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Coorbit space theory for quasi-Banach spaces

by

Holger Rauhut (Wien)

Abstract. We generalize the classical coorbit space theory developed by Feichtinger
and Gröchenig to quasi-Banach spaces. As a main result we provide atomic decompositions
for coorbit spaces defined with respect to quasi-Banach spaces. These atomic decomposi-
tions are used to prove fast convergence rates of best n-term approximation schemes.
We apply the abstract theory to time-frequency analysis of modulation spaces Mp,q

m ,
0 < p, q ≤ ∞.

1. Introduction. Coorbit space theory was originally developed by
Feichtinger and Gröchenig [6–8, 11] in the late 1980’s with the aim to pro-
vide a unified and group-theoretical approach to function spaces and their
atomic decompositions. In particular, this theory covers the homogeneous
Besov and Triebel–Lizorkin spaces and their wavelet-type atomic decomposi-
tions, as well as the modulation spaces and their Gabor-type decompositions.
Recently, there has been some activity to provide generalizations to other
settings than the classical one of integrable group representations [1, 9, 16].

All the approaches taken so far cover only the case of Banach spaces.
In [6] it is remarked that an extension of coorbit space theory to quasi-
Banach spaces would be interesting, but it seems that nothing concrete
has been done since then. For instance this would allow one to describe
also modulation spaces Mp,q

m with p < 1 or q < 1, or Hardy spaces Hp

with p < 1, as coorbit spaces. An important motivation to consider quasi-
Banach spaces is an application in nonlinear approximation. Indeed, the
best theoretical convergence rate of best n-term approximations is rather
small if one restricts to Banach spaces, while it can get arbitrarily large for
quasi-Banach spaces.

So in this paper we extend the classical coorbit space theory to quasi-
Banach spaces. Our starting point is an integrable representation π of some
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locally compact group G on some Hilbert space H. Associated to π is the
abstract wavelet transform Vgf(x) = 〈f, π(x)g〉. The crucial ingredient in
coorbit space theory is the reproducing formula for Vg (see (4.2)), which uses
the group convolution on G. Thus, it is essential to have convolution relations
for certain quasi-Banach spaces Y on G. Unfortunately, even for the natural
choice Y = Lp(G), 0 < p < 1, no convolution relation is available. In order
to overcome this problem we work with Wiener amalgam spaces W (L∞, Y )
with local component L∞ instead of Y itself. Convolution relations for such
spaces, where Y is allowed to be a quasi-Banach space, were shown recently
by the author in [17].

Under some technical assumption on the representation, the coorbit
spaces C(Y ) are defined as a retract of the Wiener amalgam space W (L∞, Y )
via the abstract wavelet transform, i.e., C(Y ) = {f : Vgf ∈ W (L∞, Y )} (see
Section 4). Apart from basic properties of C(Y ) we will provide atomic de-
compositions of C(Y ) of the form {π(xi)g}i∈I , where (xi)i∈I is a suitable
point set in the group (see Section 5). Based on such decompositions we will
investigate approximation rates for best n-term approximations (Section 7).

Our results are applicable to time-frequency analysis on modulation
spaces Mp,q

m , 0 < p, q ≤ ∞, introduced by Feichtinger [5] (see also [18, 10]
for the case p, q < 1). Here, we improve or give alternative proofs to some
of the results of Galperin and Samarah in [10] (see Section 8).

Although in this paper we restrict G to be an IN group for the sake of
simple presentation, we remark that nevertheless the abstract theory can
be developed in general and it then also applies to homogeneous (weighted)
Besov spaces Ḃs

p,q and Triebel–Lizorkin spaces Ḟ s
p,q, 0 < p, q ≤ ∞. We

postpone a detailed discussion to a subsequent contribution.

2. Prerequisites. Let G be a locally compact group with identity e.
For simplicity we always assume that G is an IN group. This means that
there exists a compact neighborhood U of e such that xU = Ux. IN groups
are unimodular. Integration on G will always be with respect to the left
Haar measure. We denote by LxF (y) = F (x−1y) and RxF (y) = F (yx),
x, y ∈ G, the left and right translation operators. For a Radon measure µ we
introduce the operator (Axµ)(k) = µ(Rxk), x ∈ G, for a continuous function
k with compact support. We may identify a function F ∈ L1 with a measure
µF ∈ M by µF (k) =

T
F (x)k(x) dx. Then clearly AxF = Rx−1F . Further,

we define the involutions F∨(x) = F (x−1), F∇(x) = F (x−1).

A quasi-norm ‖ · ‖ on some linear space Y is defined in the same way
as a norm, with the only difference that the triangle inequality is replaced
by ‖f + g‖ ≤ C(‖f‖ + ‖g‖) with some constant C ≥ 1. It is well-known
(see e.g. [2, p. 20]) that there exists an equivalent quasi-norm ‖ · |Y ‖ on Y
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and an exponent p with 0 < p ≤ 1 such that ‖ · |Y ‖ satisfies the p-triangle
inequality, i.e., ‖f + g |Y ‖p ≤ ‖f |Y ‖p + ‖g |Y ‖p. We can choose p = 1 if
and only if Y is a normed space. We always assume that such a p-norm
on Y is chosen and denote it by ‖ · |Y ‖. If Y is complete with respect to
the topology defined by the metric d(f, g) = ‖f − g |Y ‖p then it is called a
quasi-Banach space.

A quasi-Banach space of measurable functions on G is called solid if
F ∈ Y , G measurable and satisfying |G(x)| ≤ |F (x)| a.e. implies G ∈ Y and
‖G |Y ‖ ≤ ‖F |Y ‖. The Lebesgue spaces Lp(G), 0 < p ≤ ∞, provide natural
examples of solid quasi-normed spaces on G, and the usual quasi-norm in
Lp(G) is a p-norm if 0 < p ≤ 1. If w is some positive measurable weight
function on G then we further define Lp

w = {F measurable : Fw ∈ Lp} with
‖F |Lp

w‖ := ‖Fw |Lp‖. A continuous weight w is called submultiplicative if
w(xy) ≤ w(x)w(y) for all x, y ∈ G. Further, a weight m is called w-moderate

if m(xyz) ≤ w(x)m(y)w(z), x, y, z ∈ G. It is easy to see that Lp
m is invariant

under left and right translations if m is w-moderate.

For a quasi-Banach space (B, ‖ · |B‖) we denote the quasi-norm of a
bounded operator T : B → B by |||T |B|||. The symbol A ≍ B indicates
throughout the paper that there exist constants C1, C2 > 0 such that C1A ≤
B ≤ C2A (independent of other quantities on which A, B might depend).
The symbol C will always denote a generic constant whose precise value
might differ at different occurrences.

3. Wiener amalgam spaces. Let B be one of the spaces L∞(G), L1(G)
or M(G), the space of complex Radon measures. Choose some relatively
compact neighborhood Q of e ∈ G. We define the control function by

K(F, Q, B)(x) := ‖(LxχQ)F |B‖, x ∈ G,(3.1)

where F is locally contained in B, in symbols F ∈ Bloc. Further, let Y be
some solid quasi-Banach space of functions on G containing the characteristic
function of any compact subset of G. The Wiener amalgam space W (B, Y )
is then defined by

W (B, Y ) := W (B, Y, Q) := {F ∈ Bloc : K(F, Q, B) ∈ Y }

with quasi-norm

‖F |W (B, Y, Q)‖ := ‖K(F, Q, B) |Y ‖.(3.2)

This is indeed a p-norm with p being the exponent of the quasi-norm of Y .
We denote by W (C0, Y ) the closed subspace of W (L∞, Y ) consisting of
continuous functions. For brevity we also write

W(Y ) := W (L∞, Y ).
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Definition 3.1. A discrete set X = (xi)i∈I of points in G is called
V -well-spread if for relatively compact neighborhoods V , W of e in G,

(a) G =
⋃

i∈I xiV .
(b) For all compact sets K ⊂ G there exists a constant CK such that

supj∈I #{i ∈ I : xiK ∩ xjK 6= ∅} ≤ CK .

The existence of V -well-spread sets for arbitrarily small V is proven in [4]
(see also [16] for a generalization). Given a well-spread family X = (xi)i∈I , a
relatively compact neighborhood Q of e ∈ G and Y , we define the sequence
space

Yd := Yd(X) := Yd(X, Q) :=
{

(λi)i∈I :
∑

i∈I

|λi|χxiQ ∈ Y
}

,(3.3)

with natural norm ‖(λi)i∈I |Yd‖ := ‖
∑

i∈I |λi|χxiQ |Y ‖. Here, χxiQ denotes
the characteristic function of the set xiQ. If the quasi-norm of Y is a p-
norm, 0 < p ≤ 1, then also Yd has a p-norm. For instance, if Y = Lp then
Yd = ℓp(I).

We call a space of functions (measures) left translation invariant if
all the left translations Lx, x ∈ G, are bounded operators. Analogously,
we define right translation invariance. We assume in the following that
Y is left and right translation invariant (although one may replace this
property by a slightly more general condition). It follows from results
in [17] that then also W (B, Y ) is left and right translation invariant and
we have |||Ly |W (B, Y )||| ≤ |||Ly |Y |||, |||Ry |W (L∞, Y )||| ≤ |||Ry |Y ||| and
|||Ay |W (M, Y )||| ≤ |||Ry |Y |||. Moreover, both W (B, Y, Q) = W (B, Y ) and
Yd = Yd(X, Q) are complete and independent of the choice of Q. Since G is
assumed to be an IN group we further have [17]

W(Y ∨)∨ = W(Y ).(3.4)

Lemma 3.2 ([17]). Let r(x) := |||Lx−1 |W(Y )|||. Then W(Y ) is continu-

ously embedded into L∞
1/r.

The main ingredient for the coorbit space theory with respect to quasi-
Banach spaces will be the following convolution relations for Wiener amal-
gam spaces (see [17], recalling that G is unimodular).

Theorem 3.3. Let 0 < p ≤ 1. Let Y be a p-normed right and left

invariant solid quasi-Banach space. Set w(x) := |||Rx |Y |||. Then

W (M, Y ) ∗W(Lp
w) →֒ W(Y ) and W(Y ) ∗W(Lp

w∨) →֒ W(Y )(3.5)

with corresponding estimates for the quasi-norms.

Theorem 3.4. Let w be a submultiplicative weight and 0 < p ≤ 1. Then

W(Lp
w) ∗ W(Lp

w) →֒ W(Lp
w).
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Further, we will need the following maximal function. For a relatively
compact neighborhood U of e ∈ G and a function G on G we define the
U -oscillation by

G#
U (x) := sup

u∈U
|G(ux) − G(x)|.

The following lemma on the U -oscillation is an essential tool for deriving
the atomic decomposition for the coorbit spaces defined later on.

Lemma 3.5.

(a) If G ∈ W (C0, Y ) then G#
U ∈ W (C0, Y ).

(b) Let w be a submultiplicative weight function and 0 < p < ∞. Then

G ∈ W (C0, L
p
w) implies limU→{e} ‖G

#
U |W(Lp

w)‖ = 0.

Proof. (a) The control function of G#
U can be estimated as follows:

K(G#
U , Q, L∞)(x) = sup

z∈xQ
G#

U (z) = sup
z∈xQ

sup
u∈U

|G(uz) − G(z)|

≤ sup
z∈xQ

sup
u∈U

|G(uz)| + sup
z∈xQ

|G(z)| = sup
q∈Q

sup
u∈U

|G(uxq)| + K(G, Q, C0)(x).

Clearly, we have K(G, Q, C0) ∈ Y by assumption on G. We further compute
the function H(x) := supq∈Q supu∈U |G(uxq)|:

H(x) = sup
q∈Q

‖χU (RxqG)‖∞ = sup
q∈Q

‖(R(xq)−1χU )∨G∨‖∞

= sup
q∈Q

‖L(xq)−1χU−1G∨‖∞ = sup
q∈Q

K(G∨, U−1, L∞)∨(xq)

= ‖χxQK(G∨, U−1, L∞)∨‖∞ = K(K(G∨, U−1, L∞)∨, Q, L∞)(x).

Thus,

‖H |Y ‖ = ‖K(K(G∨, U−1, L∞)∨, Q, L∞) |Y ‖

≤ C‖G∨ |W(W(Y )∨)‖.

By (3.4), W(W(Y )∨)∨ = W(W(Y )) and it is easy to see that W(W(Y )) =

W(Y ). It follows that G#
U ∈ W (C0, Y ).

(b) By part (a), G#
U is contained in W (C0, L

p
w). Let ε > 0. Since U ⊂ U0

implies G#
U ≤ G#

U0
we can find a compact set V ⊂ G such that\
G\V

K(G#
U , Q, L∞)(x)pw(x)p dx ≤ ε/2

for all U ⊂ U0. Since G is uniformly continuous on the compact set V Q we
can find a neighborhood U1 ⊂ U0 of e such that

G#
U1

(x) ≤ M :=
ε1/p

(2|V |)1/p ν
for all x ∈ V Q
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with ν := maxx∈V w(x). This implies

K(G#
U1

, Q, L∞)(x) = sup
z∈xQ

|G#
U1

(z)| ≤ M for all x ∈ V.

Thus, we obtain\
V

K(G#
U1

, Q, L∞)(x)pw(x)p dx ≤ Mp|V |νp = ε/2.

Altogether this yields ‖G#
U1

|W (C0, L
p
w)‖p ≤ ε.

4. Coorbit spaces. Let π be an irreducible unitary representation of
G on some Hilbert space H. Then the abstract wavelet transform (voice
transform) is defined as

Vgf(x) := 〈f, π(x)g〉, f, g ∈ H, x ∈ G.

The representation π is called square-integrable if there exists a non-zero
g ∈ H (called admissible) such that Vgg ∈ L2(G). Since G is unimodular (as
G is assumed to be an IN group) it follows from a theorem of Duflo and
Moore [3] that in the case of square-integrability,

‖Vgf |L2‖ = ‖g |H‖ ‖f |H‖ for all f ∈ H(4.1)

(provided the right normalization of the Haar measure is chosen), and ac-
tually all vectors g ∈ H are admissible.

As a consequence of (4.1), if g is normalized, i.e., ‖g |H‖ = 1, we have
the reproducing formula

Vgf = Vgf ∗ Vgg.(4.2)

In order to introduce the coorbit spaces we first need to extend the definition
of the voice transform to a larger space, the “reservoir”. To this end let v
be some submultiplicative weight function satisfying v ≥ 1. We define the
following class of analyzing vectors:

Av := {g ∈ H : Vgg ∈ L1
v}.

We assume that Av is non-trivial, i.e., π is integrable. This implies that π is
also square-integrable. With some fixed g ∈ Av \ {0} we define

H1
v := {f ∈ H : Vgf ∈ L1

v}

with norm ‖f |H1
v‖ := ‖Vgf |L1

v‖. It can be shown [6] that H1
v is a π-invariant

Banach space whose definition does not depend on the choice of g. We
denote by (H1

v)q the anti-dual, i.e., the space of all bounded conjugate-linear
functionals on H1

v. An equivalent norm on (H1
v)q is given by ‖Vgf |L∞

1/v‖.

Denoting by 〈·, ·〉 also the dual pairing of (H1
v, (H1

v)q) we can extend the
voice transform to (H1

v)q by

Vgf(x) = 〈f, π(x)g〉, f ∈ (H1
v)q, g ∈ Av.
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Important properties of the voice transform extend to (H1
v)q as stated in

the following lemma (see [6, 7]).

Lemma 4.1. Let g ∈ Av with ‖g |H‖ = 1.

(a) The reproducing formula extends to (H1
v)q, i.e.,

Vgf = Vgf ∗ Vgg for all f ∈ (H1
v)q.

(b) Conversely , if F ∈L∞
1/w satisfies the reproducing formula F =F ∗Vgg

then there exists a unique element f ∈ (H1
v)q such that F = Vgf .

Let us now define a space of analyzing vectors that allows us to treat also
quasi-Banach spaces. For 0 < p ≤ 1 and for some submultiplicative weight
function w we define

B
p
w := {g ∈ H : Vgg ∈ W(Lp

w)}.

In what follows, we admit only those p and w such that B
p
w 6= {0}. Then

the left and right translation invariance of W(Lp
w) and the irreducibility of

π imply that B
p
w is dense in H. Now we are able to define the coorbit spaces.

Definition 4.2. Let Y be a solid left and right translation invariant
quasi-Banach space of functions on G. Let 0 < p ≤ 1 such that Y has a
p-norm and put

w(x) := max{|||Rx |Y |||, |||Rx−1 |Y |||},(4.3)

v(x) := max{1, |||Lx−1 |Y |||}.(4.4)

We assume that

B(Y ) := B
p
w ∩ Av(4.5)

is non-trivial. Then for g ∈ B(Y ) \ {0} the coorbit space is defined by

C(Y ) := CoW(Y ) := {f ∈ (H1
v)q : Vgf ∈ W(Y )}

with quasi-norm ‖f | C(Y )‖ := ‖Vgf |W(Y )‖.

Let us prove that the reproducing formula extends to C(Y ), and that
C(Y ) is complete and independent of the choice of g ∈ B

p
w \ {0}.

Proposition 4.3. Let g ∈ B(Y ) be such that ‖g |H‖ = 1. A function

F ∈ W(Y ) is of the form Vgf for some f ∈ C(Y ) if and only if F satisfies

the reproducing formula F = F ∗ Vgg.

Proof. If f ∈ C(Y ) ⊂ (H1
v)q then Vgf = Vgf ∗ Vgg by the reproducing

formula for (H1
v)q (see Lemma 4.1(a)).

Conversely, assume that F = F ∗ Vgg for some F ∈ W(Y ). By Lem-
ma 3.2, W(Y ) is embedded into L∞

1/v. Thus F ∈ L∞
1/v and by Lemma 4.1(b)

we have F = Vgf for some f ∈ (H1
v)q, which is then automatically contained

in C(Y ) by assumption.
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Theorem 4.4.

(a) C(Y ) is a quasi-Banach space.

(b) C(Y ) is independent of the choice of g ∈ B(Y ) \ {0}.

Proof. (a) Let g ∈ B
p
w such that ‖g |H‖ = 1. Assume (fn)n∈N is a Cauchy

sequence in C(Y ). This means that Vgfn is a Cauchy sequence in W(Y ).
By completeness of W(Y ) the limit F = limn→∞ Vgfn in W(Y ) exists. By
Theorem 3.3 the definition of the weight w implies that the operator F 7→
F ∗Vgg is continuous from W(Y ) into W(Y ). Hence, we may interchange its
application with taking limits, and together with the reproducing formula
(Proposition 4.3) this yields

F = lim
n→∞

Vgfn = lim
n→∞

Vgfn ∗ Vgg = F ∗ Vgg.

Using Proposition 4.3 once more we see that F = Vgf for some f ∈ C(Y ).
Clearly, f = limn→∞ fn in C(Y ), and hence C(Y ) is complete.

(b) Let g, g′ ∈ B
p
w \ {0}. Without loss of generality we may assume that

g, g′ are normalized, i.e., ‖g‖ = ‖g′‖ = 1. Choose a vector h ∈ B
p
w not

orthogonal to g and g′. It follows from the orthogonality relations that

0 6= 〈g′, h〉〈h, g〉Vgg
′ = Vg′g

′ ∗ Vhh ∗ Vgg.

Since Vgg
∇ = Vgg and likewise for h and g′, and since w = w∨, it follows

from Theorem 3.4 that Vgg
′ ∈ W(Lp

w). The inversion formula for Vg′ reads
g =

T
G Vg′g(y)π(y)g′dy, and one easily deduces

Vgf = Vg′f ∗ Vgg
′ for all f ∈ (H1

v)q.(4.6)

By the convolution relation in Theorem 3.3 we conclude that Vgf ∈ W(Y )
if Vg′f ∈ W(Y ). Exchanging the roles of g and g′ shows the converse impli-
cation.

Let us give a characterization of the space B
p
w of analyzing vectors.

Theorem 4.5. Let w be a submultiplicative weight and 0 < p ≤ 1.
Define w•(x) := max{w(x), w(x−1)} ≥ 1. Then

B
p
w = B

p
w• = C(Lp

w•).

Proof. Let g ∈ B
p
w. It follows from Vgg = Vgg

∇ and (3.4) that Vgg ∈
W(Lp

w•), i.e., g ∈ B
p
w• . Let g′ be another element of B

p
w = B

p
w• . Then the

previous proof shows that Vgg
′, Vg′g ∈ W(Lp

w•) and thus g, g′ ∈ C(Lp
w•).

Conversely, assume that g ∈ C(Lp
w•). Note that C(Lp

w•) ⊂ H so that
voice transforms are well-defined. Let g′ ∈ B

p
w• \ {0}. Setting f = g in (4.6)

shows Vgg = Vg′g ∗ Vgg
′ = Vg′g ∗ (Vg′g)∇. Since both Vg′g and (Vg′g)∇ are

in W(Lp
w•) by (3.4), it follows from Theorem 3.4 that Vgg ∈ W(Lp

w•), i.e.,
g ∈ B

p
w• .
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The following theorem will be useful to prove a weak version of a con-
jecture in [10, Conjecture 12].

Theorem 4.6. Let w be a submultiplicative weight function satisfying

w = w∨ and assume 0 < p ≤ 1. If Vgf ∈ W(Lp
w) for f, g ∈ H then both f

and g are in B
p
w = C(Lp

w).

Proof. It follows from (4.6) that

Vgg = (Vgf)∇ ∗ Vgf and Vff = Vgf ∗ (Vgf)∇.

Since w(x) = w(x−1) we conclude by (3.4) that also (Vgf)∇ lies in W(Lp
w).

The convolution relation in Theorem 3.4 and application of Theorem 4.5
finally yield the assertion.

5. Discretizations. Our next result is concerned with atomic decom-
positions for coorbit spaces.

Theorem 5.1. Let g ∈ B(Y ) \ {0}. Then there exists a compact neigh-

borhood U of e such that for any U -dense well-spread set X = (xi)i∈I the

family {π(xi)g}i∈I forms an atomic decomposition of C(Y ). This means

that there exists a sequence (λi)i∈I of bounded linear functionals on (H1
v)q

(not necessarily unique) such that

(a) f =
∑

i∈I λi(f)π(xi)g for all f ∈ C(Y ) with convergence in the weak∗

topology of (H1
v)q, and in the quasi-norm topology of C(Y ) provided

the finite sequences are dense in Yd;
(b) an element f ∈ (H1

v)q is in C(Y ) if and only if (λi(f))i∈I ∈ Yd and

‖(λi(f))i∈I |Yd‖ ≍ ‖f | C(Y )‖ for all f ∈ C(Y ).

Proof. The theorem is proven analogously to the Banach space case (see
[6, Sections 5, 6] or [16]). We do not give the details but rather note that
the basic ingredient is a discretization of the reproducing formula (4.2). In-
stead of convolution relations for Y as in [6], the corresponding relations for
W(Y ) and W (M, Y ) stated in Theorems 3.3 and 3.4 are heavily used. Also
Lemma 3.5 is needed, and the usual triangle inequality has to be replaced
by the p-triangle inequality.

In certain situations one might be able to construct frame expansions as
in (5.1) below on the level of the Hilbert space H. The next theorem states
that such expansions extend automatically from H to general coorbit spaces
under certain assumptions. Its proof is a modification of the one in [13] again
replacing convolution relations for Y by the corresponding ones for W(Y )
and the usual triangle inequality by the p-triangle inequality.
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Theorem 5.2. Let gr, γr ∈ B(Y ), r = 1, . . . , n, and X = (xi)i∈I be a

well-spread set such that

f =

n
∑

r=1

∑

i∈I

〈f, π(xi)γr〉π(xi)gr for all f ∈ H.(5.1)

Then expansion (5.1) extends to all f ∈ C(Y ) with norm convergence if

the finite sequences are dense in Yd and with weak∗ convergence in general.

Moreover , f ∈ (H1
v)q is in C(Y ) if and only if (〈f, π(xi)γr〉)i∈I lies in Yd

for each r = 1, . . . , n, and

‖((〈f, π(xi)γr〉)i∈I)n
r=1 |

⊕n
r=1Yd‖ ≍ ‖f | C(Y )‖ for all f ∈ C(Y ).

6. Characterizations of C(Y ) via Y . The original definition of the
coorbit spaces by Feichtinger and Gröchenig involves Y rather than W(Y ).
It is interesting to investigate what happens if we replace W(Y ) by Y in our
more general case. In order to distinguish clearly between the two spaces
let us write CoY = {f ∈ (H1

v)q : Vgf ∈ Y } with natural norm ‖f |CoY ‖ =
‖Vgf |Y ‖, and CoW(Y ) = C(Y ) as usual. It was already proven in [8] that
in the classical Banach space case both spaces coincide:

Theorem 6.1 (Theorem 8.3 in [8]). Let Y be a solid Banach space of

functions on G that is left and right translation invariant and continuously

embedded into L1
loc(G). Then Co Y = CoW(Y ) with equivalent norms.

In the general case of quasi-Banach spaces at least the inclusion CoW(Y )
⊂ CoY holds since W(Y ) ⊂ Y . However, it seems doubtful that we can state
results on the converse inclusion in the general abstract case. Moreover, it
is even not clear whether CoY is a complete space.

In special cases, however, one might be able to prove that ‖Vgf |W(Y )‖
≤ C‖Vgf |Y ‖ for a very specific choice of g, by using methods that are not
available in the abstract setting (like analyticity properties for instance):
see e.g. Section 8. Then one may extend this inequality to more general
analyzing vectors g as shown by the next result.

Theorem 6.2. Let Y be a left and right translation invariant solid p-
normed quasi-Banach space and let v be the function defined in (4.4). As-

sume that there exists a non-zero vector g0 ∈ B(Y ) and a constant C > 0
such that Vg0

f ∈ Y if Vg0
f ∈ W(Y ) and

‖Vg0
f |W(Y )‖ ≤ C‖Vg0

f |Y ‖

for all f ∈ (H1
v)q. Let g ∈ B(Y ) \ {0} be arbitrary. Then

‖Vgf |W(Y )‖ ≍ ‖Vgf |Y ‖

for all f ∈ (H1
v)q and CoW(Y ) = CoY = {f ∈ (H1

v)q, Vgf ∈ Y }. In

particular , CoY is complete.
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Proof. Since C(Y ) is independent of the choice of g ∈ B(Y ) \ {0} (Theo-
rem 4.4) we have ‖Vgf |W(Y )‖ ≤ C‖Vg0

f |W(Y )‖ for all f ∈ (H1
v)q. Thus,

it remains to prove that ‖Vg0
f |Y ‖ ≤ C‖Vgf |Y ‖ for all f ∈ (H1

v)q. By the
assumptions on g it follows from Theorem 5.1 that g0 has a decomposition

g0 =
∑

i∈I

λi(g0)π(xi)g

with (λi(g0))i∈I ∈ ℓp
w = (Lp

w)d and ‖(λi(g0))i∈I | ℓ
p
w‖ ≍ ‖g0 | C(Lp

w)‖, where
w is the weight in (4.3). Hence, we obtain

Vg0
f(x) = 〈f, π(x)g0〉 =

〈

f, π(x)
∑

i∈I

λi(g0)π(xi)g
〉

=
∑

i∈I

λi(g0)Rxi
Vgf(x).

By the p-triangle inequality this yields

‖Vg0
f |Y ‖p =

∥

∥

∥

∑

i∈I

λi(g0)Rxi
Vgf

∣

∣

∣
Y

∥

∥

∥

p
≤

∑

i∈I

|λi(g0)|p|||Rxi
|Y |||p‖Vgf |Y ‖p

≤ C‖g0 | C(Lp
v)‖p ‖Vgf |Y ‖p

for all f ∈ (H1
v)q. The reverse inequality ‖Vgf |Y ‖ ≤ ‖Vgf |W(Y )‖ is clear.

7. Nonlinear approximation. Let us now discuss nonlinear approx-
imation. Let (xi)i∈I be some well-spread set and g such that {π(xi)g}i∈I

forms an atomic decomposition of the coorbit space we want to consider.
We denote by

σn(f, C(Y )) := inf
N⊂I, #N≤n

∥

∥

∥
f −

∑

i∈N

λiπ(xi)g
∣

∣

∣
C(Y )

∥

∥

∥

the error of best n-term approximation in C(Y ). Here, the infimum is also
taken over all possible choices of coefficients λi. Our task is to find a class
of elements for which this error has a certain decay when n tends to ∞.

To this end we consider coorbit spaces with respect to Lorentz spaces
L(p,∞), also called weak Lp spaces. For some measurable function F on G
let λF (s) = |{x : |F (x)| > s}| be its distribution function, where | · | denotes
the Haar measure of a set. Then the nonincreasing rearrangement of F is
defined as F ∗(t) = inf{s : λF (s) ≤ t}. We let

‖F‖∗p,∞ := sup
t>0

t1/pF ∗(t).(7.1)

The Lorentz space L(p,∞) is defined as the collection of all F such that the
quantity above is finite. If p > 1 then L(p,∞) is a Banach space, and for
p ≤ 1 it is a quasi-Banach space. Moreover, in the latter case there exists
an equivalent r-norm for any r < p. We note also that Lp ⊂ L(p,∞). For
more information on Lorentz spaces we refer e.g. to [15].

By the properties of the Haar measure it is easily seen that all spaces
L(p,∞) are left and right translation invariant. Thus, if m is a moder-
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ate function then also Lm(p,∞) = {F measurable : Fm ∈ L(p,∞)} with
the quasi-norm ‖F |Lm(p,∞)‖ := ‖Fm‖∗p,∞ is left and right translation
invariant. In particular, the Wiener amalgam spaces W(Lm(p,∞)) are well-
defined. Further, if B(Lm(p,∞)) (see (4.5)) is nontrivial then also the coorbit
space C(Lm(p,∞)) is well-defined.

It is not difficult to see that the sequence space (Lm(p,∞))d(X) as-
sociated to a well-spread set X = (xi)i∈I coincides with a Lorentz space
ℓm(p,∞) on the index set I. In particular, an equivalent quasi-norm on
(Lm(p,∞))d(X) is given by

‖(λi)i∈I | ℓm(p,∞)‖ = sup
n∈N

n1/p(λm)∗(n)(7.2)

where (λm)∗ denotes the nonincreasing rearrangement of the sequence
(λim(xi))i∈I .

Theorem 7.1. Let m be some w-moderate weight function on G, let

0 < p < q ≤ ∞ and define α = 1/p − 1/q > 0. Let (xi)i∈I be a well-

spread set and g ∈ B(Lm(p,∞)) ⊂ B(Lq
m) such that {π(xi)g}i∈I forms an

atomic decomposition simultaneously of C(Lm(p,∞)) and C(Lq
m) (according

to Theorem 5.1). Then for all f ∈ C(Lm(p,∞)),

σn(f, C(Lq
m)) ≤ C‖f | C(Lm(p,∞))‖n−α.(7.3)

Proof. Let f =
∑

i∈I λi(f)π(xi)g be an expansion of f ∈ C(Lm(p,∞))
in terms of the atomic decomposition. By Theorem 5.1 we have (λm)∗k ≤

C‖f | C(Lm(p,∞))‖k−1/p. Let τ : N → I be a bijection that realizes the non-
increasing rearrangement, i.e., λτ(k)m(xτ(k)) = (λm)∗k. Moreover, (Lq

m)d =
ℓq
m(I), and ‖(λi(f))i∈I | ℓ

q
m(I)‖ forms an equivalent norm on C(Lq

v) once
again by Theorem 5.1. We obtain

σn(f, C(Lq
m)) ≤

∥

∥

∥
f −

n
∑

k=1

λτ(k)π(xτ(k))g
∣

∣

∣
C(Lq

m)
∥

∥

∥

=
∥

∥

∥

∞
∑

k=n+1

λτ(k)π(xτ(k))g
∣

∣

∣
C(Lq

m)
∥

∥

∥
≤ C

(

∞
∑

k=n+1

((λm)∗k)q
)1/q

≤ C‖f | C(Lm(p,∞))‖
(

∞
∑

k=n+1

k−q/p
)1/q

≤ C‖f | C(Lm(p,∞))‖n−α.

This completes the proof.

Remark 7.2.

(a) The obvious embedding C(Lp
m) ⊂ C(Lm(p,∞)) implies that we also

have σn(f, C(Lq
m)) ≤ Cn1/q−1/p for all f ∈ C(Lp

m) if p < q.
(b) In order to have a very fast decay of σn(f, C(Lq

m)) one obviously
has to take p very small in the theorem above, in particular, p ≤ 1.
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Clearly, C(Lm(p,∞)) is no longer a Banach space in this case, but
only a quasi-Banach space. So it is very natural to treat also the
case of quasi-Banach spaces when dealing with problems in nonlinear
approximation. This was actually one of the motivations for this
paper.

8. Modulation spaces. Let Hd := R
d × R

d × T denote the (reduced)
Heisenberg group with group law (x, ω, τ)(x′, ω′, τ ′) = (x + x′, ω + ω′,
ττ ′eπi(x′·ω−x·ω′)). It is an IN group and thus unimodular. Its Haar measure
is given by \

Hd

f(h) dh =
\

Rd

\
Rd

1\
0

f(x, ω, e2πit) dt dω dx.

We denote by Txf(t) := f(t − x) and Mωf(t) = e2πiω·tf(t), x, ω, t ∈ R
d,

the translation and modulation operators on L2(Rd). Then the Schrödinger

representation ̺ is defined by

̺(x, ω, τ) := τeπix·ωTxMω = τe−πix·ωMωTx.

It is well-known that this is an irreducible unitary and square-integrable
representation of Hd. The corresponding voice transform is essentially the
short time Fourier transform:

(8.1) Vgf(x, ω, τ)

= 〈f, ̺(x, ω, τ)g〉L2(Rd) = τ
\

Rd

f(t)e−πix·ωMωTxg(t) dt

= τeπix·ω
\

Rd

f(t)g(t − x)e−2πit·ω dt = τeπix·ω STFTg f(x, ω).

Let us now introduce the modulation spaces on R
d. We consider non-

negative continuous weight functions m on R
d × R

d that satisfy

m(x + y, ω + ξ) ≤ C(1 + |x|2 + |ω|2)a/2m(y, ξ), (x, ω), (y, ξ) ∈ R
d × R

d,

for some constants C > 0, a ≥ 0. This means that m is a w-moderate
function for w(x, ω) = (1 + |x|2 + |ω|2)a/2 (see also [12, Chapter 11.1]).
Additionally, we require m to be symmetric, i.e., m(−x,−ω) = m(x, ω).
A typical choice is ms(x, ω) = (1 + |ω|)s, s ∈ R. For 0 < p, q ≤ ∞ and m
as above we introduce Lp,q

m := Lp,q
m (R2d) := {F measurable : ‖F |Lp,q

m ‖ < ∞}
with quasi-norm

‖F |Lp,q
m ‖ :=

( \
Rd

( \
Rd

|F (x, ω)|pm(x, ω)p dx
)q/p

dω
)1/q

.

This expression is an r-norm with r := min{1, p, q}.
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Let g be some nonzero Schwartz function on R
d. The short time Fourier

transform STFTg extends to the space S ′(Rd) of tempered distributions in
a natural way. Given 0 < p, q ≤ ∞ and m as above, the modulation space is
defined as

Mp,q
m := {f ∈ S ′(Rd) : ‖STFTg f |Lp,q

m ‖ < ∞}

with quasi-norm ‖f |Mp,q
m ‖ = ‖STFTg f |Lp,q

m ‖. Since by (8.1), |Vgf(x, ω, τ)|
= |STFTg f(x, ω)|, we can identify the modulation spaces with coorbit
spaces,

Mp,q
m (Rd) = Co Lp,q

m (Hd) = {f ∈ S ′ : Vgf ∈ Lp,q
m },

where m and Lp,q
m are extended to Hd in an obvious way, e.g. m(x, ω, τ) =

m(x, ω). However, at the moment we do not know yet whether Co Lp,q
m co-

incides with

C(Lp,q
m ) = {f ∈ S ′(Rd) : Vgf ∈ W(Lp,q

m )},

if p < 1 or q < 1. It is not even clear yet whether Mp,q
m is complete. We

will use Theorem 6.2 and a result from [10] to clarify this problem. Let
us first investigate the space B(Lp,q

m ) (see Definition 4.2). It is indeed not
hard to see that B

r
w ⊂ B(Lp,q

m ) with r = min{1, p, q}, and Theorem 4.5
yields

B
r
w = C(Lr

w).

Let g0(t) = e−π|t|2 be a Gaussian. Using the relation of STFTg0
to the

Bargmann transform, Galperin and Samarah proved that

‖Vg0
f |W(Lp,q

m )‖ ≤ C‖Vg0
f |Lp,q

m ‖

for all f ∈ Mp,q
m [10, Lemma 3.2]. Thus, it follows from Theorem 6.2 that

C(Lp,q
m ) = Mp,q

m ,

and the latter is complete. It seems that the completeness of Mp,q
m for p < 1

or q < 1 was not stated in [10] or elsewhere in the literature although its
proof is somehow hidden in [10].

The abstract discretization Theorem 5.1 yields the following result for
Gabor type atomic decompositions of modulation spaces.

Theorem 8.1. Let 0 < p0 ≤ 1 and w be some symmetric submultiplica-

tive weight function on R
d ×R

d with polynomial growth. Let g ∈ Mp0

w . Then

there exist constants a, b > 0 such that

{MbjTakg : k, j ∈ Z
d}

forms an atomic decomposition for all modulation spaces Mp,q
m with p0 ≤

p, q ≤ ∞ and m being a w-moderate weight. This means that there exist
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functionals λk,j , k, j ∈ Z
d, on M∞

1/w (⊂ S ′) such that

(a) any f ∈ Mp,q
m has the series expansion f =

∑

k,j∈Zd λk,j(f)MbjTakg;

(b) a distribution f ∈ M∞
1/w belongs to Mp,q

m if and only if (λk,j(f))k,j∈Zd

belongs to ℓp,q
m (Z2d), and we have the quasi-norm equivalence

‖f |Mp,q
m ‖ ≍

(

∑

j∈Zd

(

∑

k∈Zd

|λk,j(f)|pm(ak, bj)p
)q/p)1/q

=: ‖(λk,j(f)) | ℓp,q
m (Z2d)‖.

We remark that the abstract Theorem 5.1 allows extending the previous
result also to irregular Gabor frames on Mp,q

m .
Theorem 8.1 indicates that the modulation spaces Mp0

w with 0 < p0 ≤ 1
are the correct window classes for time-frequency analysis on Mp,q

m . This
was already conjectured in [10]. Galperin and Samarah also conjectured
that whenever Vgf ∈ Lp

v then f ∈ Mp
v and g ∈ Mp

v [10, Conjecture 12].
Theorem 4.6 leads to a weak version of this conjecture.

Theorem 8.2. Let f, g ∈ L2(Rd) and 0 < p ≤ 1. Let v be a symmet-

ric submultiplicative weight function. If Vgf ∈ W(Lp
v), then g ∈ Mp

v and

f ∈ Mp
v .

The remaining question is whether Vgf ∈ Lp
v already implies that

Vgf ∈ W(Lp
v).

Let us also apply Theorem 5.2 to our situation.

Theorem 8.3. Let g ∈ S(Rd) and a, b > 0 be such that

{MbjTakg : j, k ∈ Z
d}(8.2)

forms a Gabor frame for L2(Rd). Then its canonical dual γ is also contained

in S(Rd), and any f ∈ Mp,q
m , 0 < p, q ≤ ∞, has a decomposition

f =
∑

j,k∈Zd

〈f, MbjTakg〉MbjTakγ

with ‖f |Mp,q
m ‖ ≍ ‖(〈f, MbjTakg〉)j,k∈Zd | ℓ

p,q
m (Z2d)‖.

Proof. Since (8.2) forms a Gabor frame with dual window γ, any f in
L2(Rd) has a decomposition

f =
∑

j,k∈Zd

〈f, MbjTakg〉MbjTakγ.

It was shown in [12, Corollary 13.5.4] that also the dual window γ is con-
tained in S(Rd). Since S(Rd) ⊂ Mp,q

m for all 0 < p, q ≤ ∞ and all w-moderate
weights m with w having polynomial growth, we have g, γ ∈ B(Lp,q

m ) = M r
w

with r = min{1, p, q}. Clearly, the set {(ak, bj) : k, j ∈ Z
d} is well-spread

in H
d. Thus, the assertion follows from Theorem 5.2.
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Of course, one can also apply Theorem 7.1 to best n-term approximations
with Gabor frames; cf. also [14] for approximation with local Fourier bases.
We leave this straightforward task to the interested reader.
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