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Scattered elements of Banach algebras

by

Peng Cao (Beijing)

Abstract. A scattered element of a Banach algebra A is an element with at most
countable spectrum. The set of all scattered elements is denoted by S(A). The scat-
tered radical Rsc(A) is the largest ideal consisting of scattered elements. We charac-
terize in several ways central elements of A modulo the scattered radical. As a conse-
quence, it is shown that the following conditions are equivalent: (i) S(A) +S(A) ⊂ S(A);
(ii) S(A)S(A) ⊂ S(A); (iii) [S(A),A] ⊂ Rsc(A).

1. Introduction. It was proved by Z. Słodkowski, W. Wojtyński and
J. Zemánek in 1977 that if the set of all quasinilpotent elements in a Banach
algebra forms a subspace or a semigroup, then all quasinilpotent elements
belong to the Jacobson radical. We will prove similar statements about scat-
tered elements.

Let us introduce necessary definitions and notations. For an element a of
a Banach algebra A, let σ(a) mean the spectrum of a, and ρ(a) = C \ σ(a)
the resolvent set of a. The cardinality of σ(a) is denoted by #σ(a); a is
quasinilpotent if σ(a) = {0}. The set of all quasinilpotent elements in A is
denoted by Q(A). By Rad(A) we denote the Jacobson radical of A. The
socle, that is, the sum of all minimal one-sided ideals of A, is denoted by
Soc(A).

For a closed ideal J ⊂ A and an element a ∈ A, we denote by a/J the
coset a+ J ∈ A/J . In other terms, a/J = πJ(a) where πJ : A → A/J is the
standard epimorphism.

If M and N are subsets of A, then M +N := {x + y : x ∈ M, y ∈ N}.
We write x+N instead of {x}+N. In a similar way we define MN and so
on.

It was shown in [7] that Q(A) = Rad(A) if and only if Q(A) +Q(A) ⊂
Q(A) if and only if Q(A)Q(A) ⊂ Q(A). In [4] a similar result was proved for
the Lie product [a, b] = ab−ba:Q(A) = Rad(A) if and only if [Q(A), Q(A)] ⊂
Q(A). There are also some local results, for example a + Q(A) ⊂ Q(A) if
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and only if a ∈ Rad(A) [8]. In [1, Theorem 5.2.1] it was shown that for an
element a ∈ A the condition #σ([a, x]) = 1 for every x ∈ A is equivalent to
[a,A] ∈ Rad(A).

Similar results hold for the finite spectrum case. Let I(A) denote the set
of all a ∈ A with #σ(a) < ∞. If a + I(A) ⊂ I(A) for some a ∈ A, then
aI(A) ⊂ I(A) and [a,A] ⊂ I(A) by [1, Corollary 5.6.4 and Lemma 5.6.5].
Moreover, if A is semisimple then [a,A] ⊂ I(A) if and only if [a,A] ⊂ Soc(A)
if and only if every element in [a,A] is algebraic [2].

In this paper we will consider similar conditions for scattered elements.
An element of A is called scattered if its spectrum is finite or countable. Let
S(A) be the set of all scattered elements of A. The scattered radical of A is
denoted by Rsc(A); it can be defined by several equivalent conditions [5], in
particular

Rsc(A) := {a ∈ A : aA ⊂ S(A)}.

Clearly, Rad(A) ⊂ Rsc(A) ⊂ S(A). It was proved in [6] that the map
A 7→ Rsc(A) is a hereditary topological radical on the class of Banach alge-
bras (see the definition in [3]). In particular, the following statement holds:

Lemma 1 ([6, Section 8.2]).

(i) Rsc(A) is a closed (two-sided) ideal of A.
(ii) Rsc(A/Rsc(A)) = {0}.
(iii) a ∈ S(A) if and only if a/Rsc(A) ∈ S(A/Rsc(A)).

2. Central elements modulo the scattered radical. For a unital
Banach algebra A, we set

ZS1(A) := {x ∈ A : x+ S(A) ⊂ S(A)},
ZS2(A) := {x ∈ A : xS(A) ⊂ S(A)}.

Clearly, ZS1(A) ⊂ S(A) and ZS2(A) ⊂ S(A). It follows that ZS1(A) is a
linear subspace of A, while ZS2(A) is a multiplicative subsemigroup of A. It
follows from the Spectral Mapping Theorem that if a ∈ S(A) and α ∈ ρ(a)
then (a− α)−1 ∈ S(A).

We will use the theory of analytic multifunctions [1, Chapter VII]. Let
K be an analytic multifunction from a domain D ⊂ C into C. Then either
{λ ∈ D : K(λ) is at most countable} has capacity zero, or K(λ) is at most
countable for all λ ∈ D by the Scarcity Theorem [1, Theorem 7.2.8]. In the
latter case, for a fixed η ∈ C, the set {λ ∈ D : η ∈ K(λ)} is either at most
countable or equal to D by the Aupetit–Zemánek Theorem [1, Theorem
7.2.13].

The following two propositions show that ZS1(A) = ZS2(A).

Proposition 1. For a unital Banach algebra A, ZS2(A) ⊂ ZS1(A).
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Proof. We divide the proof into several claims.

Claim 1. If x ∈ ZS2(A), then x+ λ ∈ ZS2(A) for every λ ∈ C.

For a ∈ S(A) and µ ∈ ρ(λa) we have

(x+ λ)a− µ = xa+ λa− µ = (xa(λa− µ)−1 + 1)(λa− µ).
So µ ∈ σ((x+ λ)a) if and only if −1 ∈ σ(xa(λa− µ)−1). The function µ 7→
σ(xa(λa−µ)−1) is an at most countable analytic multifunction from ρ(λa) to
C by [1, Theorem 7.1.13]. Then the set {µ ∈ ρ(λa) : −1 ∈ σ(xa(λa−µ)−1)}
is either at most countable or equal to ρ(λa), by [1, Theorem 7.2.13]. But in
the latter case, since (λa− µ)−1 tends to 0 as µ→∞, we infer that

−1 ∈ lim sup
µ→∞

σ(xa(λa− µ)−1) ⊂ σ(0),

a contradiction. So (x + λ)a ∈ S(A) for every a ∈ S(A), that is, x + λ ∈
ZS2(A).

Claim 2. If x ∈ ZS2(A) and x is invertible, then x−1 ∈ ZS2(A).
Let a ∈ S(A) and α ∈ ρ(a). Then (a−α)−1 ∈ S(A), whence x(a−α)−1 ∈

S(A). Hence (a−α)x−1 ∈ S(A) and so x−1(a−α) ∈ S(A). Now the function
α 7→ σ(x−1(a− α)) is an analytic multifunction from C to C, and it has at
most countable values on ρ(a). As the capacity of ρ(a) is not zero, it follows
that x−1(a − α) ∈ S(A) for every α ∈ C by [1, Theorem 7.2.8]. For α = 0
we obtain x−1a ∈ S(A), so x−1 ∈ ZS2(A).

Claim 3. ZS2(A) ⊂ ZS1(A).
Let x ∈ ZS2(A) and λ ∈ ρ(x). Then x − λ ∈ ZS2(A) by Claim 1, and

(x− λ)−1 ∈ ZS2(A) by Claim 2. For every a ∈ S(A), we have

x− λ+ a = (x− λ)(1 + (x− λ)−1a) ∈ S(A).
Changing a to a+ λ, we get x ∈ ZS1(A).

Proposition 2. For a unital Banach algebra A, ZS1(A) is a Lie ideal
of A and ZS1(A) ⊂ ZS2(A).

Proof. For every x ∈ ZS1(A) , a ∈ S(A) and b ∈ A, we define a function
f(λ) as follows:

f(λ) :=


x− eλbxe−λb

λ
+ a for λ 6= 0,

[x, b] + a for λ = 0.

As
x− eλbxe−λb

λ
+ a =

1

λ
(x− eλb(x+ λe−λbaeλb)e−λb),

σ(f(λ)) is at most countable for λ 6= 0. Since the function f is analytic, λ 7→
σ(f(λ)) is an analytic multifunction on C by [1, Theorem 7.1.13]. Therefore
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[x, b] + a ∈ S(A) by [1, Theorem 7.2.8]. Hence [ZS1(A),A] ⊂ ZS1(A), that
is, ZS1(A) is a Lie ideal of A.

Now we prove that if x ∈ ZS1(A) and a ∈ S(A), then xa ∈ S(A).
For a ∈ S(A) and α ∈ ρ(a), we have (a − α)−1 ∈ S(A). It follows that

x+λ(a−α)−1 ∈ S(A) for every λ ∈ C. It is clear that 0 ∈ σ(x+λ(a−α)−1)
if and only if −λ ∈ σ(x(a−α)). So by [1, Theorems 7.1.13 and 7.2.13], either
σ(x(a− α)) is at most countable, or 0 ∈ σ(x+ λ(a− α)−1) for every λ ∈ C.
But in the latter case,

0 ∈ lim sup
λ→∞

σ(x/λ+ (a− α)−1) ⊂ σ((a− α)−1),

a contradiction. Hence x(a − α) ∈ S(A). Since x ∈ ZS1(A), we get xa ∈
S(A). Thus x ∈ ZS2(A).

From now on, we can use the same notation ZS(A) for ZS1(A) and
ZS2(A). It is a Lie ideal (by Proposition 2) and a subalgebra of A. Now we
establish another property of ZS(A).

Theorem 1. For a unital Banach algebra A, [ZS(A),A] ⊂ Rsc(A).
Proof. We divide the proof into a sequence of claims.
Claim 1. [ZS(A),ZS(A)] ⊂ Rsc(A).
For every x, y ∈ ZS(A) and z ∈ A, we have [x, y]z = x[y, z]+[xz, y]. Note

that [y, z] ∈ ZS(A) and [xz, y] ∈ ZS(A) by Proposition 2. Hence [x, y]z ∈
S(A) for every z ∈ A, that is, [x, y] ∈ Rsc(A). So [ZS(A),ZS(A)] ⊂ Rsc(A).

Let π : A → B = A/Rsc(A) be the standard epimorphism.
Claim 2. [ZS(B), B] = {0}.
For every a ∈ ZS(B) and b ∈ B, we have [a, b] ∈ ZS(B) by Proposition 2,

and so [a, [a, b]] ∈ Rsc(B) by Claim 1. But Rsc(B) = Rsc(A/Rsc(A)) = {0}
by Lemma 1(ii). Hence [a, [a, b]] = 0, and σ([a, b]) = {0} for every b ∈ B
by the Kleinecke–Shirokov Theorem. Therefore [a, b] ∈ Rad(B) by Le Page’s
Lemma [1, Theorem 5.2.1]. But Rad(B) ⊂ Rsc(B) = {0}, so [a, b] = 0 for
every a ∈ ZS(B) and b ∈ B.

Claim 3. π(ZS(A)) ⊂ ZS(B).

Note that a/Rsc(A) ∈ S(B) for every a ∈ S(A) by Lemma 1(iii). Fur-
thermore, for each b ∈ S(B) there is b1 ∈ A such that b = π(b1). Then
b1 ∈ S(A) by Lemma 1(iii). So π(S(A)) = S(B). For every x ∈ ZS(A) and
b ∈ S(B),

π(x) + b = π(x) + π(b1) = π(x+ b1) ∈ S(B).

Hence π(x) ∈ ZS(B).

Finally, π([ZS(A),A]) = [π(ZS(A)), π(A)] ⊂ [ZS(B), B] = {0}, that
is, [ZS(A),A] ⊂ Rsc(A).
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Corollary 1. For a unital Banach algebra A, the following conditions
are equivalent:

(i) S(A) + S(A) ⊂ S(A);
(ii) S(A)S(A) ⊂ S(A);
(iii) [S(A),S(A)]S(A) ⊂ S(A);
(iv) [S(A),S(A)] + S(A) ⊂ S(A);
(v) [S(A),A] ⊂ Rsc(A).

Proof. Conditions (i) and (ii) are equivalent because each means that
ZS(A) = S(A). Similarly (iii) and (iv) are equivalent to [S(A),S(A)]
⊂ ZS(A). The implication (i)⇒(v) follows from Theorem 1. Evidently
(v)⇒(iii). So it remains to prove that (iii)⇒(i).

Assume that (iii) holds, that is, [S(A),S(A)] ⊂ ZS(A). Then

[[S(A),S(A)],A] ⊂ Rsc(A)

by Theorem 1. Let π : A → B = A/Rsc(A) be the standard homomorphism.
Then [[π(S(A)), π(S(A))], π(A)] = 0. Hence [[π(a), π(b)], π(b)] = 0 for every
a, b ∈ S(A), so [π(a), π(b)] is quasinilpotent by the Kleinecke–Shirokov The-
orem. This and the equality [[π(a), π(b)], B] = 0 show by using Le Page’s
Lemma that [π(a), π(b)] ∈ Rad(B) = {0}, that is, π(a) commutes with
π(b). Since π(a), π(b) ∈ S(B), it follows that π(a) + π(b) ∈ S(B), whence
a+ b ∈ S(A), that is, (i) holds.

In general, ZS(A) is not an ideal of A. For instance, if A is the algebra of
all bounded operators on an infinite-dimensional Hilbert space then the iden-
tity operator belongs to ZS(A), but A contains operators with uncountable
spectrum.

Theorem 2. For a unital Banach algebra A,

ZS(A) = {x ∈ S(A) : [x,A] ⊂ Rsc(A)}
= {x ∈ S(A) : [x,S(A)] ⊂ Rsc(A)}.

Proof. Clearly ZS(A) ⊂ {x ∈ S(A) : [x,A] ⊂ Rsc(A)} by Theorem 1.
So it suffices to show that {x ∈ S(A) : [x,S(A)] ⊂ Rsc(A)} ⊂ ZS(A).

Let x ∈ S(A) with [x,S(A)] ⊂ Rsc(A). Let π : A → B = A/Rsc(A)
be the standard homomorphism. Then [π(x), π(a)] = 0 for every a ∈ S(A).
So we obtain π(x) + π(a) ∈ S(B). Then x + a ∈ S(A) for every a ∈ S(A),
whence x ∈ ZS(A).
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