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Noncommutative Orlicz spaces
associated to a state

by

MARYAM H. A. AL-RASHED and BOGUSEAW ZEGARLINSKI (London)

Abstract. We introduce and study the noncommutative Orlicz spaces associated to
a normal faithful state on a semifinite von Neumann algebra.

1. Introduction. The main objective of this paper is to establish the
basis of the theory of noncommutative Orlicz spaces associated to a faithful
normal state on a semifinite von Neumann algebra. The family of spaces we
introduce generalises the noncommutative L, spaces, and is furnished with
Orlicz and Luxemburg norms, which—as we prove—are equivalent. Moreover
we show that the suitable Young and Holder inequalities are true. We note
that in the case of Orlicz spaces associated to a trace such a theory was pre-
sented long time ago in [12] (see also [13], [14]). Its special case, the noncom-
mutative L, spaces associated to a nontrivial state, was studied extensively
even earlier (see [2], [5], [7]-[9], [11], [15], [18], [19]-[22]). Strictly speaking,
given the Orlicz spaces for traces (as in [12]), by using the noncommutative
integration theory an abstract and complicated construction of Orlicz spaces
is possible even when working with factor III type von Neumann algebras.
What we demonstrate is that, with a bit of extra technical assumptions at
the start, one can introduce the Orlicz spaces in a very explicit way, which
in the special case of monomial type Young functions reproduces the origi-
nal noncommutative L, spaces. We believe that such explicit representation
is useful not only to study interesting properties of noncommutative Orlicz
spaces, but should also be of great potential interest for various applications.

The paper is organised as follows. In the first section we introduce nota-
tion and recall some known facts from the theory of classical Orlicz spaces
with respect to a given measure [16], as well as the noncommutative analog
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involving the trace in place of integration [12]. In the next section we intro-
duce a definition of the Orlicz space associated to a faithful normal state on
a semifinite von Neumann algebra furnished with the analog of Orlicz and
Luxemburg norms. In that section we also prove the Young and Hélder in-
equalities, and equivalence of various norms. We finish with a brief summary
and outlook.

2. Preliminaries. A continuous, convex, nonnegative, strictly increas-
ing function @ of a real variable is called a Young function iff for any = € R,

o]
B(x) = | o(t) dt
0

with a function ¢ : [0, 00) — RT which vanishes only at zero, is right continu-
ous, nondecreasing and diverges to infinity as ¢ — oo. By this definition, @ is
unbounded and vanishes only at zero. For every Young function & there ex-
ists a function ¥, called the complementary Young function, given as follows:

||

where 1) is the right inverse of ¢. A pair of complementary Young functions
(®,V0) satisfies the following Young inequality:
ts < P(t) +W¥(s) forallt,se|0,00),

with equality if and only if t = ¢(s) or s = ¢(t) (see [10] or [16]). We re-
mark that the class of Young functions generalises the well known family of
monomial type functions x — (1/p)zP, p > 1.

For later purposes we note that the inverse functions ¢! and ¥~ satisfy

(1) r< 1 (rw(r) < 2r

for any nonnegative r (see [16]).

Let A be a semifinite von Neumann algebra on a Hilbert space H with
a faithful normal semifinite trace Tr. We denote by M = M(A) the topo-
logical *-algebra (equipped with the measure topology) of trace-measurable
operators [15], [22]. [Recall that a closed densely defined operator f affili-
ated with A is called trace-measurable iff, for each ¢ € RT, there exists a
projection p € A such that

pH CD(f) and Tr(l-—p) <e,

where D is the domain of f. The measure topology on M(.A) is by definition
the linear topology in which the sets

V(e, o) ={a € M(A) : 3 projection q € A, ||ag| < € and Tr(1 —q) <}

with €, € RT, form a base of neighbourhoods of zero.|
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A closed densely defined operator f affiliated with A has a polar decom-
position f = u|f| with a partial isometry v and modulus |f| of f admitting
the spectral decomposition |f| = SSO Adey. The rearrangement f of f is by
definition the function given by

Ft) == inf{A > 0: Tr(e(ro0) < t}
where ey o) denotes the corresponding spectral projector of |f|. Following
[6] and [22] we list the following properties of the rearrangement mapping,.

LEMMA 2.1. Let A € M(A). Then:

(1) A=A*=|A|".

2) If X is a bounded measurable operator, then AX < || X|A.

) If Be M(A) and 0 < A< B, then A < B.

) For 0 < A € M(A) and any continuous increasing function ¢ :
[0,00) — [0,00) one has ¢p(A) = 5(\/1/) and

(
(3
(4

For later use we also recall the following properties of operator absolute
value (cf [1], [4] and [3], [12]).
LEMMA 2.2.
(1) (Operator triangle inequality) For any A,B € M(A) there exist
partial isometries u,v € A with uwu* = vv* = 1 such that
|A+ B| < u*|Alu + v*|B|v.
(2) (Jensen inequality for traces) If @ is a Young function and z €
M(A), ||z]| <1, then for any nonnegative measurable f one has
Tr(P(2"fz)) < Tr(z*®(f)z).
(3) (Young inequality for traces) For any A, B € M(A) and a pair of
complementary Young functions ® and ¥ one has

Tr(|AB|) < Tr((]A])) + Tr(&(|B]))-

3. Noncommutative Orlicz spaces associated to a faithful normal
state. Let Tr be a faithful trace on a semifinite von Neumann algebra A
and let w be a state given by

w(f) = Tr(ef)

with a measurable density operator ¢ > 0 (normalisation is nowhere impor-
tant). For any Young function @ and a given s € [0, 1] we define the Orlicz
functional

M(A) 3 [ = Ops(f) = Tr(P(|Fys]))
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with
Fps=(2710) f(@ ' (0)'*
Define
Kps={f € M(A): Op4(f) <1}, Los(Aw):=|]nKes.
n=1

One can see that h € Lg 4(A,w) iff there exists 8 € (0,1] such that gh €
K¢ ;. We have the following two properties.

PROPOSITION 3.1.

(i) Ko is absolutely convew.

(ii) Lo s(A,w) is a linear space.

Proof. (i) We need to show that for o € [0,1] and all f,g € K¢ s, we
have af + (1 — a)g € Kg 5. To this end we note that by Lemma 2.2, there
are partial isometries v and v with uu® = vv* = 1 such that

|oF + (1 — a)G| < au™|Flu+ (1 — a)v*|G|v,
where )
F=Fps=(2""(0)°f(¢(0)
G=Ggs=(21(0)°g9(@ ()"
Since

Ogs(af +(1—a)g) = Tr(P(laF + (1 - a)Gl)),

using the fact that by our assumption @ is a Young function together with
Lemmata 2.1 and 2.2 we have

Tr(P(|aF + (1 — a)G|)) < aTr(P(u*|Flu)) + ) Tr(@(v*|Glv))
< a Te(u (| FlJu) + (1 — a) Te(o"B(G])o)
< aTr(2(|F]) + (1 — o) Tr(2(|G1)).
Since aTr(P(|F|)) + (1 — o) Tr((|G])) = aOs s(f) + (1 — a)Og 5(g), this
implies the absolute convexity of Kg .

(ii) We need to show that the sum of two operators in Lg (A, w) also
belongs to Lg s(A,w). For i = 1,2, let h; € Lg 4(A,w); that is, by definition,
there exist §; € (0,1] such that f;h; € Kp . Let f = min(f1, 52). Then
B > 0 and setting H; = (&7 1(0))*hi(®1(0))' = we have

o () = (o)

2
(Tr(2(|GHA)) + Te(2(|5Hz])))

<

— N =

<

<3 [Oa,s(B1h1) + Og s(F2h2)] < 1
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(where we have used monotonicity and convexity properties of ®). Hence,
hi1 + hg € Lgs(A,w). The fact that a scalar multiple of an operator in
Lg s(A,w) belongs to Lg (A, w) follows from the remark after the definition
of this set. m

We furnish Lg s(A,w) with the Luzemburg norm
. 1
| flle,s := 1nf{)\ >0: Xf € K4573}.

One can show the following facts.

PROPOSITION 3.2.

(i) (Les(Aw), ]| -lles) is a normed linear space.
(i) If |flles < 1, then O s(f) < | flles, with equality if the norm
equals 1.

Given s € [0,1] we introduce the scalar product

(f,9)s == Tr(0"*f*0°9).

It is useful to note the following representation of the scalar product.

LEMMA 3.3.
(f,9)s = Te(M'°F§ JM°Guy,s)
with a bounded operator
(2) 1/2< M =™ ()@ He) T < 1.

Proof. Since we have Fg = (@ L)' f* (@ (0)® and Gy, =
(W=1(0))*g(W~ (g)) 1= , using the definition of the scalar product, we obtain
(f,9)s = Te(0'*f*0°g)
= Tr((27' (o ))1 @ ) (@ () "ot (T (0) "}
(P H(0)* 9T () H W@ ()T ) (@ (0) ")
= Tr(Fj M*Gy M%) = Te(M'"*Fj M°Gys).
The lower and upper bounds of M follow from (1). m

We show the following relations between this scalar product and the
functionals introduced above.

THEOREM 3.4.
(i) (Young inequality) For f,g € M(A) and any density matriz o > 0,
’<f7g>s| S O@,s(f) + O&U,s(g)'
(ii) (Holder inequality)
[(f, 9)sl < 2[|fllesllgllw,s
for any f € Ly s(A,w) and g € Ly (A, w).
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Proof. (i) For simplicity of notation, setting F' = Fp s and G = Gy,
from Lemma 3.3 we have

(f.9)s = Te(M'*F*M*G).
Applying the absolute value and using the Young inequality for traces
(Lemma 2.2(3)), we get
(3) [(f.9)s| = Te(M'=*F*M*G)| < Te(|M'~*F*M*G])
< Tr(P(|M'°F*|)) + Tr(¥ (|M°G))).
Next we use Lemma 2.1(4) to represent each term from the right hand side
of (3) as the integral of a monotone function of the corresponding rearrange-

ment. At this stage we utilize properties (1)—(3) of Lemma 2.1 together with
the upper bound M <1 of Lemma 2.2 to get

[MYTFS Y < M| [P < | FT
[MPG™ < [ MP - |G < G|
This implies the bound
(4) [(f,9)s] < M5 Te(D(|F7))) + [|M2]| Te(¥(|G]))
< Te(@(|F7)) + Te(W(|G])) = Te(2(|F))) + Tr(P(|G])).

Now it is sufficient to recall our definition of F' and G to arrive at the
desired Young inequality

(5) |<fag>s’ § O@,s(f)+0u7,s(g)'

(i) For f € Loa(A w) and g € Ly, (A w) with || lgllz, # 0, we have
Oap.s(f/|flle,s) =1 = Ows(9/llgllw,). Therefore by the Young inequality,

I Tl .| = O (1702) + 0 () =2
(it e ). = 00z 0 () -2

From this the desired inequality follows. =

In the rest of this section we introduce other natural norms on Lg (A, w)
and discuss their relations. We have already introduced the definition of the
Luxemburg norm which can be represented in the following equivalent form:

(6) || flle,s = inf{A > 0: O s(f/\) < 1}.
We define the Orlicz norm as follows:
(7) 1 £113.s == sup{[(f, 9)s| : Ngllw,s < 1},

where because of Proposition 3.2(ii) the condition ||g|jy,s < 1 can be replaced

by Ow s(g) < 1. We also introduce the following prime norm:

®) 11, = jut £ (14 O |
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We remark first that with these definitions one gets

[(Fr9)sl = 1{f, 9/lgllw.s)sllgllw.s

< sup (£l flla sllglle.s = [1f1l3 sllgllw,s-
[7llw,s<1

That is, we get another representation of the Holder inequality:
PROPOSITION 3.5.

(£ 9)s] < 1f 1135 llgllws-

Next recall that two norms, || -||; and || - ||2, on a normed linear space X
are called equivalent if there exist two positive real constants C' and D such
that C||x||1 < [|x]]2 < DJx||1 for all x € X. We show the following result
proving the equivalence of the norms introduced above.

THEOREM 3.6. For any f € Lg s(A,w) one has

1 o
(9) 3 I lles < 1llz.s < 11 lla,s < 20 fllos-

Proof of the first inequality of (9). First of all we recall that by the Young
inequality for a trace ([12, Proposition 2.2]), for any measurable G there is
a0<be M(A) satisfying Tr(¥ (b)) < 1 such that

Tr(|G[b) = Tr(2(|G])) + Te( (D).
Thus for any 0 < f € Lg s(A,w) with F' = Fg 5 we have
(10) Os,s(f) =Tr(P(|F])) < Te(2(|F])) + Tr(¥ (b))
= Te(2(|F])) + Tr(¥(b)) = Tr(|F7|b)

with a suitable 0 < b € M(A) satisfying Tr(¥ (b)) < 1. The polar decompo-
sition F* = W|F*| implies W*F* = |F*|, where W is the partial isometry
for F*. Hence the right hand side of (10) can be written as

(11) Tr(|F*|b) = Te(W*F*b) = Tr(F*bW™)

by cyclicity of trace. Inserting the explicit expression for ' = Fg g, after
simple manipulations under the trace we get

(12) Te(|F*[b) = Te(F"bW*)
= Tr((0 ' (0))'* f* (@ (0))"bW™)
= Tr((@7(0)) o™= f 007 (@7 () D)
= Tr((0' " f*0") (0" (@7 ()" bW "o~ (@7 ()" ).

Inserting (¥~ 1(0))~*(¥~(0))* and (¥~'(p))~ =) (& ~1(0))'~* on the left
and on the right of the term in the second bracket under the trace on the
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right hand side of (12), respectively, we arrive at
(13)  Te([F*[b) = Te((e"*f*0) (¥~ () 5 (¥~ (0)* 0™ (2" (0))*)bW*
1

_ Tr((gl_sf*gs)(W_l(g))_sM_SbW*M_(l_s)
where M~ = o7 1&71 ()0 ~1(p). Setting
1
2
we can write (13) as

b= (0 (e)) MW M1 (w7 ()"0,

Te(|F7[b) = 2(f, b)s-
Combining this with (10), we get
(14) Op,s(f) < 2(f,b)s.

To conclude the proof we need to show that Oy s(b) < 1. To this end we
note that

Og,s(b) = Te(¥(|(¢~(2))*b(Z~ (0))' 7))

= Te(?(|(7 (o))"

(@) MW M) (@ ()T (0 ()1 )))

< Tr(w(|AM—sow*M—1=9)])).
Because by (1) we have M~! < 2, using Lemma 2.1 we get the following
inequality for rearrangements:

|SM bW M-0-9)|~ < b,
This together with monotonicity of ¥ on the positive real axis and our as-
sumptions about b implies that
(15) Oy s(b) < Tr(¥(|3M—sbW*M~-1-9])) < Tr(w (b)) < 1.
From (14) and (15), we obtain
Op,s(f) < 2(f,b)s < 2|/ fllg,s-

Applying this to a function with the Luxemburg norm equal to one and
taking into account Proposition 3.2(ii), after simple algebraic manipulations
we conclude with

3llfllas < 1 f115,-
Proof of the second inequality of (9). Let g € Ly s(A,w). By definition
of || fllg s (and Proposition 3.2(ii)), we have

1f1le,s = sup{[(f, 9)s| : Ows(g) < 1}.
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Hence for any 0 < k£ < oo using the Young inequality, one gets

110 =sup{ |7 4.1

Onalo) <1}
< sup {1 (0.(h) + On.le)) : Owale) <1

1
S E (Odi,s<kf) + 1)'

Since k € (0,00) was arbitrary, taking the inf with respect to k we arrive at

o ol
1£llzs < inf - (Oas(kf) +1) = [If s
>0 k
(In fact one can show equality in this case.)

Proof of the third inequality of (9). Let f € M(A) be such that || f||¢.s
# 0. Using the definition of || - [ ,, we have

L1 kf
a0 {E (1 * O¢’8<Hf!!q>,s>>}
1 kf
= O s| 77— —
§k<” ? <||f||¢,s>>

for any k > 0. Choosing k& = 1 and noting that by Proposition 3.2(ii) one
has Og s(f/||f|l®,s) = 1, we arrive at

(16) 1£1s <20 fllos- n

[
£l

4. Summary and outlook. We have introduced the Orlicz spaces as-
sociated to a given faithful normal state (or weight) on a semisimple von
Neumann algebra. Our spaces generalise the well known noncommutative
L, spaces. In a similar manner to that well established case, for every value
of a continuous parameter s € [0, 1] we can define a norm || - ||¢ s as well as
its dual || - ||,s associated to the complementary Young function, which are
related in a natural way to a scalar product (-,-)s. In certain applications it
is useful to consider the following Bogolyubov—Kubo—Mori scalar product:

1

(f.9) = S (f,9)sds.

0

It is then natural to consider the generalisation of the presented scheme in
which for every s one considers a pair of complementary Young functions
(®5,¥;) depending possibly in a nontrivial way on s. Assuming that the
dependence on s in the family @ = (P;),¢(o,1] is sufficiently smooth, we can
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define a convex functional

1

Oa(f) =\ Oa,s(f) ds
0

and similarly for the complementary family ¥ = (%) ¢(o,1]- With such func-
tionals one can recover all elements of the theory discussed in the previous
section, including in particular the Young inequality

(f,9) <O0s(f)+Ow(f).

Some applications of our theory will be described elsewhere.
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