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On Hamel bases in Banach spaces
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Juan Carlos Ferrando (Elche)

Abstract. It is shown that no infinite-dimensional Banach space can have a weakly
K-analytic Hamel basis. As consequences, (i) no infinite-dimensional weakly analytic sep-
arable Banach space E has a Hamel basis C-embedded in E(weak), and (ii) no infinite-
dimensional Banach space has a weakly pseudocompact Hamel basis. Among other results,
it is also shown that there exist noncomplete normed barrelled spaces with closed discrete
Hamel bases of arbitrarily large cardinality.

1. Preliminaries. Bartoszyński et al. proved in [3, Theorem 3.10] that
no infinite-dimensional separable Banach space has an analytic Hamel basis.
In this paper this result is extended by showing that no infinite-dimensional
Banach E space has a weakly K-analytic Hamel basis, i.e. a Hamel basis
which is a K-analytic topological space under the relative weak topology
of E. In the proof of this result an indirect approach, based on some tech-
niques of Cp-theory, is used. Hence no infinite-dimensional weakly analytic
separable Banach space E has a Hamel basis C-embedded in E(weak), and
no infinite-dimensional Banach space has a weakly pseudocompact Hamel
basis. Some properties of bounded Hamel bases are investigated. We also
show that there are noncomplete normed barrelled spaces with an arbitrarily
large closed discrete Hamel basis. Other results are (i) no infinite-dimensional
separable Banach space has a Hamel basis which is covered by an ordered
family {Kα : α ∈ NN} of weakly compact sets, and (ii) if a locally convex
space E has a Hamel basis X covered by an ordered family {Aα : α ∈ NN}
consisting of weakly topologically bounded sets, then υX (the realcompact-
ification of X) is countably K-determined. For the definitions not included
in the paper we refer the reader to [4, 7, 8, 12].

2. On weakly K-analytic Hamel bases. If X is a completely regular
Hausdorff space, we denote by C(X) the real linear space of all real-valued
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functions defined on X, and by Cp(X) the space C(X) equipped with the
pointwise convergence topology. The topological dual of Cp(X) is denoted by
L(X), or by Lp(X) when provided with the weak∗ topology. The linear space
C(X) equipped with the compact-open topology will be denoted by Cc(X).
All topological spaces we use are supposed to be Hausdorff. If E is a real
linear space and X a Hamel basis of E, we shall frequently identify E with
L(X) algebraically by means of the mapping x 7→ δx, where δx : C(X)→ R
denotes the evaluation map at x ∈ X given by δx(f) = f(x), extended by
linearity to E.

Lemma 2.1. Let (E, τ) be a real locally convex space which is the locally
convex hull of a family of locally convex Baire spaces. If there exists in E a
weakly K-analytic Hamel basis, then the weak∗ dual (E′, σ(E′, E)) of E is a
Cp-space.

Proof. Assume that X is a weakly K-analytic Hamel basis of E and
consider F = C(X) as the topological dual of Lp(X). If u ∈ E′, let f :=
u|X ∈ C(X). If uf stands for the linear extension (so called linearization)
of f to the whole of L(X) = E defined by 〈

∑n
i=1 αiδxi , uf 〉 =

∑n
i=1 αif(xi),

then clearly uf = u. Since uf is a continuous linear functional on Lp(X) (see
[2, Proposition 0.5.11]), we see that u ∈ F . Hence E′ ⊆ F .

Now consider the identity map idE : (E, τ) → (E, σ(E,F )). Given
that obviously idE : (E, τ) → (E, σ(E,E′)) is continuous and σ(E,E′) ≤
σ(E,F ), we conclude that idE has closed graph in (E, τ) × (E, σ(E,F )).
Furthermore, since X is K-analytic under the relative weak topology of E,
it follows from [2, Proposition 0.5.14] that (E, σ(E,F )) = Lp(X) is also a
K-analytic space. So, bearing in mind that (E, τ) is the locally convex hull
of a family of locally convex Baire spaces, an application of [12, I.4.3.(17)]
shows that idE is (τ, σ(E,F ))-continuous, thus weakly continuous. This im-
plies that F ⊆ E′. Thus we conclude that E′ = F , which ensures that
Cp(X) = (E′, σ(E′, E)), as stated.

Lemma 2.2. If X is a completely regular µ-space, then the compact-open
topology τc on C(X) coincides with the strong topology β(C(X), L(X)).

Proof. If E stands for the topological dual of Cc(X), clearly β(C(X), E)
is a locally convex topology on C(X) stronger than β(C(X), L(X)). More-
over, since X is a µ-space, Cc(X) is barrelled by the Nachbin–Shirota theo-
rem. Consequently, the compact-open topology coincides with β(C(X), E).
So the compact-open topology τc on C(X) is stronger than β(C(X), L(X)).
On the other hand, if U is a neighborhood of the origin in τc, there are a com-
pact set K in X and ε > 0 such that {f ∈ C(X) : supx∈K |f(x)| ≤ ε} ⊆ U ,
i.e. εδ(K)0 ⊆ U , where δ : X → L(X) is the canonical embedding map
defined by δ(x) = δx and the polar δ(K)0 of δ(X) ⊆ L(X) is with respect
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to the dual pair 〈L(X), C(X)〉. Since K is a compact subset of X, δ(K)
is a compact (hence bounded) subset of the locally convex space Lp(X),
which shows that the strong topology β(C(X), L(X)) is stronger than the
compact-open topology τc, so that both topologies coincide.

Theorem 2.3. No infinite-dimensional Banach space has a weakly K-
analytic Hamel basis.

Proof. Notice that the theorem need only be proved for real Banach
spaces. So, assume for contradiction that there exists an infinite-dimensional
real Banach space E with a weakly K-analytic Hamel basis X. According
to Lemma 2.1, the weak∗ dual (E′, σ(E′, E)) of E can be identified with
the function space Cp(X). Then, since X is a µ-space with the relative weak
topology of E, Lemma 2.2 applies to show that the strong dual (E′, β(E′, E))
of E coincides with Cc(X). This means that Cc(X) is a Banach space, a fact
that requires X to be a compact subset of E(weak) [1, Theorem 13]. In fact,
if BE′ denotes the closed unit ball of the Banach space (E′, β(E′, E)) and
K is a compact subset of X such that{

f ∈ C(X) : sup
x∈K
|f(x)| < ε

}
⊆ BE′

for some ε > 0, the complete regularity of X along with the boundedness of
BE′ easily yield X = K. Given that E is a Banach space, the Krein–Šmulian
theorem [9, 2.8.14 Theorem] ensures that the closed absolutely convex cover
Q = abx(X) ofX is also weakly compact. Since E =

⋃∞
n=1 nQ and E with its

original topology is a locally convex Baire space, if BE stands for the closed
unit ball of E there is 0 < ε < 1 such that εBE ⊆ Q, which implies that
the ball BE is weakly compact. Therefore E is reflexive and consequently
Cc(X) = (E′, β(E′, E)) is also a reflexive Banach space. Given that E is
infinite-dimensional, it turns out that Cc(X) must be an infinite-dimensional
Banach space as well. The latter guarantees that Cc(X) contains a copy of c0,
which contradicts the reflexivity of Cc(X).

Corollary 2.4. No infinite-dimensional weakly analytic separable Ba-
nach space E has a Hamel basis which is C-embedded in E(weak).

Proof. Assume that E is an infinite-dimensional separable Banach space
E with a Hamel basis X which is C-embedded in E(weak). Since the cardi-
nality of E is c and E(weak) is submetrizable, every topological subspace of
E(weak) is realcompact. Since X is assumed to be C-embedded in E(weak),
it turns out that XυE(weak), where the closure is in the Hewitt realcompact-
ification υE(weak) of E(weak), coincides with υX, the realcompactification
of X equipped with the relative weak topology (see [6, 8.10(a)]). Since X
and E(weak) are realcompact, it follows that X is closed in E(weak). Con-
sequently, X is weakly analytic, which contradicts Theorem 2.3.
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Corollary 2.5. No infinite-dimensional Banach space has a weakly
pseudocompact Hamel basis. In particular, no infinite-dimensional Banach
space has a weakly countably compact Hamel basis.

Proof. IfX is a pseudocompact set of a Banach space E in its weak topol-
ogy, then X(weak) is an Eberlein compact set [2, IV.5.6 Corollary]. Conse-
quently, according to Theorem 2.3, no infinite-dimensional Banach space E
can have a weakly pseudocompact Hamel basis X.

Proposition 2.6. Let E be a normed space. If either E is not weakly
K-analytic or the strong dual (E′, β(E′, E)) of E is not weakly K-analytic,
then E has no weakly K-analytic Hamel basis.

Proof. We may assume that E is a real normed space. IfX is a weaklyK-
analytic Hamel basis of the normed space E and n ∈ N, the continuity of the
mapping ϕn : Xn × Rn → (E, σ(E,E′)) given by ϕn(x1, . . . , xn, a1, . . . , an)
=
∑n

i=1 ai xi along with the fact that E =
⋃∞
n=1 ϕn(X

n × Rn) ensures that
E is weakly K-analytic.

For the second statement assume that there is in E a weakly K-analytic
Hamel basis X. Reasoning as in the first part of the proof of the theorem
above, use Lemma 2.1 to deduce that (E′, σ(E′, E)) = Cp(X) and Lemma
2.2 to show that (E′, β(E′, E)) = Cc(X). These facts ensure that X is a
weakly compact subset of the normed space E, hence an Eberlein compact
set. In this case, a classical result of Talagrand that asserts that if X is
Eberlein compact then the Banach space Cc(X) is weakly K-analytic [10]
applies to show that the space (E′, σ(E′, E′′)) is K-analytic, contradicting
the hypotheses.

Example 2.7. The converse of the first statement of the previous propo-
sition fails. In fact every infinite-dimensional weakly compactly generated
Banach space E is weakly K-analytic [10], but by Theorem 2.3 no Hamel
basis of E is weaklyK-analytic. In particular, no infinite-dimensional Hilbert
space has a weakly closed Hamel basis.

3. On bounded Hamel bases. If X is completely regular, we denote
by C∗(X) the real linear subspace of C(X) consisting of all bounded func-
tions. It becomes a Banach space when equipped with the norm ‖f‖∞ =
sup{|f(x)| : x ∈ X}. On the other hand, we shall denote by Lp∗(X) the space
L(X) provided with the weak locally convex topology σ(L(X), C∗(X)). Al-
though Lp(X) is K-analytic if and only if X is, and Lp∗(X) is K-analytic if
X is, X need not be K-analytic if Lp∗(X) is K-analytic.

Theorem 3.1. Let X be a bounded Hamel basis of a real Banach space E,
equipped with the relative weak topology. If either

• Lp∗(X) is K-analytic, or
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• Lp∗(X) is sequentially complete,

then E is (isomorphic to) a predual of C∗(X).

Proof. Identifying E and L(X) in the usual way and keeping in mind
that, by hypothesis, the restriction u|X of each continuous linear functional
u on E is bounded on X, we see that E′ ⊆ C∗(X) ⊆ C(X). Denoting by BE
the closed unit ball of the original Banach space (E, ‖ · ‖), we may assume
without loss of generality that X ⊆ BE .

Put F := C(X) and G = C∗(X) and consider the absolutely convex set

P := abx
σ(E,G)

(X),

i.e. the σ(E,G)-closure of the absolutely convex hull of X. Observe that
E =

⋃∞
n=1 nP . If z =

∑n
i=1 ai xi ∈ abx(X) and f ∈ C∗(X), then

|〈z, uf 〉| =
∣∣∣〈 n∑

i=1

ai xi, uf

〉∣∣∣ ≤ n∑
i=1

|ai| |f(xi)| ≤ ‖f‖∞,

which implies that P is a bounded set in (E, σ(E,G)). If H stands for the
topological dual of (C∗(X), ‖ · ‖∞), the fact that

P 0 = X0 =
{
f ∈ C∗(X) : sup

x∈X
|f(x)| ≤ 1

}
= {f ∈ C∗(X) : ‖f‖∞ ≤ 1}

under the dual pair 〈E,G〉 tells us that the strong topology β(G,E) coincides
with the norm-topology β(G,H) of C∗(X).

For the proof of the first statement note that the identity map idE : E →
Lp∗(X) has closed graph, which implies that E′ = C∗(X) = G. Hence the
strong dual (E′, β(E′, E)) of (E, ‖ · ‖) coincides with (C∗(X), ‖ · ‖∞).

Concerning the second statement denote by ‖ · ‖P the Minkowski func-
tional of P . We claim that (E, ‖ · ‖P ) is a Banach space. Indeed, if {zn}∞n=1

is a Cauchy sequence in (E, ‖ · ‖P ), given ε > 0 there exists n0 ∈ N such
that

(3.1) zm − zn ∈ εP

for m,n ≥ n0. Since P is σ(E,G)-bounded, the topology on E induced
by the Minkowski norm ‖ · ‖P is stronger than the topology σ(E,G) and
{zn}∞n=1 is a σ(E,G)-Cauchy sequence. Given that Lp∗(X) is assumed to be
sequentially complete, (E, σ(E,G)) is a sequentially complete locally convex
space. Consequently, there exists z ∈ E such that zn → z in E in the weak
topology σ(E,G). Letting m → ∞ in σ(E,G) in (3.1) we get z − zn ∈ εP
for all n ≥ n0, which shows that zn → z in the norm ‖ · ‖P . So (E, ‖ · ‖P )
is a Banach space.

Since (E, ‖ · ‖)′ = E′ ⊆ G ⊆ (E, ‖ · ‖P )′, the identity map from
(E, ‖ · ‖) onto (E, ‖ · ‖P ) has closed graph, which allows us to conclude
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that E′ = C∗(X). So we may reason as in the final part of the proof of the
first statement to deduce that (E, ‖ · ‖) is a predual of (C∗(X), ‖ · ‖∞).

Corollary 3.2. No infinite-dimensional reflexive real Banach space E
has a bounded Hamel basis X such that Lp∗(X) is K-analytic or sequentially
complete when X is endowed with the relative weak topology. In particular,
no infinite-dimensional real Banach space E has a Hamel basis X such that
(C∗(X), µ(C∗(X), L(X))) is barrelled.

Proof. If E is reflexive andX is a bounded Hamel basis such that Lp∗(X)
is K-analytic or sequentially complete, Theorem 3.1 implies that E coincides
with the topological dual of the Banach space C∗(X), where X is equipped
with the relative weak topology. This means that L(X) is algebraically iso-
morphic to the space rca(Σ) of all regular countably additive real-valued
measures (Radon measures) on the Borel σ-algebra Σ of the Stone–Čech
realcompactification βX ofX(weak). So every Radon measure µ on βX must
be a linear combination of Dirac measures concentrated at points of X. This
forces X(weak) to be compact, so Theorem 2.3 applies to show that E must
be finite-dimensional.

Regarding the second statement, if (C∗(X), µ(C∗(X), L(X))) is barrelled
then Lp∗(X) is sequentially complete; but, as a consequence of the closed
graph theorem, E is reflexive.

4. Barrelled normed spaces with closed Hamel bases. It is shown
in [3, Theorem 3.8] that there are Hilbert spaces of arbitrarily large cardi-
nality that have a discrete and closed (necessarily not weakly closed) Hamel
basis. Next we shall see that there are also noncomplete normed barrelled
spaces with closed Hamel bases of arbitrarily large cardinality.

Let Ω be a nonempty set and Σ a σ-algebra of subsets of Ω. Let us denote
by `∞0 (Σ) the linear space of all real-valued Σ-simple functions f defined on
Ω equipped with the supremum norm

‖f‖∞ = sup{|f(ω)| : ω ∈ Ω}.

As is well known, `∞0 (Σ) is a nonultrabornological barrelled space, which,
for Σ infinite, is not complete. Moreover, setting Z = {χA : A ∈ Σ} one has
`∞0 (Σ) = span(Z).

Lemma 4.1. Z is a closed subset of `∞0 (Σ) in the norm topology.

Proof. Let y ∈ Z, where the closure is in the norm of `∞0 (Σ). Given
0 < ε < 1/2, choose x ∈ Z such that ‖x− y‖∞ < ε.

Suppose that y =
∑n

i=1 aiχAi , where {Ai : 1 ≤ i ≤ n} is a partition of Ω
into elements of Σ with ai 6= aj whenever i 6= j, and x = χB with B ∈ Σ.
Given a fixed i ∈ {1, . . . , n} we claim that either B ∩ Ai = ∅ or Ai ⊆ B. In
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fact, otherwise there are ω ∈ Ai \B and ε ∈ Ai ∩B and hence

1/2 > ε > ‖x− y‖∞ ≥ |x(ω)− y(ω)| = |y(ω)|,
1/2 > ε > ‖x− y‖∞ ≥ |x(ε),−y(ε)| ≥ 1− |y(ε)|

which yields the contradiction

1/2 > |y(ω)| = |y(ε)| > 1− 1/2 = 1/2.

This shows that there are Ai1 , . . . , Aim such that B =
⋃m
j=1Aij whereas

B ∩Aj = ∅ if j /∈ {i1, . . . , im}.
Let 0 < ε1 < 1/2 be such that 2ε1 < min{|ai − aj | : 1 ≤ i, j ≤ n, i 6= j}

and select z1 = χE with E ∈ Σ so that ‖y − z1‖∞ < ε1. Note that if there
are i, j ∈ {1, . . . , n} with Ai, Aj ⊆ E and i 6= j, then choosing ωi ∈ Ai and
ωj ∈ Aj we get the contradiction

|ai − aj | = |y(ωi)− y(ωj)| = |y(ωi)− z1(ωi)|+ |z1(ωj)− y(ωj)| < |ai − aj |
since z1(ωi) = z1(ωj). Thus there is a unique k ∈ {1, . . . , n} with Ak = E
and Aj ∩E = ∅ if j 6= k, which implies that |1− ak| < 1/2 and |ai| < 1/2 if
i 6= k.

Now if 0 < ε2 < 1/4 and ‖y − z2‖∞ < ε2 with z2 = χF , it follows that
F = E. Indeed, according to the previous argument, there is j ∈ {1, . . . , n}
with Aj = F and Ai ∩ F = ∅ if i 6= j. But necessarily j = k since otherwise
on the one hand |aj | < ε1 < 1/2 and on the other hand |1− aj | < ε2 < 1/4,
a contradiction. Consequently, |1− ak| < 1/4 and |ai| < 1/4 if i 6= k.

Proceeding by recurrence we get y =
∑

i 6=k ai χAi +akχE with |1−ak| <
1/2l and |ai| < 1/2l if i 6= k for all l ∈ N, which means that y = χE ∈ Z.

Theorem 4.2. There exists a closed and discrete Hamel basis in `∞0 (Σ).

Proof. By Zorn’s lemma there is a subset X of Z that is a Hamel basis
of `∞0 (Σ). We claim that X is a closed and discrete subset of `∞0 (Σ).

In fact, according to Lemma 4.1, in order to prove closedness we need
only show that X is a closed set of Z. But if χB ∈ X

Z , there is χA ∈ X
such that ‖χB − χA‖ < 1/2, which implies that A = B. Therefore X is
closed in `∞0 (Σ). On the other hand, if 0 < ε < 1 for each χA ∈ X the ball
B(χA, ε) of `∞0 (Σ) with centre χA and radius ε contains no other function
of X. Consequently, the set X is a discrete topological subspace of `∞0 (Σ)
in the norm topology.

If Ω is an infinite set and Σ coincides with the σ-algebra 2Ω of all subsets
of Ω, by the previous theorem there exists a subfamily Λ of Σ such that
X = {χA : A ∈ Λ} is a closed discrete Hamel basis of `∞0 (Σ).

Proposition 4.3. If Ω is an infinite set and Σ coincides with the
σ-algebra 2Ω of all subsets of Ω, then the Hamel basis X = {χA : A ∈ Λ} of
the real space `∞0 (Σ) is closed and discrete but not weakly K-analytic.
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Proof. If X is weakly K-analytic, by Proposition 2.6 the space `∞0 (2Ω) is
weakly K-analytic as well. Since `∞0 (2Ω) is a dense subspace of the Banach
space `∞(Ω) = C(βΩ), where βΩ stands for the Stone–Čech compactifica-
tion of Ω equipped with the discrete topology, it follows that βΩ embeds
in the weak∗ dual rca(βΩ)(weak∗) of C(βΩ), where rca(βΩ) denotes the
Banach space of all regular countably additive (real-valued) measures on the
Borel σ-algebra of βΩ. Since βΩ = Ω

βΩ and no µ ∈ βΩ \ Ω is the limit
of a sequence in Ω, then βΩ is not a Fréchet–Urysohn space, so βΩ is not
Corson compact. Consequently, βΩ is homeomorphic to some non-Talagrand
compact subset of the weak∗ dual of `∞0 (2Ω). This is a contradiction, since
we have seen that `∞0 (2Ω) is weakly K-analytic, and it is well-known that
every compact set of the weak∗ dual of a K-analytic space is a Talagrand
compact.

5. Further results. In this section we shall frequently use reference [5],
from which we recall some definitions. A covering {Aα : α ∈ Σ} of a set X
indexed by a subset Σ of NN is called a Σ-covering of X. An NN-covering
{Aα : α ∈ NN} of X with the additional property that Aα ⊆ Aβ if α ≤ β
pointwise, i.e. α(i) ≤ β(i) for every i ∈ N, is called a resolution of X.
Each K-analytic space X has a resolution consisting of compact sets [11].
If a locally convex space E has a Hamel basis X which admits a resolution
consisting of weakly compact sets, then [5, Lemma 29] ensures that υX is
K-analytic.

Proposition 5.1. No infinite-dimensional separable Banach space E
has a Hamel basis with a resolution consisting of weakly compact sets.

Proof. Since E is separable, every subset of E and in particular every
Hamel basis of E is weakly realcompact. Hence, if X were a Hamel basis
with a resolution as in the statement, the preceding considerations would
ensure that X is weakly K-analytic (in fact, weakly analytic), contradicting
Theorem 2.3.

A Σ-covering {Aα : α ∈ Σ} of a locally convex space E is said to have
limited envelope if

⋃
{Aαn : n ∈ N} is a bounded set of E whenever {αn} is

a convergent sequence in Σ, the latter considered as a topological subspace
of the product space NN where N is endowed with the discrete topology
[5, Proposition 9]. On the other hand, a subset A of a topological space X
is called topologically bounded if f(A) is always a bounded subset of R for
every f ∈ C(X) (see [2, Chapter 0]). In particular, every compact subset
K of a topological space X is topologically bounded. The following result
examines what happens if a locally convex space has a weak Hamel basis
with a resolution of topologically bounded sets.
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Theorem 5.2. Let E be a locally convex space and X be a Hamel basis
of E. If X(weak) has a resolution consisting of topologically bounded sets
then its realcompactification υX is countably K-determined.

Proof. Assume that E is real and let {Aα : α ∈ NN} be a resolution
of X(weak) made up of topologically bounded sets. If δ is the canonical
embedding of X(weak) in Lp(X), then {δ(Aα) : α ∈ NN} is a covering of
δ(X) in Lp(X) made up of precompact, hence (linearly) bounded, sets. For
α ∈ NN put α′(i) := α(i+ 1) for all i ∈ N and define

Bα =
{ n∑
i=1

aiδxi : xi ∈ Aα′ ,
n∑
i=1

|ai| ≤ α(1), ∀ai ∈ R, 1 ≤ i ≤ n, ∀n ∈ N
}
.

One can easily check that
⋃
{Bα : α ∈ NN} = L(X) and, since Aα ⊆ Aβ if

α ≤ β, that Bα ⊆ Bβ if α ≤ β. Moreover, each Bα is a bounded subset of
the locally convex space Lp(X). Indeed, if f ∈ C(X) and uf stands as usual
for the linearization of f then∣∣∣uf( n∑

i=1

ai δxi

)∣∣∣ ≤ n∑
i=1

|ai| |f(xi)| ≤ α(1) sup
x∈Aα

|f(x)|.

Consequently, {Bα : α ∈ NN} is a resolution of Lp(X) consisting of bounded
sets. According to [5, Proposition 13] this implies that Lp(X) has an NN-
covering with limited envelope. So [5, Lemma 2] applies again to get a count-
ably K-determined space Z such that Cp(X) ⊆ Z ⊆ RL(X), which allows
using [5, Proposition 10] to deduce that Cp(X) has a Σ-covering with limited
envelope. Then [5, Theorem 3] shows that υX is countably K-determined.
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