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Lineability and algebrability of the set of holomorphic
functions with a given domain of existence

by

Thiago R. Alves (Campinas)

Abstract. We show that if U is a domain of existence in a separable Banach space,
then the set of holomorphic functions on U whose domain of existence is U is lineable and
algebrable.

1. Introduction. Let U be an open subset of a complex Banach space E.
LetH(U) denote the algebra of all holomorphic functions on U , and let E(U)
denote the set of all f ∈ H(U) such that U is the domain of existence of f .
Informally U is the domain of existence of f if f cannot be holomorphically
extended beyond the boundary of U . The precise definition of domain of
existence will be provided in the next section.

In this paper we first show that, if E is separable and U is a domain
of existence, then E(U) is lineable, that is, there is an infinite-dimensional
subspace F of H(U) such that F ⊂ E(U) ∪ {0}. Next we show that, under
the same hypotheses, E(U) is c-lineable, that is, there is a c-dimensional
subspace F ofH(U) such that F ⊂ E(U)∪{0}. Here c denotes the cardinality
of the continuum. Finally we show that, under the same hypotheses, E(U) is
algebrable, that is, there is a subalgebra A of H(U), generated by an infinite
algebraically independent set, such that A ⊂ E(U) ∪ {0}.

The notion of lineable set appeared for the first time in [1], and many
authors have devoted their attention to the study of lineable sets and alge-
brable sets during the last decade. We refer the reader to [2] for a survey of
this recent trend in functional analysis.

2. Lineability and c-lineability of E(U). We recall that U is the
domain of existence of a function f ∈ H(U) if there are no open sets V and

W in E and no function f̃ ∈ H(V ) such that
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(a) V is connected and V 6⊂ U ;
(b) ∅ 6= W ⊂ U ∩ V ;

(c) f̃ = f on W .

Given A ⊂ U , let

ÂH(U) =
{
x ∈ U : |f(x)| ≤ sup

A
|f | for all f ∈ H(U)

}
.

Given x ∈ U , let dU (x) denote the distance from x to the boundary of U ,
and let B(x) denote the ball B(x) = B(x; dU (x)). For A ⊂ U , let dU (A) =
infx∈A dU (x).

Before proving our first theorem, we need two preparatory lemmas.

Lemma 2.1 ([4, Theorem 11.4]). Let E be a separable Banach space
and U be an open subset of E. Then U is a domain of existence if and
only if U is the union of an increasing sequence of open sets Aj such that

dU ((Âj)H(U)) > 0 for every j.

Lemma 2.2. Let E be a Banach space, U be an open subset in E and
(cj)

∞
j=0 be a sequence of positive numbers. Let (Aj)

∞
j=1 be a sequence of open

subsets of U and let (yj)
∞
j=1 be a sequence of points of U such that

U =

∞⋃
j=1

Aj , Aj ⊂ Aj+1, yj 6∈ (Âj)H(U) and yj ∈ (Âj+1)H(U)

for each j ∈ N. Then there exists a sequence (fj)
∞
j=1 of functions in H(U)

such that

f =
∞∑
j=1

fj ∈ H(U), sup
Bj

|fj | ≤ 2−jc0 and |f(yj)| ≥ cj

for each j ∈ N, where Bj := (Âj)H(U).

Proof. First of all, notice that Bj = (B̂j)H(U) for each j ∈ N. Indeed,

we will just prove the nontrivial inclusion (B̂j)H(U) ⊂ Bj . Let z ∈ (B̂j)H(U).
Then

|f(z)| ≤ sup
w∈Bj

|f(w)| ≤ sup
w∈Bj

sup
Aj

|f | = sup
Aj

|f |

for all f ∈ H(U). Hence z ∈ (Âj)H(U) = Bj , as desired.

Since yj 6∈ Bj = (B̂j)H(U) for each j ∈ N, we can find a sequence (ϕj)
∞
j=1

in H(U) and a sequence (bj)
∞
j=1 in R such that

sup
Bj

|ϕj | < bj < |ϕj(yj)|
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for each j ∈ N. Therefore, if we set ψj := ϕj/bj for each j ∈ N, then

sup
Bj

|ψj | < 1 < |ψj(yj)|

for each j ∈ N. It follows that

(2.1) lim
n→∞

sup
Bj

|ψj |n = 0 and lim
n→∞

|ψj(yj)|n =∞

for each j ∈ N. Thus, it follows from (2.1) that there exists n1 ∈ N so that
f1 := ψn1

1 satisfies

sup
B1

|f1| ≤ 2−1c0 and |f1(y1)| ≥ c1 + c0.

By applying (2.1) again, we can find n2 ∈ N such that f2 := ψn2
2 satisfies

sup
B2

|f2| ≤ 2−2c0 and |f2(y2)| ≥ c2 + c0 + |f1(y2)|.

Now, if we apply (2.1) again, we obtain n3 ∈ N so that f3 := ψn3
3 satisfies

sup
B3

|f3| ≤ 2−3c0 and |f3(y3)| ≥ c3 + c0 +
∑
i<3

|fi(y3)|.

Inductively, we find a sequence (fj)
∞
j=1 in H(U) such that

(2.2) sup
Bj

|fj | ≤ 2−jc0 and |fj(yj)| ≥ cj + c0 +
∑
i<j

|fi(yj)|

for each j ∈ N. It follows that the series
∑∞

j=1 fj converges uniformly on
each Bj to a function f ∈ H(U). Furthermore,

(2.3) |f(yj)| =
∣∣∣ ∞∑
i=1

fi(yj)
∣∣∣ ≥ |fj(yj)| −∑

i<j

|fi(yj)| − c0

for each j ∈ N. Now (2.2) and (2.3) imply |f(yj)| ≥ cj for each j ∈ N.

The preceding proof is based on [4, Theorem 11.4].

Theorem 2.3. Let E be a separable Banach space and U be a domain
of existence in E. If D is a countable dense subset of U , then the set

F(U) :=
{
f ∈ H(U) : sup

z∈B(x)
|f(z)| =∞ for all x ∈ D

}
is lineable.

Proof. The proof consists in the construction of a linearly independent
sequence (fk)∞k=1 in F(U) such that F(U) ∪ {0} contains the subspace
spanned by (fk)∞k=1. Let (xj)

∞
j=1 be a sequence in D such that each point of

D appears in (xj)
∞
j=1 infinitely many times. Since U is a domain of existence

in E, Lemma 2.1 shows that U is the union of an increasing sequence of open

sets Aj such that dU ((Âj)H(U)) > 0 for every j ∈ N. Set Bj := (Âj)H(U) for
each j ∈ N, and recall that B(x) := B(x; dU (x)). Notice that B(x) 6⊂ Bj
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for each x ∈ D and j ∈ N. Thus, after replacing (Bj) by a suitable subse-
quence, we can find a sequence (yj)

∞
j=1 in U such that yj ∈ B(xj), yj 6∈ Bj

and yj ∈ Bj+1 for each j ∈ N. Accordingly, by Lemma 2.2 we can find
f1 ∈ H(U) so that |f1(yj)| ≥ j for all j ∈ N. Applying Lemma 2.2 again, we
find f2 ∈ H(U) such that |f2(yj)| ≥ j(1 + |f1(yj)|) for each j ∈ N. Again by

Lemma 2.2, we obtain f3 ∈ H(U) so that |f3(yj)| ≥ j(1 +
∑

i<3 |fi(yj)|) for

each j ∈ N. Continuing, we construct a sequence (fk)∞k=1 in H(U) such that

(2.4) |f1(yj)| ≥ j and |fk(yj)| ≥ j
(

1 +
∑
i<k

|fi(yj)|
)

for each k ∈ N \ {1} and j ∈ N.

We assert that (fk)∞k=1 is as desired. Indeed, first let us prove that
F(U) ∪ {0} contains the subspace spanned by (fk)∞k=1: Let f := λ1f1 +
· · · + λnfn, where λ1, . . . , λn ∈ C, λn 6= 0 and n ∈ N. We recall that each
point of D appears in the sequence (xj)

∞
j=1 infinitely many times. Since

yj ∈ B(xj) for each j ∈ N, limj→∞ |f(yj)| = ∞ implies that f is an un-
bounded function on B(x) for each x ∈ D. Therefore it is sufficient to verify
that limj→∞ |f(yj)| =∞. Indeed,

(2.5) |f(yj)| = |λ1f1(yj) + · · ·+ λnfn(yj)| ≥ |λnfn(yj)| −
∑
i<n

|λifi(yj)|

for each j ∈ N. Thus by (2.4) and (2.5) we easily obtain

|f(yj)| ≥ j|λn|
(

1 +
∑
i<n

|fi(yj)|
)
−
∑
i<n

|λifi(yj)|

= j|λn|+
∑
i<n

(j|λn| − |λi|)|fi(yj)|

for each j∈N, and so |f(yj)|≥j|λn| for j large enough. Hence limj→∞ |f(yj)|
=∞.

Now we prove that the sequence (fk)∞k=1 is linearly independent. Let
λ1f1 + · · · + λnfn = 0, where λ1, . . . , λn ∈ C and n ∈ N. We suppose that
λn 6= 0. Repeating the argument of the previous paragraph, we obtain

0 = |λ1f1(yj) + · · ·+ λnfn(yj)| ≥ j|λn|

for j large enough, a contradiction. It follows that λn = 0. Now suppose
that λn−1 6= 0, so using the same argument we obtain

0 = |λ1f1(yj) + · · ·+ λn−1fn−1(yj)| ≥ j|λn−1|

for j large enough, a contradiction again. Hence we get λn−1 = 0. Continu-
ing, we conclude that λ1 = · · · = λn = 0.

The next lemma is well known and can be found in [4, Theorem 11.4].
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Lemma 2.4. Let E be a Banach space, U be an open subset in E, and D
be a dense subset of U . If f ∈ H(U) is an unbounded function on B(x) =
B(x; dU (x)) for each x ∈ D, then U is the domain of existence of f .

Proof. Suppose that U is not the domain of existence of f . Thus we can
find subsets V and W in U satisfying (a)–(c) of the definition of domain of
existence. Without loss of generality we may assume that W is a connected
component of U ∩ V . Consider a point a ∈ V ∩ ∂U ∩ ∂W , and let r > 0 be
such that B(a; 2r) ⊂ V . Take a point x ∈ D∩W ∩B(a; r). Since x ∈ B(a; r)
and a ∈ ∂U we obtain dU (x) < r, and therefore B(x) ⊂ B(a; 2r) ⊂ V .
Hence B(x) ⊂ U ∩ V and x ∈ W . Since B(x) is connected, it follows that
B(x) ⊂ W . Moreover, since f = f̃ on W and f is unbounded on B(x),
it follows that f̃ is unbounded on B(x) ⊂ B(a; 2r). Hence f̃ is not locally
bounded at a, as r > 0 can be taken arbitrarily small.

Theorem 2.5. Let E be a separable Banach space and U be a domain
of existence in E. Then the set E(U) is lineable.

Proof. By Lemma 2.4, F(U) ⊂ E(U), and therefore Theorem 2.5 follows
from Theorem 2.3.

We finish this section with two theorems which tell us that E(U) is
c-lineable.

Theorem 2.6. Let E be a separable Banach space and U be a domain
of existence in E. If (xj)

∞
j=1 is a dense sequence in U , then the set

F(U) :=
{
g ∈ H(U) : sup

z∈B(xj)
|g(z)| =∞ for all j ∈ N

}
is c-lineable.

Proof. By a result of [5], `2 \ `1 is c-lineable. Let Λ be a c-dimensional
subspace of `2 such that Λ ⊂ (`2 \ `1)∪ {0}. The proof will be based on the
construction of a sequence (gk)∞k=1 in H(U) such that the set

H :=
{ ∞∑

k=1

λkgk : (λk)∞k=1 ∈ Λ
}

satisfies the following conditions:

(i) H is a c-dimensional subspace of H(U).
(ii) H ⊂ F(U) ∪ {0}.

We begin by constructing the sequence (gk)∞k=1. Since U is a domain of
existence in E, Lemma 2.1 shows that U is the union of an increasing se-

quence of open sets Aj such that dU ((Âj)H(U)) > 0 for every j ∈ N. Set

Bj := (Âj)H(U) for each j ∈ N. Since B(xj) 6⊂ Bk for each j ∈ N and k ∈ N,
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we can find a subsequence (B1,j)
∞
j=1 of (Bj)

∞
j=1 and a sequence (y1,j)

∞
j=1 in

U such that

y1,j ∈ B(xj), y1,j 6∈ B1,j and y1,j ∈ B1,j+1

for each j ∈ N. Applying Lemma 2.2 we can find a sequence (g1,j)
∞
j=1 in

H(U) such that

g1 :=

∞∑
j=1

g1,j ∈ H(U), sup
B1,j

|g1,j | ≤ 2−j−1 and |g1(y1,j)| ≥ 1

for every j ∈ N. Likewise, since B(xj) 6⊂ B1,k for every j ∈ N and k ∈ N, we
can find a subsequence (B2,j)

∞
j=1 of (B1,j)

∞
j=1 and a sequence (y2,j)

∞
j=1 in U

such that

B1,2 ⊂ B2,1, y2,j ∈ B(xj), y2,j 6∈ B2,j and y2,j ∈ B2,j+1

for each j ∈ N. Therefore, by Lemma 2.2 again, we obtain a sequence
(g2,j)

∞
j=1 in H(U) such that

g2 :=
∞∑
j=1

g2,j ∈H(U), sup
B2,j

|g2,j | ≤ 2−j−2 and |g2(y2,j)| ≥ 22(1+|g1(y2,j)|)

for every j ∈ N. Repeating this argument we inductively construct a subse-
quence (Bk,j)

∞
j=1 of (Bk−1,j)

∞
j=1, a sequence (yk,j)

∞
j=1 in U , and a sequence

(gk,j)
∞
j=1 in H(U) such that

Bk−1,k ⊂ Bk,1, yk,j ∈ B(xj), yk,j 6∈ Bk,j , yk,j ∈ Bk,j+1,(2.6)

gk :=
∞∑
j=1

gk,j ∈ H(U), sup
Bk,j

|gk,j | ≤ 2−j−k,(2.7)

and

(2.8) |gk(yk,j)| ≥ k2
(

1 +
∑
i<k

|gi(yk,j)|
)

for every k ∈ N \ {1} and j ∈ N.
We assert that (gk)∞k=1 is as desired. Indeed, first

∑∞
k=1 λkgk ∈ H(U)

whenever (λk)∞k=1 ∈ Λ. Since (Bk,1)
∞
k=1 is a subsequence of (Bj)

∞
j=1, it is

sufficient to prove that (
∑n

k=1 λkgk)∞n=1 converges uniformly on Bp,1 for
each p ∈ N. In fact, if z ∈ Bp,1, then

|λigi(z)| ≤
∞∑
j=1

|λigi,j(z)| ≤
∞∑
j=1

|λi|2−i−j = |λi|2−i

for each i ≥ p, and applying the Weierstrass M -test we obtain the desired
result. Hence H is a subspace of H(U).

Next we show that F(U) ∪ {0} contains H. Let g :=
∑∞

k=1 αkgk, where
(αk)∞k=1 ∈ Λ ⊂ `2 \ `1. Since (αm)∞m=1 6∈ `1 and (1/m2)∞m=1 ∈ `1, we have
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(αmm
2)∞m=1 6∈ `∞. Therefore there exists a subsequence (αmi)

∞
i=1 of (αm)∞m=1

such that

(2.9) lim
i→∞
|αmi |m2

i =∞.

Fix j ∈ N. Notice that Bm,j ⊂ Bm,m+1 ⊂ Bm+1,1 for every m > j.
Take the subsequence (αmi)

∞
i=1 given in (2.9), and consider i0 ∈ N such that

mi > j whenever i > i0. Then, using (2.6) and (2.7), we have

|g(ymi,j)| ≥ |αmigmi(ymi,j)| −
∑
k<mi

|αkgk(ymi,j)| −
∑
k>mi

|αkgk(ymi,j)|

≥ |αmigmi(ymi,j)| −
∑
k<mi

|αkgk(ymi,j)| −
∑
k>mi

(
|αk|

∞∑
t=1

|gk,t(ymi,j)|
)

≥ |αmigmi(ymi,j)| −
∑
k<mi

|αkgk(ymi,j)| −
∑
k>mi

(
|αk|

∞∑
t=1

2−k−t
)

= |αmigmi(ymi,j)| −
∑
k<mi

|αkgk(ymi,j)| −
∑
k>mi

2−k|αk|

≥ |αmigmi(ymi,j)| −
∑
k<mi

|αkgk(ymi,j)| − ‖(2−kαk)∞k=1‖1

for each i > i0, and therefore

|g(ymi,j)| ≥ |αmi |m2
i

(
1+
∑
k<mi

|gk(ymi,j)|
)
−
∑
k<mi

|αkgk(ymi,j)|−‖(2−kαk)∞k=1‖1

≥ |αmi |m2
i

(
1+

∑
k<mi

|gk(ymi,j)|
)
− sup

k
|αk|

∑
k<mi

|gk(ymi,j)| − ‖(2−kαk)∞k=1‖1

= |αmi |m2
i + (|αmi |m2

i − sup
k
|αk|)

∑
k<mi

|gk(ymi,j)| − ‖(2−kαk)∞k=1‖1

for each i > i0, where the first inequality follows from (2.8). Thus (2.9) shows
that |g(ymi,j)| ≥ |αmi |m2

i − ‖(2−kαk)∞k=1‖1 for i large enough. Therefore,
applying (2.9) again, we obtain limi→∞ |g(ymi,j)| =∞. Since ymi,j ∈ B(xj)
for every i, we conclude that g is unbounded on B(xj). Since j ∈ N is
arbitrary, it follows that g ∈ F(U).

The subspace H is c-dimensional, since the linear transformation T :
Λ→ H(U) defined by T ((λk)∞k=1) :=

∑∞
k=1 λkgk is injective and T (Λ) = H.

Indeed, we verify the first assertion: Let (α1,k)∞k=1 6= (α2,k)∞k=1 in Λ. Suppose
that T ((α1,k)∞k=1) = T ((α2,k)∞k=1). Since (α1,k − α2,k)∞k=1 ∈ `2 \ `1, we can
find a subsequence (α1,mi − α2,mi)

∞
i=1 such that

lim
i→∞
|α1,mi − α2,mi |m2

i =∞.
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Thus repeating the argument of the previous paragraph, we obtain

|T ((α1,k)∞k=1)(ymi,1)− T ((α2,k)∞k=1)(ymi,1)|
≥ |α1,mi − α2,mi |m2

i − ‖(2−k(α1,k − α2,k))∞k=1‖1
for i large enough, a contradiction. Therefore T is injective.

Theorem 2.7. Let E be a separable Banach space and U be a domain
of existence in E. Then the set E(U) is c-lineable.

Proof. By Lemma 2.4, F(U) ⊂ E(U), and therefore Theorem 2.7 follows
from Theorem 2.6.

It is clear that Theorem 2.5 follows from Theorem 2.7, and we could
have omitted the proof of Theorem 2.5. However, we have decided to give
both proofs because the proof of Theorem 2.5 is much simpler and the ideas
involved help to understand better the proof of Theorem 2.7.

3. Algebrability of E(U)

Theorem 3.1. Let E be a separable Banach space, and let U be a domain
of existence in E. If D is a countable dense subset of U , then the set

F(U) :=
{
f ∈ H(U) : sup

z∈B(x)
|f(z)| =∞ for all x ∈ D

}
is algebrable. In particular, F(U) is lineable.

Proof. We shall construct an algebraically independent sequence (fk)∞k=1

in F(U) such that F(U)∪{0} contains the subalgebra generated by (fk)∞k=1.

We begin by repeating an argument of the proof of Theorem 2.3. Let (xj)
∞
j=1

be a sequence in D such that each point of D appears in (xj)
∞
j=1 infinitely

many times. Since U is a domain of existence in E, it follows from Lemma 2.1
that U is the union of an increasing sequence of open sets Aj such that

dU ((Âj)H(U)) > 0 for every j ∈ N. Set Bj := (Âj)H(U) for each j ∈ N, and
notice that B(x) 6⊂ Bj for each x ∈ D and j ∈ N. Thus, after replacing
(Bj)

∞
j=1 by a suitable subsequence, we can find a sequence (yj)

∞
j=1 in U such

that yj ∈ B(xj), yj 6∈ Bj and yj ∈ Bj+1 for each j ∈ N. Then, by applying
Lemma 2.2, we can inductively construct a sequence (fk)∞k=1 in H(U) such
that

(3.1) |f1(yj)| ≥ j and |fk(yj)| ≥
∏
i<k

|fi(yj)|j

for each k ∈ N \ {1} and j ∈ N.
Now let us show that (fk)∞k=1 is as desired. First we shall see that

F(U) ∪ {0} contains the subalgebra A generated by (fk)∞k=1, i.e. the set
of all functions of the form P (f1, . . . , fn), where n ∈ N and P is a polyno-
mial in n variables without constant term. Observe that A\{0} =

⋃∞
N=1AN ,
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where

AN :=
{ N∑

n=1

λn
∏
s∈Sn

f
pn,s
s : λn ∈ C \ {0}, ∅ 6= Sn ⊂ N finite and pn,s ∈ N

}
for everyN ∈ N. For each

∑N
n=1 λn

∏
s∈Sn

f
pn,s
s ∈ AN , we can suppose that if

n 6= m then there does not exist a constant α ∈ C such that λn
∏

s∈Sn
f
pn,s
s =

αλm
∏

s∈Sm
f
pm,s
s .

We shall prove that AN ⊂ F(U) for each N ∈ N, so that A ⊂ F(U)∪{0}.
Since yj ∈ B(xj) for each j ∈ N, limj→∞ |f(yj)| = ∞ implies that f is
unbounded on B(x) for each x ∈ D. Thus we just need to verify the following
assertion:

(3.2) N ∈ N, f ∈ AN ⇒ lim
j→∞

|f(yj)| =∞.

We will prove it by induction on N . It is clearly true for N = 1. We suppose
it is true for all J ≤ N , and we take

(3.3) f :=

N+1∑
n=1

λn
∏
s∈Sn

f
pn,s
s ∈ AN+1.

Set m0 := max
⋃N+1

k=1 Sk. First we consider the case where fm0 does not
appear in some term in the summation (3.3). Without loss of generality we
can assume that fm0 does not appear in the first M terms in (3.3), where
M ∈ {1, . . . , N}. Thus we can write

f =
M∑
n=1

(
λn
∏
s∈Sn

f
pn,s
s

)
+ hfm0 ,

where

h :=
N+1∑

n=M+1

[
λn

∏
s∈Sn\{m0}

(
f
pn,s
s f

pn,m0−1
m0

)]
.

Notice that either h ∈ C \ {0} or h = h1 +α, where h1 ∈ AN−M ∪ AN+1−M
and α ∈ C. In the second case, by the induction hypothesis we obtain
limj→∞ |h1(yj)| =∞, and so limj→∞ |h(yj)| =∞. Thus, we can always find
δ > 0 and j0 ∈ N such that |h(yj)| ≥ δ whenever j ≥ j0. Furthermore,

|f(yj)| =
∣∣∣ M∑
n=1

(
λn
∏
s∈Sn

f
pn,s
s (yj)

)
+ h(yj)fm0(yj)

∣∣∣
≥ |h(yj)fm0(yj)| −

∣∣∣ M∑
n=1

(
λn
∏
s∈Sn

f
pn,s
s (yj)

)∣∣∣
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for each j ∈ N. Accordingly, by using (3.1) we obtain

|f(yj)| ≥ |h(yj)|
∏
i<m0

|fi(yj)|j −
M∑
n=1

(
|λn|

∏
s∈Sn

|fs(yj)|pn,s

)

=
M∑
n=1

[(
|h(yj)|
M

∏
i<m0

|fi(yj)|j−pn,i − |λn|
)( ∏

s∈Sn

|fs(yj)|pn,s

)]

≥
M∑
n=1

[(
δ

M

∏
i<m0

|fi(yj)|j−pn,i − |λn|
)( ∏

s∈Sn

|fs(yj)|pn,s

)]
for every j ≥ j0 + max{pn,s : n = 1, . . . ,M and s ∈ Sn}; we assume pn,i = 0
whenever i 6∈ Sn. Since

lim
j→∞

∏
i<m0

|fi(yj)|j−pn,i = lim
j→∞

∏
s∈Sn

|fs(yj)|pn,s =∞

for every n = 1, . . . ,M , it follows that limj→∞ |f(yj)| =∞.
Now we assume that fm0 appears in all terms in the summation (3.3).

In this case we can write

f = g1fm0 ,

where

g1 :=
N+1∑
n=1

[
λn

∏
s∈Sn\{m0}

(f
pn,s
s f

pn,m0−1
m0 )

]
.

Thus either g1 ∈ AN+1 or g1 = h1 + α1, where h1 ∈ AN and α1 ∈ C \ {0}.
In the second case, the result follows by induction hypothesis. Otherwise,
we set m1 := max{k : fk appears in some term of g1}. If fm1 does not ap-
pear in some term of g1, then limj→∞ |g1(yj)| =∞ by the argument of the
previous paragraph. Since |f(yj)| ≥ |g1(yj)| for each j ∈ N, we deduce that
limj→∞ |f(yj)| = ∞. On the other hand, if fm1 appears in all terms of g1,
we can write

f = g2fm1fm0 ,

where

g2 :=

N+1∑
n=1

[
λn

∏
s∈Sn\{m0,m1}

(
f
pn,s
s f

pn,m0−1
m0 f

pn,m1−1
m1

)]
.

Therefore either g2 ∈ AN+1 or g2 = h2 + α2, where h2 ∈ AN and α2 ∈
C \ {0}. In the second case the result follows by induction hypothesis. Oth-
erwise, we set m2 := max{k : fk appears in some term of g2}. If fm2 does
not appear in some term of g2, then again limj→∞ |g2(yj)| = ∞. Hence
limj→∞ |f(yj)| = ∞. Repeating this argument finitely many times we de-
duce the desired result, and thus the proof by induction is complete.
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We assert that the sequence (fk)∞k=1 is algebraically independent. Indeed,
as we have seen above,

(3.4) f :=
N∑

n=1

λn
∏
s∈Sn

f
pn,s
s ∈ AN ⇒ lim

j→∞
|f(yj)| =∞.

Therefore, we cannot have
∑N

n=1 λngn = 0 with λn 6= 0 and gn’s distinct
generators of the subalgebra generated by (fk)∞k=1.

Theorem 3.2. Let E be a separable Banach space and U be a domain
of existence in E. Then the set E(U) is algebrable. In particular, E(U) is
lineable.

Proof. By Lemma 2.4, F(U) ⊂ E(U), and therefore Theorem 3.2 follows
from Theorem 3.1.

In Theorem 3.1 we have shown that the set of functions in H(U) which
are unbounded on each ball B(x), with x ∈ D, is algebrable. This resembles
a result of J. López-Salazar [3], which asserts thatH(E)\Hb(E) is algebrable
whenever E is an infinite-dimensional Banach space.
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