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Stochastic Banach principle in operator algebras
by

GENADY YA. GRABARNIK (Hawthorne, NY)
and LAURA SHWARTZ (Pretoria)

Abstract. The classical Banach principle is an essential tool for the investigation of
ergodic properties of Cesaro subsequences. The aim of this work is to extend the Banach
principle to the case of stochastic convergence in operator algebras. We start by establish-
ing a sufficient condition for stochastic convergence (stochastic Banach principle). Then
we prove stochastic convergence for bounded Besicovitch sequences, and as a consequence
for uniform subsequences.

1. Introduction and preliminaries. In this paper we establish a sto-
chastic Banach principle. The Banach principle, one of the most useful tools
in “classical” pointwise ergodic theory, was used to give an alternative proof
of the Birkhoff-Khinchin individual ergodic theorem. Typical applications
of the principle are Sato’s theorem for uniform subsequences [17] and the
individual ergodic theorem for Besicovitch bounded sequences [16]. Non-
commutative analogues for the (bilateral) almost everywhere convergence
can be found in [9], [2].

In this paper we establish the Banach principle for convergence in mea-
sure (stochastic Banach principle) in Theorem 2.3, which is then reformu-
lated in a form convenient for applications (Theorem 2.4). We apply it to give
a simplified proof of the stochastic ergodic theorem (cf. [10]). We also estab-
lish stochastic convergence for Sato’s uniform subsequences (Theorem 3.6)
and a stochastic ergodic theorem for Besicovitch bounded sequences (Theo-
rem 3.5).

Note that the stochastic Banach principle is new even in the commutative
case. Indeed, it is well known (see for example [13]|) that there are Cesaro
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averages constructed for automorphisms that converge in measure and do
not converge almost everywhere. This implies that although the condition of
Theorem 2.3 is satisfied in this case, the pointwise Banach principle condition
is not.

Throughout the paper we denote by M a von Neumann algebra with a
semi-finite normal faithful trace 7 acting on a Hilbert space $, and by P(M)
the set of all orthogonal projections in M.

Recall the following definitions (taken from the papers by Segal [18],
Nelson [15], Yeadon [21], Fack and Kosaki [6]):

DEFINITION 1.1. A densely defined closed operator x affiliated with a
von Neumann algebra M is called (7)-measurable if for every € > 0 there
exists a projection e € P(M) with 7(I — e) < € such that e($) C D(x),
where ©(z) is the domain of x.

The space of all (7)-measurable operators affiliated with M is denoted
by S(M) or S(M, ).

For convenience, for a self-adjoint x € S(M) we denote by {x > ¢} the
spectral projection of x corresponding to the interval (¢, 00).

DEFINITION 1.2. A sequence {z,}2, converges to 0 in measure if for
every €, > 0 there exist an integer Ny and a set of projections {e, }n>n, C
P(M) such that ||zpen|loo < € and 7(I —e,) < d for n > Npy.

REMARK 1.1. We will use the terms converges in measure and converges
stochastically interchangeably.

DEFINITION 1.3. Let x € S(M) and ¢ > 0. The tth singular number of
x is defined as

(1) pe(x) = inf{||zel| : e € P(M) with 7(I — e) < t}.

REMARK 1.2. Note that the measure topology is defined in Fack and
Kosaki [6] as the linear topology with the fundamental system of zero neigh-
borhoods given by V(e,d) = {x € S(M) : there exists e(x,e,d) € P(M)
with ||ze|| < € and 7(I — e) < §}. By Nelson’s [15] result, the set of all 7-
measurable operators is a complete topological *-algebra. Since the measure
topology has a countable fundamental system of zero neighborhoods, S(M)
is sequentially complete.

DEFINITION 1.4. Denote by Ai(x) the distribution function of x defined
as

(2) Ai(@) = 7(Eo0)(l2), 20,

where E(; o(|z])) is the spectral projection of z corresponding to the interval
(t,00).
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REMARK 1.3. For z € S(M), we have \i(z) < oo for large enough ¢ and
limy—, o0 A\¢(z) = 0. Moreover, the map R 3 ¢ — M(x) is non-increasing and
continuous from the right (since 7 is normal and {|z| > ¢,} T {|z| > t},
hence in the strong operator topology, as ¢, | t). The distribution \(z) is a
non-commutative analogue of the distribution function in classical analysis
(see [6, p. 272], or [19]).

We need the following properties of p;(z) (see for example [21, Proposi-
tion 2.4], or [6, Lemma 2.5]):
LEMMA 1.1. Let z,y € S(M).

(i) The map Ry 3t — p(x) is non-increasing and continuous from the
right. Moreover, limy|o p () = ||z]/oc € [0, 00].

(ii) p(z) = pe(|z|) = pe(2*) and pe(az) = |a|p(x) for o € C, £ > 0.

) 1
(iii) ,u( ) < pe(y) for 0 <z <y, t>0.
(iv) pets(@ +y) < pe(x) + ps(y) fort,s > 0.
(v) pa(yzz) <|[Ylloollzlloo pe(x) fory,z e M, t > 0.
() pess(y2) < pu(@)ps(y) for t,5 > 0.

2. Stochastic Banach principle. We first formulate some conditions
equivalent to stochastic convergence (cf. [6, Lemma 3.1]).

LEMMA 2.1. Let M, T be as before. Consider the following conditions:

(i) The sequence {xn}22 | converges to 0 in measure.
(ii) For everye,d > 0 there exist 0 < &' < 0 and an integer Ny such that
fOT’ n > NO)
s (:Cn) <e.

(iii) For every e,6 > 0 and p € P(M) with 7(p) < oo there exist an
integer Ny and a sequence {e}, }n>n, C P(M) with e, < p such that

|lznenllo <& and T(p—e,) <8 forn > No.
Then (1)< (il)=(iii). If T is finite then (iii)=(i).

Proof. (ii)=(i). The condition s (z,) < € yields a sequence {e,}7>; of
projections with ||ze,| < 2¢ and 7(I —e,) < §'.

(i)=(ii) follows from the definition of measure convergence 1.2.

(1)&(ii)=-(iii) follows from the inequality 7(p —pAq) =7(pVqg—¢q) <
7(I — q), hence the sequence {e], = e, Ap}S°; satisfies (iii) (here the projec-
tions ey, are defined in the proof of (ii)=(i)).

The case when 7 is finite follows immediately, since 7(I) < co. m

We need the following technical statement, which is interesting in its own
right:
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LEMMA 2.2. Let z,y € S(M) be self-adjoint, and t, s positive real. Then
(3) Atrs(z 4+ y) < M) + As(y).
Proof. Indeed,
@ e +)II—{z > ) A= {yl > s}
= [z +y)T—{lz] > t}) AT —{[y] > s})ll
< (@ = {lz] > t}) A T = {]y[ > s}
+ ly(@=A{lz| > t}) A (T —={Jyl > s}l
= |l =] (T —{lz] > t}) AT —{[y[ > s}l
+ [[y[(@ = {]z[ > t}) AT = {ly] > s})ll
< (@ =l > )l + [yl @ = {lyl > sHIl <t + 5.

Here the first and second equalities follow from the equality || |z|uiu,|z| || =
Il |z12]| = ||2*2]||, where 2 € M}, u, is a partial isometry from M such that
z = uy|z|, and

(5) wiuy, =U1(2), wuyul =r(2),

where [(2) (resp. r(z)) is the left (resp. right) support of z. Inequality (4)
means that

(6) P (@) 42 () (T +y) St + s

Let £ be a vector from a Hilbert space ), and suppose that

(7) Ee{lz+yl>s+t3oN T —{lz[ > t}) AI—{[y] > s})H.
Then

8)  (t+3)lEl? < (Jz+ylé, lz+yle) = (z+y)& (x+y)€) < ((E+s)€])*.

Here the first inequality follows from the inclusion & € {|z + y| > s + t}9,

the equality follows from the spectral decomposition (5), and the second

inequality follows from the inclusion & € (I — {|z| > t}) A (I — {]y| > s})9.
Inequality (8) implies that ||£]| = 0 or, in other words,

{lz+yl > s+ 13 AT = {lz] > t}) AT =A{ly] > s})) = 0.
Hence,
9) Alz+yl>t+st={lz+yl >t+s}
—{le+yl >t +spA(T—A{lz] > t}) AT —{ly] > s}))
~lz+yl >+ sV (T={lz] > 1) A= A{]y| > s}))
— (= Alz[ > t}) AT =Lyl > s}))
ST— (@ —=Alzl >t} AT=A{lyl > s})) = {lz| >t} v {]y| > s}.
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Here ~ denotes projection equivalence. Since the trace 7 is invariant on
equivalent projections,

(10) T{lz+yl >t +s}) <7({lz| > 1}V {ly[ > s})

T({lzl > t}) + 7({lyl > s}).

VANVAN

Hence, inequality (3) is valid. =

THEOREM 2.3. Let (B, | - ||) be a Banach space and X = {A, : n € N}
a set of linear operators A,, : B — S(M).

(i) Suppose that there exists a function C' : Ry — Ry with limy_, C(\)
=0 and
(11) SggT({lAn(bﬂ > Apll}) < C(A)
for every b € B and A € Ry. Then the subset B of B where An(b)

converges in measure s closed in B.
(ii) Conversely, if A, is a set of continuous-in-measure maps from B

into S(M) and for allb € B and A € Ry,

(12) lim sup 7({|A.(b)| > \}) =0,
A—00 neN
then there exists a function C : Ry — Ry with limy_ o C(\) = 0
and
(13) SggT(ﬂAn(b)! > Allpl[}) < C).

Part (i) means that under the condition of linear uniform boundedness
(11), the set of stochastic convergence is closed.

Part (ii) means that if the set of uniform boundedness is closed, then
linear uniform boundedness holds on this set.

Note that although the condition in (ii) looks more restrictive, it is similar
in nature to that in (i), since everything could be restricted to the closure of
the set where uniform boundedness holds (it is also a Banach space).

Proof. (i) We first show that condition (11) implies continuity of the
operators in Y. Let {b;}7°, be a sequence in B converging to b € B. Then
for \,e € Ry satisfying 2\ supy,, [|b — bx|| < ¢, as k — oo we have

(14)  7({[An(br) — An(b)| > }) < 7({[An(br — b)[ > Al[br — b[|})

< C(Allby = b] 1) — 0.
Hence A, is continuous. Note that the inequality follows from the fact that
the right-hand side of (11) is independent of the norm of b.

There exists a subsequence by, of by such that the sequence x; =
limy, o0 An(by,) converges stochastically (bear in mind that by Remark 1.2
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the algebra S(M) is sequentially complete). In order to establish this state-
ment, by (11) we find a sequence {k]}32, such that

(15) T({| An(by; — by )| > 277}) <277 for all n,
(16) T({|An(bk; —b)|>277}) <277 for all n.
This can be done since b, — basn — 0o, and C'(\) — 0as A — oo. It suffices
to choose a sequence {\;}72, such that C'(A;) < 277 and ku}—bH < )\]71 272,
Choose n; such that for N > n;,
(17) T({| AN (byy) — 5] > 277}) < 277,
This is possible since An(bk;) converges stochastically to z;. Then for j,7 € N
and n > n;yj,
(18)  m({lwj — wjpal >3 -277})
= 7({l(zj — An(br;)) + (An(byr) = Anlby;
+ (Anlby ) — wjpa)l > 3277}

< ({1 An(bey) — 25| > 279) + 7({| Anlbig) — Anlbig )| > 279)

+r({|An(bis,) = xj4il > 2700}

<3.277,

)

Here the first inequality follows from (3).
Denote the stochastic limit of {xj};?‘;l by z¢. Taking a subsequence of
{z;} if necessary, we suppose that

(19) T({Jaj — x| > 277}) <27,
The sequence {4,,(b)}5°; converges to zo stochastically. Indeed, for n > n;,
(20)  T({|An(b) = xo| > 3-277})

= 7({|(An(b) — An(by;)) + (An(bys) — 25) + (25 — 20)| > 3 -277})

< 7({1An(b) — An(byy)| > 277}) + 7({|An(byy) — 25| > 277})
+7({|xj — mo| > 277})
<3.277,

Here the first inequality follows from (3) and the second follows by noting
that the first part follows from (16), the second from (17) and the choice
of n, and the third from (19). Part (i) is thus established.

(ii) Suppose that for every b € B and A € Ry,

(21) supr({|An (b)) > A}) %0
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For fixed ¢ > 0 and A € N, define By = {b € B : sup,, 7({|An(b)| > \}) < e}.
Then from (21) it follows that

(22) B=|]JBu.

AEN
Let By := {b € B :sup, >, 7({|An(b)| > A}) < e}. Then
(23) By = (] B

keN

The sets By, are closed. Indeed, let By D {bj}‘j?‘;1 converge to b € B. Then

24)  T({[An(®)] > A+ 7}) = 7({|An(bj) — (An(bj) — An(D))] > A+ 7})
< 7({|An(b))] > A}) + 7({|(An(bj) — An(b))| > 7}) <e.
Here the first inequality follows from (3). The estimate of the first term
follows from the definition of B} j, while that of the second term becomes
valid for sufficiently large j, and follows from the free choice of b; and from
the continuity of A,, in measure.
Since A¢(x) is continuous from the right due to Remark 1.3, we have

(25) T({[An ()] > A}) = lim 7({|A,(0)] > A +m}) <,

where 7, — 0 as m — oo. Hence, b € By, so By is closed. Then B) is
closed as an intersection of closed sets.

It follows from the Baire category principle that there exists A such that
B, has a non-empty interior. Let B(by,r) = {b € B : ||[b — by|]| < r} C Bj.
Then

(26) T({|An(D)| > A\}) <e for every b € B(bo,r).

Moreover, for b = by — rc € B(bg,r) with ¢ € B, ||c|| < 1, we have

27)  T({[An(re)] > 22}) = T({|An(rc — bo) + An(bo)| > 2A})
< T({|An(re = bo)l > A}) + 7({[An(bo)| > A})
< 2e.

Let v > 2X/r. From (27) it follows that 7({|An(c)] > v}) < 2¢ for every
¢ € B with ||c]] < 1.

Let C(7v) = supeep, <1 T({|An(c)| > 7}) < 2e. Free choice of € implies
that

(28) lim C(v) =0,

y—00

hence (11) is valid. m

For application of Theorem 2.3, it is convenient to combine (i) and (ii).
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THEOREM 2.4. Let (B, | -||) be a Banach space, A, a set of continuous-

in-measure linear maps from B into S(M), A € Ry, and suppose that for
each b € B,

(29) hm sup7({|An(b)| > A\}) =0.

A—00 peN
Then the subset B of B where Ay (b) converges in measure is closed in B.

Proof. Follows immediately by applying consecutively (ii) and (i) of The-
orem 2.3. m

Let e be a projection in M, and let M, be the von Neumann algebra
consisting of the operators of the form exe, x € M (we denote exe by x.).
If 7 is a semifinite normal faithful trace on M, then 7, = 7|3/, is a semifinite
(possibly finite) faithful normal trace on M,. Indeed, the tracial property,
semifiniteness, normality and faithfulness of 7. follow directly from similar
properties of 7. The space S(M,,7.) is isomorphic to S(M, 7). since both
are closures of (MT—ﬁnite support)e = (Me)Te—ﬁnite support -

PROPOSITION 2.5. Let B, be a sequence of continuous-in-measure oper-
ators on S(M,T), and e; € P(M), i = 1,2, with | = e} + ey. Suppose that
ei(Bn(z)) = Bn(xe;) = (Bn(z))e; for everyn € N and x € S(M,T), or in
other words e; commutes with B,,. Suppose also that

(30) )\lim sup7({|Bn(x¢;)| > A}) =0  fori=1,2 and all x € S(M,T).
—OneN

Then
(31) lim supT({\B (z)] > A}) =0.

A—00 neN

Proof. We have
(32) T({|Bn(ze;)| > A}) = 7(ei{|Bn ()| > A}).

Indeed, since for x € Sy (M) (the set of all self-adjoint operators in S(M))
we have 7({|z| > A}) — 0 as A — oo, there is a sequence of polynomials
Pj(y) in R converging to x{|y>1}(¥) pointwise such that P;(x) converges to
X{|z|>A} (%) stochastically. Then by [6, Proposition 3.2],

(33)  7({|Bn(ze)| > A}) = lm7(P;(Bn(we,))) = lim7(F;(Bn(eize:)))
= lim7(P;j(e;Bn(x)ei)) = lim7(e; Pj(Bn(x))) = 7(ei{| Ba(x)| > A}).
J j
Statement (31) now follows from the fact that (as B, commutes with e; and
(3) holds)

(34)  T({|Bu(@)] > M+ A2}) = 7({|(e1 + e2) Ba(x)(e1 + €2)| > A + Az})
= 7({|le1Bn(z)e1 + eaBn(z)ea| > A + A2})

< T({IBn(2e)] > At}) + 7({[Bn(e,)| > A2}).
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REMARK 2.1. We are going to use (29) in the next section when dealing
with stochastic ergodic theorems, since it holds in that setting.

3. Stochastic ergodic theorems. In this section we establish stochas-
tic convergence of bounded Besicovitch sequences, and present stochastic
ergodic theorems for uniform subsequences.

Here we use the following assumptions: M is a von Neumann algebra with
a faithful normal tracial state 7, and a a *-automorphism of the algebra M.
Set An(z) = n 'Y 'al(z) for # € M. Define o/ as a linear map on
Ly (M, ) satisfying 7(x - a(y)) = 7(d/(2)y) for x € L1(M,7), y € M, and
Al (z) = n~ SN ) (), for @ € Ly(M, 7).

Let us also recall some definitions from Grabarnik and Katz [10] and
from Chilin, Litvinov and Skalski [2].

DEFINITION 3.1. A positive operator h € M, is called weakly wandering
if
(35) [An(R)]loc =0,

The following definition comes from [18], [22] (see also [2]).

DEFINITION 3.2. A sequence {x,}>2 converges to xq bilaterally almost
uniformly (b.a.u.) in S(M) if for every § > 0 there exists a projection e €
P(M) such that ||(z, — z)é|]lcc — 0 and 7(I —e) < 4.

REMARK 3.1. Note that b.a.u. convergence implies stochastic conver-
gence.

The following definition is due to Ryll-Nardzewski [16].

DEFINITION 3.3. Let C; denote the unit circle in C. A trigonometric
polynomial is a map P, : N — C, where Py(n) = Z?;S bjA} for some
{\HEZ) € € and {b;}F2) C R,

Bounded Besicovitch sequences are bounded sequences from the [;-aver-
age closure of trigonometric polynomials.

More precisely,

DEFINITION 3.4. A sequence (3, of complex numbers is called a bounded
Besicovitch sequence if

(i) |Bn| £ C < oo for every n € N,
(ii) for every € > 0, there exists a trigonometric polynomial P} such that

n—1
1
I — — Pi(g .
(36) 1mnsupnj§1 |5, (1) < e

Let p be a normalized Lebesgue measure (Radon measure) on C; and
M be the von Neumann algebra of all essentially bounded ultra-weakly
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measurable functions f : (Cy,u) — M. The algebra M is isomorphic to
Loo(Cy, ) ® M, the W* tensor product of Lo (Cy, 1) and M, and a dual to
the space Li(Cyq, ) ® M, (for the definition of W* tensor product and the
form of its predual space, see for example Takesaki [20, Theorem IV.7.17]).
The space Li(Cy,u) ® M, can be considered as a set of L; functions on
(Cy, p) with values in M,. The algebra M also has a natural trace T(f) =
S, 7(f(2)) du(2), and M, is isomorphic to Ly (M, 7).

Let o be an automorphism of (Cy, ut) as a Lebesgue space with measure.
We define the automorphism a ® o of (]\7[/ ,7) as the closure of the linear

extension of the automorphism acting on (M,7) 3 z(z) as a ® o(z(z)) =
a(z(a(2))).

EXAMPLE 3.1. An example of such an automorphism is ay(x(z)) =
a(x(Az))) for A € C;. In this case

1 n—1 1 n—1
(37) An(2) =~ D al(z) = - > al(z(Ma)).
=1 =1

In particular, if z(z) = zx for € M then
1 n—1
(38) An(w2) =2~ ; Mol (z).

The following lemma connects stochastic convergence in Ll(M ,T) with
pointwise convergence on C; and stochastic convergence in M (cf. [2]).

LEMMA 3.2.

(i) If Li(M,7) 3 an — 20 € L1(M,7) b.a.u. as n — oo, then zn(z) —
x0(z) stochastically for almost every z € Cy.

(ii) Suppose that h is a weakly wandering operator with supp(h) =1 for
a sequence A,,. Then Al (x) converges to 0 stochastically.

(iii) Let N = (M,7)® Loo(X, 1) (X being a separable Hausdorff compact
set, and pu a Lebesque measure), o an automorphism of M, and o an
automorphism of Lo (X, ). Then a ® o is an automorphism of N.
Suppose that h is a weakly wandering operator with supp(h) = I
for a sequence A, corresponding to the automorphism o ® o. Then
Al (x(z)) converges to 0 stochastically for almost every z € X.

Proof. By [2, Lemma 4.1], the hypothesis of part (i) implies b.a.u. con-
vergence of z,,(z) to zo(z) for almost every z in C;. Hence bilateral stochastic
convergence holds. This implies the statement of (i), since bilateral stochas-
tic convergence is equivalent to (one-sided) stochastic convergence (see |2,
Theorem 2.2]).

(i) Suppose that z € L1(M,7)+ and A} () is a sequence satisfying

(39) (Al (z)h) -0 asn — oo.
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Then
(40) ts-T({AL (z) >t} A{h > s}) < 7(A,(x)h).

Indeed, for any e;, ea € P(M), we have ejeae; > ejAea. To see this, note that
since e1 A ea commutes with e, e, we have (I — e A eg)ejeser(eq Aeg) =0,
hence

erege; = (I —ej Neg)ereser(I— e Aea) + (e1 Aex)ereser(er A eg)
= (T —e1 Neg)ereger(I—eg Aea) + (€1 Aeg).
Thus,
(41)  ts-T({AL(x) > t}A{h > s}) < tr({Al,(x) > t}s{h > s}{A] (z) > t})
<tr({An(z) > thh{A,(2) > t}) = tr({A;(2) > t}h) < 7(A4,,(2)h).
Hence, (40) is valid.
Furthermore,

(12) AL > 1) < (A @) + (T (> 5)).

This follows from (40), and from the fact that 7(e1) < 7(e1 Aea) +7(I—e2).
Indeed,

(43) T(e1—e1Nex) =T1(e1(I—e1 Neg)) =7(e1(I—e1 Aeg)er)
T(el(ﬂ — 62)61) = T(el(ﬂ — 62)) S T(H — 62).

IN

Hence, (42) is valid.

Note that inequality (42) together with the fact that 7(AJ (x)h) — 0
as n — oo implies that sup, cy7({|An(b)] > A[b]|}) < C(A). Indeed, the
sequence {7(A} (z)h)}>2,, being convergent, is bounded by a constant Cp.

Choose a decreasing sequence {s;}72; C Ry such that 7(I—{h > s;}) < 277,
and set t; = 2js]-_1. Then

(44) F({AL() > 13}) < 7 Cp +279 = (Co+ 1)27,

353
Hence Theorem 2.4 implies the stochastic convergence of A} (x). Indeed, for
a dense subset in Li(M,7) of elements of the form = = — A)(z) + T
(here x € M N Li(M,7) and T € M is an «-invariant element, see |13,
Theorem 1.5(iii), p. 273|), A/, (Z) converges in L1, hence stochastically.

(iii) The proof is along the same lines as for (ii), with the necessary
adjustments. Let E7 be a conditional expectation with respect to the trace
TR p of (M, 7)® Loo(X, ) onto (M, 1) ® Const(X, u), and E a conditional
expectation with respect to the trace 7® p of (M, 7) ® Loo (X, ) onto C-I®
Loo(X, ) (for the definition of the first conditional expectation, see [20]).
Due to the form of a ® o, both E;’s commute with A,,, for j =1,2.
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Since
(45) [An(P)lloo = [[ExAn(h)lloc = [|An(E1h) oo,
and supp(h) < supp(E1h), it follows that supp(E1h) = L. Indeed, z > 0,
x # 0 implies 7(E1z) = 7(x) > 0, hence 0 < 7((Eq1a)h) = 7(a(E1h)) and
supp(E1h) =1 for every a € M.

Hence E1(h) is a weakly wandering operator.
For positive x(z) € L1(M,7) ® L1(X, 1) we have
(46) Izl = § ll2(2)]h dpa(2),
X
hence ||z(2)||1 is an L1 (X, p) function. Applying the classical Hopf inequality
(see for example [13, Theorem 2.1, p. 8]), we get

@7) el A Eh > A < R ()l du(z),
" X

so outside a set Xy C X of small measure the value of | A} (x)(z)[]1 is uni-
formly bounded. Proceeding as in part (ii) applied to every z € Xy, we get
stochastic convergence for every z € Xj. m

THEOREM 3.3 (Neveu decomposition for special tensor products of von
Neumann algebras). Let N' = (M,7) @ Loo(X, ) (X being a Hausdorff
separable compact set, and . a Lebesque measure), o an automorphism of M,
and o an automorphism of Loo(X, ). Then & = a ® o is an automorphism
of N'. Suppose that, in addition, the automorphism o is ergodic. Then there
exists an a-invariant projection in N of the form e; = e11 ® I, with e1(2)
= ey for almost every z € X, such that, setting es =1 — ey, we have:

(i) There exists a normal state o on N with supp(o) = e1, and for almost
each z € X, o(2) is invariant with respect to o/ .

(ii) There ezists a weakly wandering operator h € N with supp(h) = ey
and for almost each z € X, h(z) is a weakly wandering operator
m M.

Proof. Corollary 1.1 of [10] implies existence of a projection €1 in A/ such
that (i) there exists an &’-invariant normal state ¢ with supp(¢) = €1 and
(ii) there exists a weakly wandering operator h € N with support I—¢€;. Our
goal is to show that similar statements are valid for almost every z € X.

Since o is ergodic, for every z € M ® Const(X, i) (here M ® Const(X, i)
is the space of constant functions on X with values in M) we have

(48) 0(2)(x(2)) = (@'0(2))(z(2)) = e(2)(e(x(0(2))))
= 0(2)(a(x(2))) = (o (e(2))) (x(2)),

that is, o(z) is o/-invariant. Suppose that z — p(z) is not constant, so there
exists ro € Ry and z(z) = xp € M4 with p({z € X : o(2)(z(2)) < ro}) >0
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and u({z € X : 0(2)(x(2)) < ro}) > 0. Since o is ergodic there exists n € N
such that

(49) ulo™"({z € X : 0(2)(2(2)) < ro}) N{z € X : 0(2)(x(2)) <ro}) >0

Hence,

(50) 0(2)(x(2)) = (@"e(2))(x(2)) = ()" (e(2))(x (0" (2)))
= 0(2)(2(0"(2))) = e(o7"2)(2((2))),
sorg > 0(2)(x0) = (67 "2)(xg) < rg. The contradiction shows that z — o(z)
is constant.
This implies that supp(o) = supp(o(z)) = €1(z) is constant.
The proof of (ii) follows the reasoning for (45). m

THEOREM 3.4. Let N = (M, 7) ® Loo(X, 1) (X being a separable Haus-
dorf compact set, and p a normalized Lebesque measure), o an automorphism
of M, and o an automorphism of Loo(X, ). Then & = a® o is an automor-
phism of N'. Suppose that, in addition, o is ergodic. Then for almost every
z € X, the averages Al (x(2)) converge stochastically.

Proof. This follows directly by applying Theorems 3.3 and 3.2 to the
part of the partition where there exists a weakly wandering operator, and
by applying the regular individual ergodic theorem [22] to the part where an
invariant normal state exists (3.3(i)). =

Now we are in a position to prove stochastic convergence of bounded
Besicovitch sequences.

THEOREM 3.5 (Stochastic ergodic theorem for bounded Besicovitch se-
quences). Let {ﬁ]} . be a bounded Besicovitch sequence, and M a von Neu-
mann algebra with a finite faithful normal tracial state 7. Let o be an auto-
morphism of M. Then the sequence

1 n—1
=2 B(@) (@)
j=0

converges stochastically for x € L1(M,T).

Proof. Suppose first that {8;} = {P(j)} for a trigonometric polynomial
Py(j). Then the statement of the theorem is valid.

Indeed, choosing « as in Example 3.1, we deduce from Theorem 2.4 and
from the fact that every irrational rotation on C; is ergodic (the equidistri-
bution Kronecker—Weyl theorem, see e.g. [12, p. 146]) that

1 n—1
(51) Ap(w2) =2 — ;Alo/(m),
hence
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1 n—1
Ez)‘l(a/ l
=1

converges stochastically for irrational .

For rational A, the convergence follows from the fact that (51) is a finite
combination of averages of (o’)", where m is the denominator.

Taking linear combinations of terms as in (51) implies the statement for
trigonometric polynomials.

Next, the statement of the theorem is valid for x € M N S(M). Indeed,
approximating the bounded Besicovitch sequence by trigonometric polyno-
mials as in (36), we get for A, (k,z) =n~"" 31! Pu(l) - (o) (),

(52) Mﬂm—waw»_(E]@ Pe(@)]) 1o

which gives stochastic convergence.
Note also that for every x € Li(M,T)
n

—_

(53) Aul) — Anlh)h < (X180 )

=0

Hence by Remark 2.1 the averages /Tn(x) are uniformly bounded in the sense

of (11).
The assertion of the theorem follows from the stochastic Banach principle,

Theorem 2.4 and density of M NS(M) in Li(M, 7). =

The next theorem is a consequence of the stochastic ergodic theorem for
bounded Besicovitch sequences (cf. [14]). (For the definitions below see for
example [13, p. 260]).

Let o be a homeomorphism of a compact metric space X with metric o
such that all powers of ¢! are equicontinuous. Assume also that there exists
z € X with dense orbit ¢!(2) in X. Then there exists a unique (hence ergodic)
o-invariant measure v on the o-algebra of Borel sets 8. Each non-empty open
set has a positive v measure.

A sequence wu; is called uniform if there exists a dynamical system
(X,B,v,0), aset Y € B with v(9Y) = 0 and v(Y) > 0, and a point
y € X such that u; is the jth entry time of the orbit of y into Y.

THEOREM 3.6. Let M, T,« be as in the preceding theorem, and {u;};>0
a uniform sequence. Then the averages

1 n—1
PO
n

j=0

converge stochastically for x € L1(M,T).
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Proof. The proof is along the same lines as for [16] or [14, Theorem 4], and
we give its outline with the necessary adjustments. For = € Li(M,7) N M
we use the preceding theorem to show stochastic convergence. In passing
from x € L1(M,7) N M to x € L1(M, 1), we use the Neveu decomposition
3.3 to distinguish between two cases. Applicability of the stochastic Banach
principle to the part of the partition (3.3(ii)) with weakly wandering opera-
tor follows from Lemma 3.2(ii). This implies stochastic convergence on this
part of the Neveu decomposition. The regular individual ergodic theorem
[22] applied to the part of the Neveu partition (3.3(i)) where an invariant
normal state exists implies stochastic convergence on this part of the Neveu
decomposition.

This completes the outline of the proof. m

REMARK 3.2. Similar results hold for the case where M is a semifinite
JBW algebra with faithful normal trace 7.
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