspaces of l0, and their Köthe dual spaces are defined
analogously to the function case. To each x ∈ λϕ,w we assign an element
x̄ ∈ Λϕ,w̄ on [0,∞), where

x̄ =

∞∑
i=1

xiχ[i−1,i) and w̄ =

∞∑
i=1

wiχ[i−1,i).

The above correspondence between x and x̄ is a linear isometry between
λϕ,w and a closed subspace of Λϕ,w̄. Evidently

‖x‖λϕ,w = ‖x̄‖Λϕ,w̄ and ‖x‖0λϕ,w = ‖x̄‖0Λϕ,w̄ .
The lemma below ensures that the correspondence remains true in the dual
space.

Lemma 5.1. Let y = (yi) ∈ (λϕ,w)′. Then

‖y‖(λϕ,w)′ = ‖ȳ‖(Λϕ,w̄)′ and ‖y‖(λ0
ϕ,w)′ = ‖ȳ‖(Λ0

ϕ,w̄)′ .

Proof. Define an averaging operator T on Λϕ,w̄ by

T : h 7→
∞∑
i=1

( �

[i−1,i)

h
)
χ[i−1,i).

Then by [1, Theorem 4.8], ‖Th‖Λϕ,w̄ ≤ ‖h‖Λϕ,w̄ for each h ∈ Λϕ,w̄. Moreover,
for any y ∈ (λϕ,w)′,

∞�

0

ȳh =

∞�

0

ȳ(Th).

Therefore

‖ȳ‖(Λϕ,w̄)′ = sup
{∞�

0

ȳh : ‖h‖Λϕ,w̄ ≤ 1
}

= sup
{∞�

0

ȳ(Th) : ‖h‖Λϕ,w̄ ≤ 1
}

= sup
{∞�

0

ȳ(Th) : ‖Th‖Λϕ,w̄ ≤ 1
}

= sup
{∞�

0

ȳz̄ : ‖z‖λϕ,w ≤ 1
}

= sup
{ ∞∑
i=1

yizi : ‖z‖λϕ,w ≤ 1
}

= ‖y‖(λϕ,w)′ .

Similarly we prove the second equality.

By analogy to the function case the following space has been defined
in [9]:

mϕ,w = {x ∈ l0 : ∃λ>0 pϕ,w(λx) <∞},
with the modular

pϕ,w(x) = inf
{ ∞∑
i=1

ϕ(x∗i /|yi|)|yi| : y ≺ w
}
,
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where the submajorization of sequences y ≺ w means that
∑n

i=1 y
∗
i ≤∑n

i=1wi for all n ∈ N. We denote by mϕ,w the above space equipped with the
Luxemburg norm ‖ · ‖m, and by m0

ϕ,w the space endowed with the Amemiya
norm ‖·‖0m. Moreover, we adapt the definitions of the previous section to the
sequence case by setting, for every non-negative decreasing sequence x = (xi)
and a, b ∈ N ∪ {0}, a < b,

w(a, b) =
b∑

i=a+1

wi, x(a, b) =
b∑

i=a+1

xi, r(a, b) =
x(a, b)

w(a, b)
.

Then (a, b] = {a+ 1, . . . , b} ⊂ N is called a level interval of x with respect to
w if for each j = a+ 1, . . . , b,

r(a, j) ≤ r(a, b) and 0 < r(a, b),

and the level sequence x0 of x with respect to w is defined as

x0
i =

{
r(an, bn)wi for i ∈ (an, bn],
xi otherwise,

where (an, bn] is an enumeration of all maximal level intervals of x. No-
tice that the results of the previous section ensure that the correspondence
between x and x̄ preserves the level intervals. In fact (see the proofs of
Lemmas 3.2 and 4.3) we have for any a ∈ N ∪ {0}, r(a, j) ≤ r(a, b) for all
j = a+1, . . . , b if and only if x̄(a, t)/w̄(a, t) ≤ x̄(a, b)/w̄(a, b) for all t ∈ (a, b).
Hence (a, b] ⊂ N is a m.l.i. of x with respect to w if and only if (a, b) is a
m.l.i. of x̄ with respect to w̄. Therefore

(5.1)
∞�

0

ϕ((x̄∗)0/w̄)w̄ =
∞∑
i=1

ϕ((x∗i )
0/wi)wi.

Moreover, in view of Lemma 3.2, y ≺ w if and only if ȳ ≺ w̄ and thus

pϕ,w(x) = inf
{∞�

0

ϕ(x̄∗/|ȳ|)|ȳ| : ȳ ≺ w̄
}
.

Hence by Lemma 3.1 applied to the step function x̄∗ we obtain

(5.2) Pϕ,w̄(x̄) = pϕ,w(x).

Finally, employing equalities (5.1), (5.2), Lemma 5.1 and Theorem 4.8, we
can state a duality result for the Orlicz–Lorentz sequence space λϕ,w.

Theorem 5.2. Let w be a decreasing weight sequence and ϕ be an N -
function. Then

(λϕ,w)′ = m0
ϕ∗,w and (λ0

ϕ,w)′ = mϕ∗,w.
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If in addition
∑∞

i=1wi =∞, then

pϕ∗,w(x) =

∞∑
i=1

ϕ∗

(
(x∗i )

0

wi

)
wi.
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