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Convergence of Taylor series in Fock spaces

by

Haiying Li (Xinxiang)

Abstract. It is well known that the Taylor series of every function in the Fock space
F pα converges in norm when 1 < p < ∞. It is also known that this is no longer true when
p = 1. In this note we consider the case 0 < p < 1 and show that the Taylor series of
functions in F pα do not necessarily converge “in norm”.

1. Introduction. For α > 0 we consider the Gaussian probability mea-
sure

dλα(z) =
α

π
e−α|z|

2
dA(z),

where dA is the Euclidean area measure on the complex plane C. For
0 < p ≤ ∞ we introduce the space Lpα consisting of all Lebesgue measur-

able functions f such that the function f(z)e−α|z|
2/2 is in Lp(C, dA). When

0 < p <∞, we write

‖f‖p,α =

{
pα

2π

�

C

|f(z)e−α|z|
2/2|p dA(z)

}1/p

for f ∈ Lpα. For f ∈ L∞α we write

‖f‖∞,α = ess sup{|f(z)|e−α|z|2/2 : z ∈ C}.
It is clear that for 0 < p <∞ we have

Lpα = Lp(C, dλpα/2).
But L∞α 6= L∞(C).

Let H(C) be the family of entire functions on C. For 0 < p ≤ ∞ we
define the spaces F pα = H(C)∩Lpα. These are called Fock spaces. We mention
here that the polynomials are dense in F pα when 0 < p < ∞ and each F pα
is closed in Lpα. When 1 ≤ p ≤ ∞, Lpα is a Banach space with the norm
‖f‖p,α. When 0 < p < 1, Lpα is a complete metric space with the distance
d(f, g) = ‖f − g‖pp,α. Therefore, F pα is a Banach space when 1 ≤ p ≤ ∞, and
it is an F-space under d(f, g) = ‖f − g‖pp,α when 0 < p < 1 (see [4, 7, 12]).
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Let f∞α denote the space of entire functions f(z) such that

lim
z→∞

f(z)e−α|z|
2/2 = 0.

Obviously, f∞α is a closed subspace of F∞α , so f∞α is a Banach space. In
particular, the polynomials are dense in f∞α (see [12]).

There is another definition of Fock spaces using weights that do not de-
pend on p. For 0 < p <∞, denote Lpα = Lp(e−α|z|

2
dA(z)) and let Fpα be the

subspace of Lpα consisting of entire functions. This seems to be the less com-
mon usage; it was adopted e.g. in Zhu [10] and Garling and Wojtaszczyk [2].
The norm of f ∈ Lpα is

‖f‖ =
{ �

C

|f(z)|pe−α|z|2 dA(z)
}1/p

.

We note that the two definitions, of Lpα and Lpα, are the same if and only if
p = 2. The two notions can be converted into one another by

Lpα = Lp2α/p, Lpα = Lpαp/2,

so that theorems in terms of one definition can be stated in terms of the
other.

Recall that for 0 < p < ∞ the Hardy space Hp consists of analytic
functions f on the open unit disk D such that

sup
0<r<1

1

2π

2π�

0

|f(reiθ)|p dθ <∞.

For γ > −1 and 0 < p < ∞ the weighted Bergman space Apγ = Apγ(D, dAγ)
is the subspace of Lp(D, dAγ) consisting of analytic functions, where

dAγ(z) = (γ + 1)(1− |z|2)γdA(z),

and dA(z) is the normalized area measure on D. Again, Hp and Apγ are
Banach spaces for 1 ≤ p < ∞. When 0 < p < 1, Hp and Apγ are F-spaces
(see [3, 8]).

The problem of norm convergence of Taylor series for each function in
Hp spaces is classical: The Taylor series for each function in Hp converges
in norm if and only if p > 1. This result is equivalent to the boundedness of
the Szegö projection on Lp of the circle when p > 1 and the unboundedness
of the Szegö projection on L1 of the circle. By use of polar coordinates and
the result in Hp, if 1 < p <∞ and γ > −1, then the Taylor series of every
function in the weighted Bergman space Apγ converges in norm. More details
can be seen in [3, 9].

Although every function f in F pα, 0 < p <∞, can be approximated by a
sequence of polynomials, it is not necessarily true that a function in F pα can
be approximated by its Taylor polynomials {fn} in norm. So it is natural
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to ask when {fn} converges to f in the norm topology of F pα. The same
question can be asked for f∞α . The case 1 < p < ∞ follows from the corre-
sponding result in the theory of Hardy spaces. This is included in Section 2
for completeness, along with some consequences. The case p = 1 was dis-
cussed in [2]. In Section 3, we will consider the case 0 < p < 1 and basically
reduce it to the case p = 1 with the help of duality.

2. The case 1 < p <∞. Let X be a linear space of analytic functions
in the unit disk D or in the complex plane C. Given f in X, let

f(z) =

∞∑
k=0

akz
k

be the Taylor expansion of f . For any integer n ≥ 1 let

fn(z) =

n∑
k=0

akz
k

be the nth Taylor polynomial of f and define a linear operator Sn by
Snf = fn.

The following proposition can be found in [1, 9]. It is stated for analytic
functions in the unit disk, but the proof works for entire functions in the
complex plane C as well (see [7]).

Proposition 2.1. Suppose X is a Banach space of analytic functions
in the unit disk D or in the complex plane C with the property that the
polynomials are dense in X. Then ‖fn − f‖ → 0 as n→∞ for each f ∈ X
if and only if there is a positive constant C > 0 such that ‖Sn‖ ≤ C for all
n ≥ 1.

Theorem 2.2. If 1 < p < ∞ and f ∈ F pα, then the Taylor series of f
converges to f in norm.

Proof. There exists a positive constant C such that
2π�

0

|Sng(eiθ)|p dθ ≤ C
2π�

0

|g(eiθ)|p dθ

for all g ∈ Hp and n ≥ 1. Thus for any f ∈ F pα we have

‖Snf‖pp,α =
αp

2π

∞�

0

2π�

0

|Snf(reiθ)|p dθ e−αpr2/2r dr

≤ Cαp

2π

∞�

0

2π�

0

|f(reiθ)|p dθ e−αpr2/2r dr = C‖f‖pp,α.

This shows that ‖Sn‖p,α ≤ C for all n ≥ 1. The desired result then follows
from Proposition 2.1.
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3. The case 0 < p ≤ 1. Garling and Wojtaszczyk asked in [2] whether
Theorem 2.2 remains true for F1

1 . This was answered negatively by Lusky
in [5].

Proposition 3.1. There exists a function in F 1
α whose Taylor series

does not converge in norm.

To settle the case 0 < p < 1, we need the following result concerning the
duality of Fock spaces (see [12]).

Proposition 3.2. If 0 < p ≤ 1, then the dual space of F pα can be
identified with F∞α under the integral pairing

〈f, g〉α =
α

π

�

C

f(z)g(z)e−α|z|
2
dA(z).

Furthermore, the dual space of f∞α can be identified with F 1
α under the same

integral pairing above.

Lemma 3.3. Under the duality pairing 〈f, g〉α we have S∗n = Sn.

Proof. If

f(z) =
∞∑
k=0

akz
k, g(z) =

∞∑
k=0

bkz
k,

then it is easy to see that

〈f, g〉α =
∞∑
k=0

k!

αk
ak bk.

From this we deduce that

〈Snf, g〉α = 〈fn, gn〉 = 〈f, Sng〉α.
Lemma 3.4. We have

sup
n
‖Sn‖f∞α = sup

n
‖Sn‖F∞α =∞.

Proof. Recall from functional analysis that for any bounded linear oper-
ator T on a Banach space X we have ‖T‖X = ‖T ∗‖X∗ . By Propositions 2.1
and 3.1, we have

sup
n
‖Sn‖F 1

α
=∞.

This together with Proposition 3.2 and Lemma 3.3 shows that

sup
n
‖Sn‖f∞α =∞.

Since ‖Sn‖F∞α ≥ ‖Sn‖f∞α , we must also have

sup
n
‖Sn‖F∞α =∞.
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Corollary 3.5. There exists a function in f∞α whose Taylor series does
not converge in norm.

Note that the space F∞α is not separable. In particular, the polynomials
are not dense in F∞α . So generally speaking, the Taylor series of a function
in F∞α does not converge in norm. However, we cannot use Proposition 2.1
to conclude that

sup
n
‖Sn‖F∞α =∞,

because the main assumption in Proposition 2.1 is that the polynomials are
dense.

To complete our discussion about the convergence of Taylor series in Fock
spaces, we need to generalize Proposition 2.1 to the spaces F pα when 0 < p
<∞. This is accomplished with the help of the following two results in [6].

Lemma 3.6. Suppose X and Y are topological vector spaces, Γ is an
equicontinuous collection of linear mappings from X into Y , and E is a
bounded subset of X. Then Y has a bounded subset F such that Λ(E) ⊂ F
for every Λ ∈ Γ.

Lemma 3.7. If Γ is a collection of continuous mappings from an F -space
X into a topological vector space, and if the set Γ (x) = {Λ(x) : Λ ∈ Γ} is
bounded in Y for every x ∈ X, then Γ is equicontinuous.

The following uniform boundedness principle in F-spaces easily follows
from Lemmas 3.6 and 3.7.

Proposition 3.8. Let Γ be a collection of continuous mappings from
an F -space X into X. If the set Γ (x) = {Λ(x) : Λ ∈ Γ} is bounded in X
for every x ∈ X, then Γ is uniformly bounded.

Lemma 3.9. Suppose 0 < p < 1. Then the following two conditions are
equivalent.

(a) For every f ∈ F pα we have ‖fn − f‖p,α → 0 as n→∞.
(b) There exists a positive constant C such that ‖Sn‖F pα ≤ C for all

n ≥ 1.

Proof. Basically, the spaces F pα are not Banach spaces when 0 < p < 1, so
Proposition 2.1 cannot be applied directly. However, a careful examination
of the proof of [9, Proposition 2.1] reveals that the result still holds for F pα
when 0 < p < 1. All we need is Proposition 3.8, the uniform boundedness
principle for F-spaces.

Theorem 3.10. For any 0 < p < 1 there exists a function f in the Fock
space F pα such that ‖fn − f‖p,α 9 0 as n→∞.
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Proof. Let ‖Sn‖p,α denote the norm of Sn on F pα, including the case
when p = ∞. It is well known that each Sn is a bounded linear operator
on F pα. By Lemma 3.9, we just need to show that the sequence {‖Sn‖p,α} is
unbounded.

If T is a bounded linear operator on a Banach space X, then T ∗ :
X∗ → X∗ is a bounded linear operator with ‖T‖ = ‖T ∗‖. The proof of this
identity depends on the Hahn–Banach extension theorem, and the proof of
the latter requires the space X to be at least locally convex. The compli-
cation here is that the spaces F pα are not locally convex when 0 < p < 1.
Therefore, the duality (F pα)∗ = F∞α under the integral pairing 〈f, g〉α does
not automatically guarantee that ‖Sn‖p,α is comparable to ‖Sn‖∞,α. Fortu-
nately, we only need one half of this argument, and this part can be obtained
directly.

More specifically, there exist positive constants C and C ′ (independent
of f , g, and n below) such that for any f ∈ F∞α = (F pα)∗, we have

‖Snf‖∞,α ≤ C sup{|〈Snf, g〉α| : g ∈ F pα, ‖g‖p,α ≤ 1}
= C sup{|〈f, Sng〉α| : g ∈ F pα, ‖g‖p,α ≤ 1}
≤ C ′‖f‖∞,α sup{‖Sng‖p,α : g ∈ F pα, ‖g‖p,α ≤ 1}
= C ′‖Sn‖p,α‖f‖∞,α.

Taking the supremum over all ‖f‖∞,α ≤ 1, we obtain ‖Sn‖∞,α ≤ C ′‖Sn‖p,α
for all n ≥ 1. Combining this with Lemma 3.4, we conclude that the sequence
{‖Sn‖p,α} is unbounded.

The arguments above can be applied to the Bergman and Hardy spaces
as well. In fact, if B denotes the Bloch space of analytic functions f in the
unit disk D such that

‖f‖B = |f(0)|+ sup{(1− |z|2)|f ′(z)| : z ∈ D} <∞,
then the dual space of Apγ , where 0 < p ≤ 1 and γ > −1, can be identified
with B under the integral pairing

〈f, g〉β =
�

D

f(z)g(z) dAβ(z),

where β = [(2 + γ)/p]− 2. Similarly, the dual space of the Hardy space Hp,
where 0 < p < 1 (note that the duality for p = 1 must be treated differently
using the space BMOA), can be identified with B under the integral pairing
above with β = 1/p − 2 (see [11]). It was shown in [9] that the Taylor

series of a function in A1
γ does not necessarily converge in norm. It follows

that the operators Sn are not uniformly bounded on A1
γ . By duality of

Banach spaces, the operators Sn are not uniformly bounded on the Bloch
space B. By the proof of Theorem 3.10 and the duality (Hp)∗ = B, the
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operators Sn are not uniformly bounded on Hp. Also, Lemma 3.9 remains
valid for Bergman and Hardy spaces. Consequently, we have the following
result.

Theorem 3.11. Let 0 < p < 1 and γ > −1. There exists a function
f ∈ Apγ such that

‖fn − f‖Apγ 9 0, n→∞.
Similarly, there exists a function g ∈ Hp such that

‖fn − g‖Hp 9 0, n→∞.

The above theorem was stated as an exercise in [8], but no proof was
ever given explicitly.
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