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Polaroid type operators under perturbations

by

Pietro Aiena (Palermo) and Elvis Aponte (Barquisimeto)

Abstract. A bounded operator T defined on a Banach space is said to be polaroid if
every isolated point of the spectrum is a pole of the resolvent. The “polaroid” condition is
related to the conditions of being left polaroid, right polaroid, or a-polaroid. In this paper
we explore all these conditions under commuting perturbations K. As a consequence, we
give a general framework from which we obtain, and also extend, recent results concerning
Weyl type theorems (generalized or not) for T + K, where K is an algebraic or a quasi-
nilpotent operator commuting with T .

1. Introduction and preliminaries. Polaroid operators on infinite-
dimensional complex Banach spaces have recently been extensively inves-
tigated, together with the related conditions for an operator of being left,
right polaroid or a-polaroid ([21], [20], [19], [3], [6]). Although the polaroid
conditions are neither necessary nor sufficient for an operator to satisfy Weyl
type theorems, almost all of the commonly considered classes of operators
satisfy Weyl type theorems since they are polaroid type and have the single
valued extension property (SVEP) (see [3]). In [3] it has also been proved
that if T is polaroid, or left polaroid, or a-polaroid, then some Weyl type
theorems in their classical form, or in their generalized form, are equivalent.
Since the SVEP is transferred to T +K in the case where K is a commuting
algebraic operator [8, Theorem 2.14], it is of interest to consider the problem
of preserving the polaroid conditions from T to T +K. This is what we do
in the second section. In the last section we apply the results obtained to
the study of Weyl type theorems (generalized or not) for T +K.

We start by explaining the relevant terminology. Let L(X) be the algebra
of all bounded linear operators acting on an infinite-dimensional complex
Banach space X and, if T ∈ L(X), denote by α(T ) the dimension of the
kernel kerT and by β(T ) the codimension of the range T (X). Recall that
the operator T ∈ L(X) is said to be upper semi-Fredholm, T ∈ Φ+(X), if
α(T ) < ∞ and the range T (X) is closed, and lower semi-Fredholm, T ∈
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Φ−(X), if β(T ) < ∞. If T is either upper or lower semi-Fredholm then it
is said to be a semi-Fredholm operator, while if T is both upper and lower
semi-Fredholm then it is said to be a Fredholm operator.

If T is semi-Fredholm then the index of T is defined to be ind (T ) :=
α(T )− β(T ). A bounded operator T ∈ L(X) is said to be a Weyl operator,
T ∈W (X), if T is a Fredholm operator having index 0. The classes of upper
semi-Weyl and lower semi-Weyl operators are defined, respectively, by

W+(X) := {T ∈ Φ+(X) : indT ≤ 0},
W−(X) := {T ∈ Φ−(X) : indT ≥ 0}.

Clearly, W (X) = W+(X) ∩W−(X). The Weyl spectrum is

σw(T ) := {λ ∈ C : λI − T /∈W (X)},
the upper semi-Weyl spectrum is

σuw(T ) := {λ ∈ C : λI − T /∈W+(X)},
and the lower semi-Weyl spectrum is

σlw(T ) := {λ ∈ C : λI − T /∈W−(X)}.
Let p(T ) and q(T ) denote the ascent and the descent of T ∈ L(X). It is

well-known that if p(T ) and q(T ) are both finite then p(T ) = q(T ). Moreover,
for λ ∈ C the condition 0 < p(λI − T ) = q(λI − T ) < ∞ is equivalent to
λ being a pole of the resolvent of T (see [22, Prop. 50.2]). An operator
T ∈ L(X) is said to be Browder (resp. upper semi-Browder ; lower semi-
Browder) if T is Fredholm and p(T ) = q(T ) < ∞ (resp. T is upper semi-
Fredholm and p(T ) <∞; T is lower semi-Fredholm and q(T ) <∞). Denote
by B(X), B+(X) and B−(X) the classes of Browder operators, upper semi-
Browder operators and lower semi-Browder operators, respectively. Clearly,
B(X) ⊆W (X), B+(X) ⊆W+(X) and B−(X) ⊆W−(X). Let

σb(T ) := {λ ∈ C : λI − T /∈ B(X)}
denote the Browder spectrum, σub(T ) the upper semi-Browder spectrum,

σub(T ) := {λ ∈ C : λI − T /∈ B+(X)},
and σlb(T ) the lower semi-Browder spectrum,

σlb(T ) := {λ ∈ C : λI − T /∈ B+(X)}.
Then σw(T ) ⊆ σb(T ), σuw(T ) ⊆ σub(T ) and σlw(T ) ⊆ σlb(T ).

Recall that T ∈ L(X) is said to be a Riesz operator if λI−T ∈ Φ(X) for
all λ ∈ C \ {0}. Classical examples of Riesz operators are all compact and
quasi-nilpotent operators. By a result of Rakočević ([28]), the semi-Browder
operators are stable under commuting Riesz perturbations, i.e., if R ∈ L(X)
is a Riesz operator for which RT = TR, then

(1) T is Browder ⇔ T +R is Browder,
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and

(2) T is upper semi-Browder ⇔ T +R is upper semi-Browder.

The concept of Drazin invertibility has been introduced in a more ab-
stract setting than operator theory [18]. In the case of the Banach algebra
L(X), T ∈ L(X) is said to be Drazin invertible (with a finite index) if
p(T ) = q(T ) <∞, which is equivalent to saying that T = T0⊕T1, where T0
is invertible and T1 is nilpotent (see [24, Corollary 2.2] and [23, Prop. A]).

Definition 1.1. T ∈ L(X) is said to be left Drazin invertible if p :=
p(T ) < ∞ and T p+1(X) is closed, and right Drazin invertible if q :=
q(T ) <∞ and T q(X) is closed.

Clearly, T ∈ L(X) is both right and left Drazin invertible if and only if T
is Drazin invertible. In fact, if 0 < p := p(T ) = q(T ) then T p(X) = T p+1(X)
is the kernel of the spectral projection associated with the spectral set {0}
(see [22, Proposition 50.2]).

2. Polaroid type operators under commuting perturbations.
The concepts of left or right Drazin invertibility lead to the concepts of left or
right pole. Let us denote by σa(T ) the classical approximate point spectrum
and by σs(T ) the surjectivity spectrum. It is well known that σa(T

′) = σs(T ),
where T ′ denotes the dual of T , and σs(T

′) = σa(T ). Evidently, σuw(T ) ⊆
σa(T ).

Definition 2.1. Let T ∈ L(X), X a Banach space. If λI − T is left
Drazin invertible and λ ∈ σa(T ) then λ is said to be a left pole of the
resolvent of T . A left pole λ is said to have finite rank if α(λI − T ) < ∞.
If λI − T is right Drazin invertible and λ ∈ σs(T ) then λ is said to be a
right pole of the resolvent of T . A right pole λ is said to have finite rank if
β(λI − T ) <∞.

Evidently, λ is a pole for T if and only if λ is both a left and a right pole
for T . Moreover, λ is a pole for T if and only if λ is a pole for T ′. In the
case of Hilbert space operators, λ is a pole for T ′ if and only if λ is a pole
for T ∗.

Definition 2.2. Let T ∈ L(X). Then T is said to be

(i) left polaroid if every isolated point of σa(T ) is a left pole of the
resolvent of T ;

(ii) right polaroid if every isolated point of σs(T ) is a right pole of the
resolvent of T ;

(iii) a-polaroid if every λ ∈ isoσa(T ) is a pole of the resolvent of T .

If T is a Hilbert space operator, we denote by T ∗ the Hilbert adjoint
of T . The concepts of left and right polaroid are dual to each other:
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Theorem 2.3 ([3]). If T ∈ L(X), X a Banach space, then the following
equivalences hold:

(i) T is left polaroid if and only if T ′ is right polaroid.
(ii) T is right polaroid if and only if T ′ is left polaroid.

(iii) T is polaroid if and only if T ′ is polaroid.

It should be noted that if T is a Hilbert space operator then in the
equivalences (i)–(iii), T ′ may be replaced by T ∗. Moreover, T ′ is a-polaroid
if and only if T ∗ is a-polaroid. This easily follows from the equality σa(T

∗) =
σa(T ′), so if T ′ is a-polaroid and λ ∈ isoσa(T

∗), then λ ∈ isoσa(T
′) and

hence λ is a pole for T ′, or equivalently λ is a pole for T ∗.
The quasi-nilpotent part of T ∈ L(X) is the set

H0(T ) :=
{
x ∈ X : lim

n→∞
‖Tnx‖1/n = 0

}
.

Clearly, kerTn ⊆ H0(T ) for every n ∈ N. The analytic core of T is
K(T ) := {x ∈ X: there exist c > 0 and a sequence (xn)n≥1 ⊆ X such that
Tx1 = x, Txn+1 = xn for all n ∈ N, and ‖xn‖ ≤ cn‖x‖ for all n ∈ N}. Note
that T (K(T )) = K(T ) (see [1, Theorem 1.21]).

Theorem 2.4 ([6, Theorem 2.2]). Let T ∈ L(X).

(i) T is polaroid if and only if there exists p := p(λI −T ) ∈ N such that

(3) H0(λI − T ) = ker (λI − T )p for all λ ∈ isoσ(T ).

(ii) If T is left polaroid then there exists p := p(λI − T ) ∈ N such that

(4) H0(λI − T ) = ker (λI − T )p for all λ ∈ isoσa(T ).

In [3, Theorem 2.6] it has been observed that if T is both left and right
polaroid then T is polaroid. The following theorem shows that this is true
if T is either left or right polaroid.

Theorem 2.5. For T ∈ L(X) the following implications hold:

T a-polaroid ⇒ T left polaroid ⇒ T polaroid.

Furthermore, if T is right polaroid then it is polaroid.

Proof. The first implication is clear, since a pole is always a left pole.
Assume that T is left polaroid and let λ ∈ isoσ(T ). It is known that the
boundary of the spectrum lies in σa(T ), in particular so does every isolated
point of σ(T ), thus λ ∈ isoσa(T ) and hence λ is a left pole of the resol-
vent of T . By Theorem 2.4(ii) there exists ν := ν(λI − T ) ∈ N such that
H0(λI − T ) = ker (λI − T )ν . But λ is isolated in σ(T ) so, by 2.4(i), λ is is
a pole of the resolvent, i.e. T is polaroid.

To show the last assertion suppose that T is right polaroid. By Theo-
rem 2.3, T ′ is left polaroid, and hence, by the first part, T ′ is polaroid, or
equivalently T is polaroid.
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The following property plays a relevant role in local spectral theory: see
the recent monographs by Laursen and Neumann [25] and [1].

Definition 2.6. Let X be a complex Banach space and T ∈ L(X). The
operator T is said to have the single valued extension property at λ0 ∈ C
(abbreviated SVEP at λ0) if for every open disc D about λ0, the only analytic
function f : U → X which satisfies the equation (λI − T )f(λ) = 0 for all
λ ∈ D is the function f ≡ 0.

An operator is said to have SVEP if it has SVEP at every point of C.
Evidently, every operator has SVEP at each isolated point of its spec-

trum.
We also have

(5) p(λI − T ) <∞ ⇒ T has SVEP at λ,

and dually, if T ′ denotes the dual of T ,

(6) q(λI − T ) <∞ ⇒ T ′ has SVEP at λ

(see [1, Theorem 3.8]). Furthermore, from the definition of localized SVEP
it easily seen that

(7) σa(T ) does not cluster at λ ⇒ T has SVEP at λ,

and dually,

(8) σs(T ) does not cluster at λ ⇒ T ′ has SVEP at λ.

Note that generally H0(T ) is not closed and (see [1, Theorem 2.31])

(9) H0(λI − T ) closed ⇒ T has SVEP at λ.

Remark 2.7. The converses of the implications (1)–(5) hold if λI − T
is semi-Fredholm (see [1, Chapter 3]).

In [3] it has been observed that if T ′ has SVEP (respectively, T has
SVEP) then all polaroid type conditions for T (respectively, for T ′) are
equivalent. Actually, we have a more precise result.

Theorem 2.8. Let T ∈ L(X).

(i) If T ′ has SVEP at every λ /∈ σuw(T ) then the properties of being
polaroid, a-polaroid and left polaroid for T are all equivalent.

(ii) If T has SVEP at every λ /∈ σlw(T ) then the properties of being
polaroid, a-polaroid and left polaroid for T ′ are all equivalent.

Proof. (i) Note first that σa(T ) = σ(T ). In fact, suppose that λ /∈ σa(T ).
Then p(λI − T ) = 0 and λI − T ∈ W+(X), so λ /∈ σuw(T ) and hence
by assumption T ′ has SVEP at λ. By Remark 2.7 it then follows that
q(λI − T ) < ∞ and hence p(λI − T ) = q(λI − T ) = 0, i.e. λ /∈ σ(T ). This
proves the equality σa(T ) = σ(T ). The equivalence of the polaroid conditions
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is now clear: every polaroid operator is a-polaroid, since isoσa(T ) = isoσ(T ).
Therefore, by Theorem 2.5 the equivalence is proved.

(ii) By using dual arguments to those of the proof of (i), if T has SVEP
at every λ /∈ σlw(T ) then σs(T ) = σ(T ), and hence σa(T

′) = σ(T ′) by
duality. Therefore, if T ′ is polaroid then T ′ is a-polaroid, so the equivalence
is proved.

The following result is well known.

Lemma 2.9. If T ∈ L(X) and N is a nilpotent operator commuting with
T then H0(T +N) = H0(T ).

Lemma 2.10. If T ∈ L(X) and N is a nilpotent operator commuting
with T , then λ is a pole of the resolvent of T if and only if λ is a pole of the
resolvent of T +N .

Proof. If λ is a pole for T then λ ∈ isoσ(T ) and since the spectrum is in-
variant under nilpotent commuting perturbations we have λ ∈ isoσ(T +N).
Now, set p := p(λI − T ) = q(λI − T ) and suppose that Nν = 0. By [1,
Theorem 3.74] we have H0(λI − T ) = ker (λI − T )p. Set m := pν. Then
ker (λI − (T +N))m ⊆ H0(λI − (T +N)).

We show the opposite inclusion. Let x ∈ H0(λI − (T +N)). By Lemma
2.9 we have x ∈ H0(λI − T ) = ker (λI − T )p. Then can write

(λI − (T +N)mx =
∑

j=m−p+1

µj,m(λI − T )m−jN j−νNνx = 0,

with suitable binomial coefficients µj,m. Hence

H0(λI − (T +N)) = ker (λI − T )p ⊆ ker (λI − (T +N))m.

Consequently,

H0(λI − (T +N)) = ker (λI − (T +N))m.

Since λ ∈ isoσ(T + N) it then follows, by Theorem 2.4, that λ is a pole of
the resolvent of T +N .

Conversely, if if λ is a pole for T+N then it is a pole for (T+N)−N = T ,
since T +N commutes with N .

Theorem 2.11. Suppose that T ∈ L(X) and let N be a nilpotent oper-
ator which commutes with T . Then

(i) T is polaroid if and only if T +N is polaroid.
(ii) T +N is a-polaroid if and only if T +N is a-polaroid.

Proof. (i) Suppose T is polaroid. If λ ∈ isoσ(T +N) then λ ∈ isoσ(T ),
so it is a pole for T . By Lemma 2.10 then λ is a pole for T +N , i.e. T +N is
polaroid. Conversely, if T +N is polaroid then by the first part of the proof
T = (T +N)−N is also polaroid.
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(ii) It is well known that the approximate point spectrum is invariant
under nilpotent commuting perturbations. Suppose that T is a-polaroid and
λ ∈ isoσa(T + N) = isoσa(T ). Since T is a-polaroid, λ is a pole for T and
hence for T + N , by Lemma 2.10. Therefore, T + N is a-polaroid. The
converse follows by symmetry: if T +N is a-polaroid then (T +N)−N = T
is a-polaroid.

If T is left polaroid then T is polaroid, so T + N is polaroid for any
nilpotent commuting perturbation N . The next result shows that assuming
SVEP, T +N is then also left polaroid.

Corollary 2.12. Let T ∈ L(X) and let N be a nilpotent operator which
commutes with T .

(i) If T ′ has SVEP at every λ /∈ σuw(T ) and T is left polaroid then
T +N is left polaroid.

(ii) If T has SVEP at every λ /∈ σlw(T ) and T is right polaroid then
T +N is right polaroid.

Proof. (i) Suppose that T is left polaroid. Then, by Theorem 2.8, T is
a-polaroid and hence T + N is a-polaroid by Theorem 2.11. Consequently,
T +N is left polaroid.

(ii) If T is right polaroid then T ′ is left polaroid and hence, again by
Theorem 2.8, T ′ is a-polaroid. Since N ′ is also nilpotent, Theorem 2.11
shows that T ′+N ′ is a-polaroid and hence left polaroid. By Theorem 2.3 it
then follows that T +N is right polaroid.

It is not known to the authors if the results of Corollary 2.12 hold without
assuming SVEP. The following result shows that the answer is positive for
Hilbert space operators:

Theorem 2.13. Suppose that T ∈ L(H), H a Hilbert space, and let
N be a nilpotent operator which commutes with T . Then T is left polaroid
(respectively, right polaroid) if and only if T+N is left polaroid (respectively,
right polaroid).

Proof. Suppose that T is left polaroid and λ ∈ isoσa(T+N) = isoσa(T ).
We can suppose that λ = 0. Then 0 is a left pole of the resolvent of T and
this is equivalent, by Theorem 2.5 of [11], to saying that there exists a
decomposition H = H0⊕H1, with H0 and H1 closed T -invariant subspaces
of H, such that T0 := T |H0 is bounded below and T1 := T |H1 is nilpotent.
Since TN = NT , both H0 and H1 are invariant under N . Write N = N0⊕N1

where N0 := N |H0 and N1 := N |H1. Clearly, both N0 and N1 are nilpotent,
T0 +N0 is bounded below, and T1 +N1 is nilpotent. From

T +N = (T0 +N0)⊕ (T1 +N1)
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we then deduce, again by [11, Theorem 2.5], that T +N is left polaroid. The
converse follows by symmetry: T = (T +N)−N , so by the first part, T is
left polaroid whenever T +N is.

If T is right polaroid then the Hilbert adjoint T ∗ is left polaroid and
this, by the first part, is equivalent to saying that (T + N)∗ = T ∗ + N∗ is
left polaroid, or equivalently, by Theorem 2.3, T +N is right polaroid.

Recall that a bounded operator T ∈ L(X) is said to be algebraic if there
exists a nonconstant polynomial h such that h(T ) = 0. Trivially, every nilpo-
tent operator is algebraic and it is well known that every finite-dimensional
operator is algebraic. It is also known that every algebraic operator has a
finite spectrum.

Definition 2.14. An operator T ∈ L(X) is said to be hereditarily po-
laroid if the restriction of T to every closed T -invariant subspace is polaroid.

Theorem 2.15. Let T ∈ L(X) and let K ∈ L(X) be an algebraic oper-
ator which commutes with T .

(i) Suppose that T has SVEP (respectively, T ′ has SVEP), and T is
hereditarily polaroid. Then T+K is polaroid and T ′+K ′ is a-polaroid
(respectively, T +K is a-polaroid and T ′ +K ′ is polaroid).

(ii) Suppose that T ′ has SVEP (respectively, T has SVEP) and T ′ is
hereditarily polaroid operator. Then T ′+K ′ is polaroid and T +K is
a-polaroid (respectively, T ′+K ′ is a-polaroid and T +K is polaroid).

Proof. (i) An algebraic operator has a finite spectrum. Let σ(K) =
{λ1, . . . , λn} and denote by Pj the spectral projection associated with K
and the spectral set {λj}. Set Yj := Pj(X) and Zj := kerPj . From the
classical spectral decomposition we know that X = Yj ⊕ Zj , where Yj and
Zj are closed subspaces invariant under T and K. Moreover, if Kj := K|Yj
and Tj := T |Yj then Kj and Tj commute, σ(Kj) = {λj} and

σ(T +K) =
n⋃
j=1

σ(Tj +Kj).

We claim that Nj := λjI − Kj is nilpotent for every j = 1, . . . , n. To see
this, let h be a nontrivial polynomial such that h(K) = 0. Then h(Kj) =
h(K)|Yj = 0, and since

h({λj}) = h(σ(Kj)) = σ(h(Kj)) = {0},
it then follows that h(λj) = 0. Write

h(µ) = (λj − µ)νq(µ) with q(λj) 6= 0.

Then

0 = h(Kj) = (λj −Kj)
νq(Kj)
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with q(Kj) invertible. Therefore, (λj −Kj)
ν = 0 and hence Nj := λj −Kj

is nilpotent for every j = 1, . . . , n, as desired.

We claim that T + K is polaroid. Let λ ∈ isoσ(T + K). Then λ ∈
isoσ(Tj +Kj) for some j = 1, . . . , n and hence λ−λj ∈ isoσ(Tj +Kj−λjI).
The restriction Tj is polaroid, by assumption, and as proved before, λjI−Kj

is nilpotent. By Theorem 2.11, Tj + Kj − λjI is then polaroid. Therefore
λ− λj is a pole of the resolvent of Tj +Kj − λjI and by [1, Theorem 3.74]
there exists a νj ∈ N such that

H0((λ−λj)I−(Tj+Kj+λjI)) = H0(λI−(Tj+Kj)) = ker (λI−(Tj+Kj))
νj .

Taking into account that H0(λI − (Tj +Kj) = {0} if λ /∈ σ(Tj +Kj) it then
follows that

H0(λI − (T +K)) =
n⊕
j=1

H0((λI − (Tj +Kj)) =
n⊕
j=1

ker (λI − (Tj +Kj))
νj .

If we put ν := max{ν1, . . . , νn} we obtain

H0(λI − (T +K)) = ker (λI − (T +K))ν .

As λ is an isolated point of σ(T +K), it then follows, by Theorem 2.4, that
T +K is polaroid, as desired.

Now, assume first that T has SVEP. By duality we know that T ′ + K ′

is polaroid. Since T has SVEP, so does T + K (see [8, Theorem 2.14]). By
Theorem 2.8 it then follows that T ′ +K ′ is a-polaroid.

Suppose now that T ′ has SVEP. Obviously, K ′ is algebraic and commutes
with T ′. Therefore T ′+K ′ has SVEP, always by [8, Theorem 2.14], and hence
T +K is a-polaroid, by Theorem 2.8.

(ii) By (i) we know that T ′ + K ′ is polaroid, or equivalently, T + K is
polaroid. If T ′ has SVEP then T ′ + K ′ has SVEP, so T + K is a-polaroid.
Suppose that T has SVEP. Then T+K has SVEP, so T ′+K ′ is a-polaroid.

Remark 2.16. In the case of Hilbert space operators, the assertions of
Theorem 2.15 are still valid if T ′ is replaced with T ∗.

The next simple example shows that the result of Corollary 2.12, as
well as the result of Theorem 2.11, cannot be extended to quasi-nilpotent
operators Q commuting with T .

Example 2.17. Let Q ∈ L(`2(N)) is defined by

Q(x1, x2, . . . ) = (x2/2, x3/3, . . . ) for all (xn) ∈ `2(N).

Then Q is quasi-nilpotent and if en := (0, . . . , 1, 0, . . . ), where 1 is the nth
term and all others are 0, then en+1 ∈ kerQn+1 while en+1 /∈ kerQn, so that
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p(Q) =∞. If we take T = 0, the null operator, then T is both left polaroid
and a-polaroid, while T +Q = Q is neither left polaroid, nor a-polaroid.

However, the following theorem shows that T + Q is polaroid in a very
special case. Recall first that if α(T ) <∞ then α(Tn) <∞ for all n ∈ N.

Theorem 2.18. Suppose that Q ∈ L(X) is a quasi-nilpotent operator
which commutes with T ∈ L(X) and suppose that all eigenvalues of T have
finite multiplicity.

(i) If T is polaroid then T +Q is polaroid.
(ii) If T is left polaroid then T +Q is left polaroid.

(iii) If T is a-polaroid then T +Q is a-polaroid.

Proof. (i) Let λ ∈ isoσ(T + Q). It is well known that the spectrum is
invariant under commuting quasi-nilpotent perturbations, thus λ ∈ isoσ(T )
and hence is a pole of the resolvent of T (consequently, an eigenvalue of T ).
Therefore, p := p(λI − T ) = q(λI − T ) < ∞ and since by assumption
α(λI−T ) <∞ we then have α(λI−T ) = β(λI−T ) (see [1, Theorem 3.4]),
so λI − T is Browder. By (1) we then infer that λI − (T + Q) is Browder,
hence λ is a pole of the resolvent of T +Q, thus T +Q is polaroid.

(ii) Let λ ∈ isoσa(T +Q). As σa(T ) is invariant under commuting quasi-
nilpotent perturbations, we have λ ∈ isoσa(T ) and hence, since T is left
polaroid, λ is a left pole of the resolvent of T . Therefore, p := p(λI−T ) <∞
and (λI−T )p+1(X) is closed. Now, either λI−T is injective or λ is an eigen-
value of T . In both cases we have α(λI−T ) <∞ and hence α((λI−T )p+1)
< ∞. Thus, (λI − T )p+1 ∈ Φ+(X) and this implies that λI − T ∈ Φ+(X).
Consequently, λI −T ∈ B+(X) and by (2), λI − (T +Q) is upper-Browder.
This implies that p′ = p(λI − (T + Q)) < ∞ and since (λI − (T + Q))p

′+1

is upper semi-Browder, we deduce that λI − (T +Q))p
′+1(X) is closed and

hence λI − (T +Q) is left Drazin invertible. Since λ ∈ isoσa(T +Q) it then
follows that λ is a left pole for T +Q and hence T +Q is left polaroid.

(iii) The proof is analogous to that of (i). In fact, if λ ∈ isoσa(T+Q) then
λ ∈ isoσa(T ) and hence, since T is a-polaroid, λ is a pole of the resolvent
of T . By assumption, α(λI − T ) < ∞, so proceeding as in (i) we find that
λ is a pole for T +Q, thus T +Q is a-polaroid.

The argument of the proof of Theorem 2.18(i) also works if we assume
that every isolated point of σ(T ) is a finite rank pole (in this case T is said to
be finitely polaroid). This is the case, for instance, of Riesz operators having
infinite spectrum. Evidently, T +Q is also finitely polaroid, since for every
λ ∈ isoσ(T +Q) we have α(λI − (T +Q)) <∞.

3. Weyl type theorems. In this section we apply the results of the
previous section in order to establish Weyl type theorems for perturbations



Polaroid type operators 131

of polaroid type operators. For T ∈ L(X) define

E(T ) := {λ ∈ isoσ(T ) : 0 < α(λI − T )},
Ea(T ) := {λ ∈ isoσa(T ) : 0 < α(λI − T )}.

Evidently, E0(T ) ⊆ E(T ) ⊆ Ea(T ) for every T ∈ L(X). Define

π00(T ) := {λ ∈ isoσ(T ) : 0 < α(λI − T ) <∞},
πa00(T ) := {λ ∈ isoσa(T ) : 0 < α(λI − T ) <∞}.

Let p00(T ) := σ(T ) \σb(T ), i.e. p00(T ) is the set of all poles of the resolvent
of T .

Definition 3.1. An operator T ∈ L(X) is said to satisfy Weyl’s theo-
rem, in symbols (W), if σ(T )\σw(T ) = π00(T ); T is said to satisfy a-Weyl’s
theorem, in symbols (aW), if σa(T )\σuw(T ) = πa00(T ); and T is said to have
property (w) if σa(T ) \ σuw(T ) = π00(T ).

Recall that T ∈ L(X) is said to satisfy Browder’s theorem if σw(T ) =
σb(T ), and a-Browder’s theorem if σuw(T ) = σub(T ). Weyl’s theorem for T
entails Browder’s theorem for T , while a-Weyl’s theorem entails a-Browder’s
theorem. Either a-Weyl’s theorem or property (w) entails Weyl’s theorem.
Property (w) and a-Weyl’s theorem are independent (see [10]).

The concept of semi-Fredholm operators has been generalized by Berkani
([14], [17]) in the following way: for every T ∈ L(X) and a nonnegative
integer n denote by T[n] the restriction of T to Tn(X) viewed as a map
from the space Tn(X) into itself (we set T[0] = T ). Then T ∈ L(X) is said
to be semi-B-Fredholm (resp. B-Fredholm, upper semi-B-Fredholm, lower
semi-B-Fredholm) if for some integer n ≥ 0 the range Tn(X) is closed and
T[n] is semi-Fredholm (resp. Fredholm, upper semi-Fredholm, lower semi-
Fredholm). In this case T[m] is a semi-Fredholm operator for all m ≥ n
([17]). This enables one to define the index of a semi-B-Fredholm as indT =
indT[n].

A bounded operator T ∈ L(X) is said to be B-Weyl (respectively, upper
semi-B-Weyl, lower semi-B-Weyl) if for some integer n ≥ 0, Tn(X) is closed
and T[n] is Weyl (respectively, upper semi-Weyl, lower semi-Weyl).

In an obvious way all the classes of operators generate spectra, for instance
the B-Weyl spectrum σbw(T ) and the upper B-Weyl spectrum σubw(T ).

Analogously, a bounded operator T ∈ L(X) is said to be B-Browder
(respectively, upper semi-B-Browder, lower semi-B-Browder) if for some
integer n ≥ 0, Tn(X) is closed and T[n] is Weyl (respectively, upper semi-
Browder, lower semi-Browder). The B-Browder spectrum is denoted by
σbb(T ), and the upper semi-B-Browder spectrum by σubb(T ). Note that
σubb(T ) coincides with the left Drazin spectrum σld(T ) ([4]).
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The generalized versions of Weyl type theorems are defined as follows:

Definition 3.2. An operator T ∈ L(X) is said to satisfy general-
ized Weyl’s theorem, in symbols (gW), if σ(T ) \ σbw(T ) = E(T ); T ∈
L(X) is said to satisfy generalized a-Weyl’s theorem, in symbols (gaW),
if σa(T ) \ σubw(T ) = Ea(T ); and T ∈ L(X) is said to satisfy generalized
property (w), in symbols (gw), if σa(T ) \ σubw(T ) = E(T ).

Recall that T ∈ L(X) is said to satisfy generalized Browder’s theorem
if σbb(T ) = σbw(T ), and generalized a-Browder’s theorem if σubb(T ) =
σubw(T ). Browder’s theorem and generalized Browder’s theorem are equiva-
lent, as also are a-Browder’s theorem and generalized a-Browder’s theorem
(see [12]). a-Browder theorems entail Browder theorems and if T , or T ′, has
SVEP then a-Browder’s theorem holds for T . Generalized a-Weyl’s theorem,
as well as generalized property (w), entails generalized a-Browder’s theorem.

In the following diagrams we summarize the relationships between all
Weyl type theorems:

(gw) ⇒ (w) ⇒ (W), (gaW) ⇒ (aW) ⇒ (W)

(see [15, Theorem 2.3], [10] and [16]). Generalized property (w) and gener-
alized a-Weyl’s theorem are also independent (see [15]). Furthermore,

(gw) ⇒ (gW) ⇒ (W), (gaW) ⇒ (gW) ⇒ (W)

(see [15] and [16]). The converse of none of these implications holds in gen-
eral. Furthermore, by [2, Theorem 3.1],

(W) holds for T ⇔ Browder’s theorem holds for T and p00(T ) = π00(T ).

The following equivalences have been proved in [3, Theorem 3.7 and
Corollary 3.8]:

Theorem 3.3. Let T ∈ L(X).

(i) If T is polaroid then (W) and (gW ) are equivalent for T .
(ii) If T is left polaroid then (aW) and (gaW) are equivalent for T .
(iii) If T is a-polaroid then (aW), (gaW), and (gw) are equivalent for T .

Theorem 3.4. Let T ∈ L(X) be polaroid and suppose that either T ′ has
SVEP at every λ /∈ σuw(T ), or T has SVEP at every λ /∈ σlw(T ). Then both
T and T ′ satisfy Weyl’s theorem.

Proof. Each of the assumptions on the SVEP ensures that T , or equiv-
alently T ′, satisfies Browder’s theorem. In fact, if T ′ has SVEP at every
λ /∈ σuw(T ) then a-Browder’s theorem (and hence Browder’s theorem) holds
for T , while if T has SVEP at every λ /∈ σlw(T ) then a-Browder’s theorem
(and hence Browder’s theorem) holds for T ′ (see [5, Theorem 2.3]). The po-
laroid condition for T entails that p00(T ) = π00(T ), so Weyl’s theorem holds
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for T . If T is polaroid then T ′ is polaroid and hence p00(T
′) = π00(T

′), so
Weyl’s theorem also holds for T ′.

For a bounded operator T ∈ L(X), define Πa(T ) := σa(T ) \ σld(T ). It is
clear that Πa

00(T ) is the set of all left poles of the resolvent.

Theorem 3.5. Let T ∈ L(X) be left polaroid and suppose that either T
or T ′ has SVEP. Then T satisfies generalized a-Weyl’s theorem.

Proof. T satisfies a-Browder’s theorem and the left polaroid condition
entails that Πa(T ) = Ea(T ). By [9, Theorem 2.18], (gaW) holds for T .

Let Hnc(σ(T )) denote the set of all analytic functions, defined on an
open neighborhood of σ(T ), such that f is nonconstant on each component
of its domain. Define, by the classical functional calculus, f(T ) for every f ∈
Hnc(σ(T )). We now apply the results of the second section in order to obtain
a general framework for establishing Weyl type theorems for perturbations
of hereditarily polaroid operators.

Theorem 3.6. Let T ∈ L(X) and let K ∈ L(X) be an algebraic operator
commuting with T ∈ L(X).

(i) If T ∈ L(X) has SVEP (respectively, T ′ has SVEP) and T is hered-
itarily polaroid, then f(T + K) (respectively, f(T ′ + K ′)) satisfies
(gW), while f(T ′+K ′) (respectively, f(T +K)) satisfies every Weyl
type theorem (generalized or not) for every f ∈ Hnc(σ(T +K)).

(ii) If T ′ ∈ L(X) has SVEP (respectively, T has SVEP) and T ′ is hered-
itarily polaroid, then f(T ′ + K ′) (respectively, f(T + K)) satisfies
(gW), while f(T +K) (respectively, f(T ′+K ′)) satisfies every Weyl
type theorem (generalized or not) for every f ∈ Hnc(σ(T +K)).

Proof. (i) Suppose first that T has SVEP. As we know, the SVEP for
T entails that T + K has SVEP, and hence, by [1, Theorem 2.40], also
f(T +K) has SVEP. Moreover, by Theorem 2.15(i), T +K is polaroid and
consequently also f(T +K) is polaroid (see [3, Lemma 3.11]). Therefore, by
Theorem 3.4, f(T +K) satisfies Weyl’s theorem and this, by Theorem 3.3,
is equivalent to f(T +K) satisfying generalized Weyl’s theorem.

To show the second assertion, note that, by Theorem 2.15, T ′+K ′ is a-
polaroid, in particular left polaroid. Again from [3, Lemma 3.11] we deduce
that f(T ′ + K ′) = [f(T + K)]′ is left polaroid. The SVEP of f(T + K)
entails, by Theorem 2.8(ii), that f(T ′ + K ′) is a-polaroid, so, by Theorem
3.5, (gaW) holds for f(T ′ + K ′). Equivalently, by Theorem 3.3, (gw) holds
for f(T ′ +K ′).

The case where T ′ has SVEP uses similar arguments.
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(ii) Assume that T ′ has SVEP. The first assertion is obvious, by (i). As
in (i), f(T ′ +K ′) satisfies SVEP. Furthermore, by Theorem 2.15(ii), T +K
is a-polaroid and hence left polaroid. Again [3, Lemma 3.11] entails that
f(T + K) is left polaroid, or equivalently, by Theorem 2.8, f(T + K) is
a-polaroid. Combining Theorems 3.5 and 3.3(iii) we conclude that f(T +K)
satisfies every generalized Weyl type theorem for every f ∈ Hnc(σ(T +K)).

The case where T has SVEP uses similar arguments.

Part of statement (i) of Theorem 3.6 has been proved by Duggal [20,
Theorem 3.6] by using different methods.

Remark 3.7. In the case of Hilbert space operators, in Theorem 3.3 the
assertions hold if T ′ is replaced by the Hilbert adjoint T ∗.

The class of hereditarily polaroid operators is rather large. It contains
the H(p) operators introduced by Oudghiri in [26], where T ∈ L(X) is said
to belong to the class H(p) if there exists a natural p := p(λ) such that

(10) H0(λI − T ) = ker (λI − T )p for all λ ∈ C.

From the implication (9) we see that every operator T which belongs to H(p)
has SVEP. Moreover, every H(p) operator T is polaroid. Furthermore, if T
is H(p) then every part of T is H(p) [26, Lemma 3.2], so T is hereditarily
polaroid. Property H(p) is satisfied by every generalized scalar operator (see
[25] for details), and in particular for p-hyponormal, log-hyponormal or M -
hyponormal operators on Hilbert spaces (see [26]). Therefore, algebraically
p-hyponormal or algebraically M -hyponormal operators are H(p).

Another important class of hereditarily polaroid operators is given by
paranormal operators on Hilbert spaces, satisfying ‖Tx‖2 ≤ ‖T 2x‖ ‖x‖ for
all x ∈ H. In fact, these operators have SVEP, are polaroid and obviously
any of their parts are still paranormal (see [7]). Weyl’s theorem for T + K
in the case that T is H(p) has been proved by Oudghiri [27], while Weyl’s
theorem for T +K in the case that T is paranormal has been proved in [7].
Theorem 3.6 extends and subsumes both results. Theorem 3.6 also extends
the results of [8, Theorems 2.15 and 2.16], since every algebraically paranor-
mal operator is polaroid and has SVEP.

Other examples of hereditarily polaroid operators are given by completely
hereditarily normaloid operators on Banach spaces. In particular, all (p, k)-
quasihyponormal operators on Hilbert spaces are hereditarily polaroid (see
for details [20]). Also algebraically quasi-class A operators on a Hilbert space,
considered in [13], are hereditarily polaroid. In fact, every part of an alge-
braically quasi-class A operator T is algebraically quasi-class A and every
algebraically quasi-class A operator is polaroid [13, Lemma 2.3].
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