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Ergodic averages with generalized weights

by

Doğan Çömez (Fargo, ND) and Semyon N. Litvinov (Hazleton, PA)

Abstract. Two types of weighted ergodic averages are studied. It is shown that
if F = {Fn} is an admissible superadditive process relative to a measure preserving
transformation, then a Wiener–Wintner type result holds for F . Using this result new good
classes of weights generated by such processes are obtained. We also introduce another
class of weights via the group of unitary functions, and study the convergence of the
corresponding weighted averages. The limits of such weighted averages are also identified.

1. Introduction. This article is inspired by the celebrated Wiener–
Wintner theorem which has been instrumental in studying various proper-
ties of weighted and subsequential averages as well as constructing some
nontrivial classes of good sequences. It turns out that, utilizing the tools
developed in [Ç, ÇF], one can obtain a version of this theorem in the setting
of a class of superadditive processes. In turn, this superadditive version of
Wiener–Wintner theorem leads to new classes of weights. In Sections 2–4 of
this article, besides proving these results, we will also study convergence of
sequences of weights defined by such superadditive processes.
The study of the behavior of the ergodic averages modulated by means of

Besicovitch’s sequences was initiated by C. Ryll-Nardzewski [Ry] (for p = 1),
and A. Tempelman [T] (for p > 1 and in the context of Besicovitch functions
on LCA groups). Later, various generalizations of this result were obtained
[BeL, JO, LO, LOT]. Recently, another such attempt was made in [Li] in
the non-commutative setting. The tools utilized in [Li] have some interest-
ing ramifications in the commutative case as well. In Sections 5 and 6 of
this article, following an observation made on the Wiener–Wintner theorem
and adapting some of the techniques of [Li], we arrive at two rather distinct
weighted ergodic theorems in the spirit of [Ry]. First we define a generalized
Besicovitch sequence associated with a subset of the group of unimodular
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functions in L∞, and then study convergence of the corresponding weighted
averages. In the case of numerical Besicovitch sequences, which are discussed
in [Ry], the role of such a subset is played by the unit circle in C. This type
of weights (generated by the unimodular group) is fundamentally different
from the ones studied in [LO]. Section 7 is devoted to the identification of
the limits of the weighted averages along generalized Besicovitch sequences.

Let (X,Σ, µ) be a probability space, and T : X → X be an invertible
measure preserving transformation (MPT). Often, we will write T if instead
of f ◦ T i. A sequence n = {nk} of positive integers (or a weight a = {ai})
is called good in the p-mean for T if the limit of the corresponding averages

N−1
∑N−1
i=0 f(T

nix) (or N−1
∑N−1
i=0 aiT

if(x)) exists in Lp-norm for all f ∈
Lp, and is called good a.e. in Lp for T if the limit of the averages exists a.e.
for all f ∈ Lp. If n = {nk} (or a = {ai}) is good a.e. (good in the p-mean)
in Lp for all MPTs, it is called good a.e. in Lp (good in the p-mean).

A family F = {fn}n≥0 ⊂ Lp is called a T -superadditive process if the
sequence {Fn} of partial sums, where F0 = 0 and Fn =

∑n−1
i=0 fi, satisfies

Fn+m ≥ Fn + TnFm for all n,m ≥ 0. If the equality holds, it is called
T-additive, and if the reverse inequality holds, it is called T-subadditive.
T -additive processes are necessarily of the form Fn =

∑n−1
i=0 T

if0. If
supn≥1 n

−1‖Fn‖p <∞, then the process F ⊂ Lp is called p-bounded (or sim-
ply bounded when p = 1). For a T -superadditive process F , Fn ≥

∑n−1
i=0 T

if0
for all n ≥ 1, hence F ′n = Fn−

∑n−1
i=0 T

if0 is a positive superadditive process
(i.e. F ′n ≥ 0 for all n) and is necessarily increasing. It follows that, if a result
is valid for additive processes, then the same holds for F if and only if it
holds for F ′.

Given a sequence n = {nk} or a weight a = {ai} and a T -superaddi-
tive process F , we will define corresponding subsequential averages as

N−1
∑N−1
i=0 fni and the weighted averages as N

−1
∑N−1
i=0 aifi. If F is a T -

superadditive process, a sequence n = {nk} or a weight a = {ai} is called
good in the p-mean (a.e.) for F if the limit of the associated averages exists
in Lp-norm (a.e.).

2. Wiener–Wintner theorem for admissible processes. The par-
ticular class of superadditive processes we will study are the admissible
processes. A family {fn}n≥0 ⊂ Lp is said to be T-admissible (or simply
admissible) if Tfi ≤ fi+1 for i ≥ 0. If F = {fn} is a T -admissible family,
then the associated T -superadditive process {Fn}n≥1, where Fn =

∑n−1
i=0 fi,

is called T-admissible. An admissible process F is called strongly p-bounded
(or simply strongly bounded when p = 1) if supn ‖fn‖p <∞.
When p = 1, the boundedness and admissibility of the process F implies

that it is strongly bounded [ÇF]. Therefore, strong boundedness and bound-



Ergodic averages with generalized weights 105

edness are the same for admissible processes in L1. Clearly, any strongly
p-bounded process is p-bounded, however, when p > 1, the converse is not
the case. Indeed, as the following example shows, one can have an admissible
2-bounded process F ⊂ L2 which is not strongly 2-bounded.
Example. Let bounded positive functions gn, n = 0, 1, 2, . . . , be given

on some probability space, and suppose that a measure preserving point
transformation T is given such that the entire doubly-indexed family
{Tngm}n,m=0,1,2,... is independent, considered as a family of random vari-
ables. For example, we could take T to be the product of countably many
shifts on countably many infinite product spaces, and choose gn as a func-
tion of the first coordinate of the nth product space. Consider the case in
which g0 = 0 and

T
gn = 1/2

n,
T
g2n = 1/

√
n. Define fn, n = 0, 1, 2, . . . , by

fn = T
ng0 + T

n−1g1 + · · ·+ Tgn−1 + gn.
As usual, define Fn = f0+f1+· · ·+fn−1. It is easy to check that the sequence
{fn} is T -admissible. Clearly

T
fn ≤ 1 for all n. Also, since Var(gn) ≤

T
g2n,

independence yields\
f2n ≤

(\
fn

)2
+
\
g20 +

\
g21 + · · ·+

\
g2n,

and therefore, \
f2n ≤ 1 + c1

√
n.

The independence assumption implies that {fi} is an independent family.
It follows that\

F 2n ≤
(\
Fn

)2
+
\
f20 + · · ·+

\
f2n−1 ≤ n2 + c2n

√
n,

and so supn n
−1‖Fn‖2 <∞. But\

f2n ≥
\
g20 +

\
g21 + · · ·+

\
g2n ≥ c3

√
n

and hence F is not strongly 2-bounded.

It is well known that every bounded superadditive process F ⊂ L1 has
an exact dominant [AS], that is, there exists a function δ ∈ L+1 such that
Fn ≤

∑n−1
i=0 T

iδ for all n ≥ 1 and
T
δ = supn≥1 n

−1‖Fn‖1. It turns out
that more is true for strongly p-bounded admissible processes F ⊂ Lp,
1 ≤ p <∞.
Proposition 2.1. For any positive, strongly p-bounded T -admissible

process F = {fn} ⊂ Lp, 1 ≤ p <∞, there exists δ ∈ L+p such that fn ≤ Tnδ
for all n ≥ 0 and ‖δ‖p = supn≥1 ‖fn‖p = limn ‖fn‖p.
Proof. Define a sequence {vn} ⊂ L+p by vn = T−nfn, n ≥ 0. From

the T -admissibility of F, we see that vn ≤ vn+1. Thus, since F is strongly
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p-bounded, by the monotone convergence theorem, δ := limn vn ∈ L+p and
‖δ‖p = limn ‖vn‖p. Clearly, for n ≥ 0, vn ≤ δ, and hence fn ≤ Tnδ.
Remarks. 1. The function δ ∈ L+p is called a dominant for F . Clearly,

if p = 1, then δ is an exact dominant. Furthermore, if bk = δ − vk, then
bk ∈ Lp for each k ≥ 1, and since ‖T kδ − fk‖p → 0, we have ‖bk‖p → 0 as
k →∞, for all 1 ≤ p <∞.
2. If the admissible process F = {fn} is not necessarily positive then

the process F ′ = {f ′n}, where f ′n = fn − Tnf0, as defined in Section 1, is
positive. Hence, by Proposition 2.1 there exists δ′ ∈ L+p such that f ′n ≤ Tnδ′
for all n ≥ 0 and ‖δ′‖p = limn ‖f ′n‖p. Therefore, the function δ = δ′ + f0
satisfies fn ≤ Tnδ for all n ≥ 0 and ‖δ‖p = limn ‖fn‖p, which extends
Proposition 2.1 to all strongly p-bounded admissible processes.

In order to study norm and a.e. convergence of the averages weighted
by means of sequences induced by admissible processes, one should check
whether such sequences have the right properties, like being Hartman al-
most periodic sequences to start with. Now we state and prove the Wiener–
Wintner type theorem for admissible processes, which shows that sequences
induced by admissible processes indeed define Hartman almost periodic se-
quences.

Theorem 2.2. Let F = {fn} ⊂ L1 be a bounded T -admissible process.
There exists a set N ∈ Σ with µ(N) = 0 such that for x ∈ X \N ,

1

n

n−1∑

i=0

λifi(x) converges for all λ ∈ K,

where K is the unit circle in the complex plane.

Proof. The proof will be given for ergodic T, but it is also valid when T
is an arbitrary MPT by ergodic decomposition. Since the assertion is true
for additive processes, by the Wienner–Wintner theorem, we can assume
(by passing to F ′ if necessary) that fi ≥ 0 for each i ≥ 1. Fix k ∈ Z

+, and
define

gki (x) =

{
T i−kfk(x) for i > k,

fi(x) for 0 ≤ i ≤ k.
Using the same notation as in Proposition 2.1 (and its proof), it follows that

0 ≤ T i(vi − vk) ≤ fi − gki ≤ T ibk if i > k,

fi − gki = 0 if i ≤ k,

where bk = δ − vk. Therefore
∑n−1
i=0 (fi − gki ) ≤

∑n−1
i=0 T

ibk. Because vk ↑ δ,
we have ‖bk‖1 = ‖δ − vk‖1 ↓ 0 as k →∞.
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Now, for each n > k and λ ∈ K, we have

n−1∑

i=0

λigki =
k−1∑

i=0

λifi +
n−1∑

i=k

λiT i−kfk =
k−1∑

i=0

λifi + λ
k
n−k−1∑

i=0

λiT ifk.

Hence, by the Wiener–Wintner theorem, there exists a set Nk ∈ Σ, depend-
ing on fk only, with µ(Nk) = 0, such that for x /∈ Nk,

lim
n

1

n

n−1∑

i=0

λigki (x) exists for all λ ∈ K.

Let N ′ =
⋃
k≥0Nk. Then µ(N

′) = 0, and for x /∈ N ′,

lim
n

1

n

n−1∑

i=0

λigki (x) exists for all λ ∈ K and all k ≥ 0.

Next, observe that, by Birkhoff’s individual ergodic theorem,

lim
n

1

n

n−1∑

i=0

T ibk(x) =
\
bk for almost every x.

Let M ∈ Σ be the set with µ(M) = 0 such that for x /∈M,

lim
n

1

n

n−1∑

i=0

T ibk(x) =
\
bk

for all k ≥ 0. If N =M ∪N ′, then µ(N) = 0. Furthermore, if a = {ai} and
ak = {aki }, where ai = fi(x) and aki = gki (x) for a fixed x ∈ X \N, then

0 ≤ ‖a− ak‖1 = lim sup
n

1

n

n−1∑

i=0

|ai − aki | = lim sup
n

1

n

n−1∑

i=0

|fi(x)− gki (x)|

≤ lim sup
n

1

n

n−1∑

i=0

T ibk(x) =
\
bkdµ = ‖bk‖1 ↓ 0 as k →∞.

Hence ‖a− ak‖1 → 0. Therefore, by Lemma 3.1 of [BO] (or Lemma 2.2(b)
of [JO]), n−1

∑n−1
i=0 λ

ifi(x) converges for all λ ∈ K.

Remark. The limit in Theorem 2.2 is 0 for all λ 6= 1 if T is weakly
mixing [BeL].

3. Weights induced by admissible processes. An important con-
sequence of Theorem 2.2 is that, for a.e. x, the sequence {fi(x)}, where
F = {fi} ⊂ Lp is a strongly p-bounded admissible superadditive process,
has Fourier coefficients, i.e., is a Hartman almost periodic sequence [LOT].
Furthermore, by the a.e. convergence of the averages of such processes [Ç],
it is easy to see that {fi(x)} ∈ Wp, 1 ≤ p < ∞, where Wp := {a = {ai} :
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‖a‖pWp = lim supn n−1
∑n−1
i=0 |ai|p < ∞}, and W∞ is the class of bounded

sequences. It is known that, even in the additive case, a Hartman sequence
need not be a good sequence for a.e. convergence [LOT]. On the other hand,
if F ⊂ L∞ is a 1-bounded admissible process, by the observations above
and Corollary 4.3 of [BeL], for a.e. x, {fi(x)} is a sequence good a.e. for
any dynamical system (Ω,Σ′, ν, S), where S has Lebesgue spectrum. Thus,
it is natural to ask whether the sequences of weights induced by admissible
superadditive processes are good a.e. or in the mean in Lp. Now we turn to
the study of this question.

Theorem 3.1. Let (X,Σ, µ) be a Lebesgue space and let F = {fi} ⊂ Lp,
1 ≤ p ≤ ∞, be a strongly p-bounded T -admissible process. Let q be the dual
index. Then for a.e. x ∈ X, the sequence a = {fi(x)} is good a.e. in Lq.
Proof. First, observe that if {fi} is not positive, then the process {f ′i} =

{fi − T if0} is a positive T -admissible strongly p-bounded process. By the
return times theorem [Bo, Ru], for a.e. x ∈ X the sequence {T if0(x)} is
good a.e. in Lq. Hence, without loss of generality, we can assume that the
process F is positive.
Now we will use the same machinery as in Theorem 2.2. Define ak =

{aki }∞i=0, k ≥ 0, as aki = gki (x). First, assume that F ⊂ L∞. Then there is a
null set N ⊂ X such that for x /∈ N, the sequence ak is good a.e. in L1 for
all k ≥ 0 [Bo, Ru]. For such an x, if a = {fi(x)}, then
0 ≤ ‖ak − a‖W∞ ≤ sup

i
|T i(δ − vk)(x)| ≤ sup

i
‖T i(δ − vk)‖L∞(X)

≤ ‖(δ − vk)‖L∞(X) since T is a contraction on L∞.

Since vk ↑ δ a.e., we have limk ‖ak−a‖W∞ ≤ limk ‖δ− vk‖L∞ = 0. Now, let
(Ω,Σ, ν, S) be a dynamical system and g ∈ L∞(Ω). Then
∣∣∣∣
1

n

n−1∑

i=0

aiS
ig(ω)− 1

m

m−1∑

i=0

aiS
ig(ω)

∣∣∣∣ ≤
∣∣∣∣
1

n

n−1∑

i=0

(ai − aki )Sig(ω)
∣∣∣∣

+

∣∣∣∣
1

n

n−1∑

i=0

aki S
ig(ω)− 1

m

m−1∑

i=0

aki S
ig(ω)

∣∣∣∣+
∣∣∣∣
1

m

m−1∑

i=0

(ai − aki )Sig(ω)
∣∣∣∣

≤ ‖a− ak‖W∞
[
1

n

n−1∑

i=0

Si|g(ω)|+ 1
m

m−1∑

i=0

Si|g(ω)|
]

+

∣∣∣∣
1

n

n−1∑

i=0

aki S
ig(ω)− 1

m

m−1∑

i=0

aki S
ig(ω)

∣∣∣∣.

Since ‖ak−a‖W∞ → 0, and since n−1
∑n−1
i=0 S

i|g| converges a.e. to a function
g∗ with

T
|g∗| < ∞, it follows that {n−1∑n−1i=0 aiSig(ω)} is Cauchy, hence
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converges a.e. Thus, by [LOT, Proposition 3.1], n−1
∑n−1
i=0 aiS

ig converges
a.e. for all g ∈ L1(Ω).
For F ⊂ Lp, 1 ≤ p <∞, we adopt the method of proof of [LOT, Propo-

sition 3.2]. By [LOT, Theorem 3.6], for each k, ak is good a.e. in Lq, hence
in L∞. Again, if (Ω,Σ, ν, S) is a dynamical system and f ∈ L∞(Ω), then
for a.e. ω ∈ Ω,
∣∣∣∣
1

n

n−1∑

i=0

aiS
if(ω)− 1

m

m−1∑

i=0

aiS
if(ω)

∣∣∣∣ ≤
∣∣∣∣
1

n

n−1∑

i=0

(ai − aki )Sif(ω)
∣∣∣∣

+

∣∣∣∣
1

n

n−1∑

i=0

aki S
if(ω)− 1

m

m−1∑

i=0

aki S
if(ω)

∣∣∣∣+
∣∣∣∣
1

m

m−1∑

i=0

(ai − aki )Sif(ω)
∣∣∣∣

≤ ‖f‖∞
[
1

n

n−1∑

i=0

|ai − aki |+
1

m

m−1∑

i=0

|ai − aki |
]

+

∣∣∣∣
1

n

n−1∑

i=0

aki S
if(ω)− 1

m

m−1∑

i=0

aki S
if(ω)

∣∣∣∣.

Since ‖ak − a‖W1 ≤ ‖bk‖1 → 0, we conclude that {n−1
∑n−1
i=0 aiS

if(ω)} is
Cauchy, hence converges. Since {fi(x)} ∈ Wp is good a.e. in L∞, [LOT,
Proposition 3.1] shows that {fi(x)} is good a.e. in Lq.

Remarks. 1. Theorem 3.1 extends the return times theorem to se-
quences generated by admissible processes.

2. Theorem 2.2 follows from Theorem 3.1 (use all possible rotations since
a 1-bounded admissible process in L1 is strongly bounded [ÇF]).

The fact that the sequences considered in Theorem 3.1 are good for
the norm convergence follows from the method employed in the previous
theorem and [ÇLO, Theorem 4.3] when p = 1, and [ÇLO, Theorem 4.2]
when 1 < p <∞:

Proposition 3.2. Let F = {fi} ⊂ Lp, 1 ≤ p < ∞, be a strongly p-
bounded admissible process. Then for almost every x the sequence {fi(x)} is
good in the p-mean.

Theorem 3.1 can also be interpreted as stating that if (X,Σ, µ) is a
Lebesgue space, T : X → X is an invertible MPT, and F ⊂ Lp, 1 ≤ p ≤ ∞,
is a strongly p-bounded T -admissible process, then there exists a set N ∈ Σ
with µ(N) = 0 such that for any x ∈ X \N the sequence {fi(x)} is good a.e.
for Lq, where q is the dual index. This fact, combined with [Ç, Theorem 3.1],
leads to a further generalization of the return times theorem:
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Theorem 3.3. Let (X,Σ, µ) be a Lebesgue space and T : X → X be an
invertible MPT. If F ⊂ Lp, 1 ≤ p ≤ ∞, is a strongly p-bounded T -admissible
process, then there exists a set N ∈ Σ with µ(N) = 0 such that for any
x ∈ X \ N the sequence {fi(x)} is good a.e. for any strongly q-bounded
admissible process (in Lq) relative to invertible MPTs, where q is the dual
index.

As observed in [LOT, Proposition 1.5], a sequence induced by an addi-
tive process need not be a Besicovitch sequence. Hence, a sequence {fi(x)}
induced by an admissible superadditive process need not be a Besicovitch
sequence either. Indeed, {fi(x)} is a linear combination of a Besicovitch
sequence, a shift orthogonal sequence and a sequence with zero mean. How-
ever, with an additional condition on T one obtains Besicovitch sequences
induced by admissible processes.

Theorem 3.4. Let {fi} ⊂ L+∞ be a 1-bounded T -admissible process. As-
sume that T has discrete spectrum. Then for a.e. x, the sequence of weights
{fi(x)} is bounded Besicovitch.
Proof. Define sequences {sk} and s by ski = gki (x) and si = fi(x) for

all i ≥ 1, where gki is as defined in the proof of Theorem 2.2. For each k,
there is Nk ⊂ X with µ(Nk) = 0 such that sk is bounded Besicovitch [BeL,
Theorem 3.22]. Obviously, ‖sk‖∞ ≤ ‖s‖∞. As in the proof of Theorem 2.2,

‖sk − s‖W1 = lim sup
n

1

n

n−1∑

i=0

|ski − si| ≤ lim sup
n

1

n

n−1∑

i=0

T ibk = ‖bk‖1 ↓ 0.

Thus, s is in the sup-dominated W1-closure of the space of bounded Besico-
vitch sequences. Hence by Lemma 3.23 of Baxter–Olsen [BO], for any fixed
x ∈ ⋂N ck the sequence s is bounded Besicovitch.
Next, we will introduce a class of good sequences of weights induced

by admissible processes and investigate some interesting properties of such
weights. To do so, in the following definition and in Theorem 3.5 below we
will assume that (X,Σ, µ, T ) is a strictly L-stable system [BrK], where X is
a compact connected metric space, and {vi} ⊂ L+∞ is an increasing sequence
of Riemann integrable functions on X with vi ↑ v uniformly.
Definition. For any x ∈ X the sequence a = {ak}, where ak =

vk(T
kx), is called near-uniform.

Remarks. 1. Every uniform sequence is near-uniform. To see this, let
vi = χY , where (X,Σ,m, T, Y ) is the apparatus for the uniform sequence
[BrK].

2. By Theorem 3.1, for a.e. x ∈ X, near-uniform sequences are good a.e.
in L1.



Ergodic averages with generalized weights 111

Theorem 3.5. Near-uniform sequences are good a.e. in L1 for all x ∈ X.
Proof. By the method of proof of Theorem 3.1, all one needs to show is

that

lim
n

1

n

n−1∑

i=0

fi(x) exists for all x ∈ X,

where fi = T
ivi. By the uniform convergence, v is necessarily Riemann

integrable, and γF = ‖v‖1. Given ε > 0, find continuous functions r and s
such that

0 ≤ r ≤ v ≤ s for every x ∈ X, and
\
(s− r) < ε.

Furthermore, we can assume that, for large enough K, if k ≥ K, we have
r ≤ vk. Defining gki as before, for k ≥ K, we see that n−1

∑n−1
i=0 g

k
i ≤

n−1
∑n−1
i=0 fi(x). Since T

ir ≤ T ivk for all i ≥ 0, we have T ir ≤ T i−kfk.
Similarly, vi ≤ s for all i implies that fi ≤ T is for all i. Hence, by ignoring∑k−1
i=0 g

k
i if necessary, we have

0 ≤ 1
n

n−1∑

i=0

T ir ≤ 1
n

n−1∑

i=0

gki ≤
1

n

n−1∑

i=0

fi ≤
1

n

n−1∑

i=0

T is.

Since T is L-stable, both limn−1
∑n−1
i=0 T

ir(x)=
T
r and limn−1

∑n−1
i=0 T

is(x)
=
T
s exist for every x ∈ X. Hence, for every x ∈ X,

0 ≤ lim sup 1
n

n−1∑

i=0

fi(x)− lim inf
1

n

n−1∑

i=0

fi(x) ≤ lim
1

n

n−1∑

i=0

T i(s− r)(x)

=
\
(s− r) < ε.

Hence limn−1
∑n−1
i=0 fi(x) exists for all x ∈ X.

Remark. Let {An} and A be measurable with An ↑ A such that∑
µ(An \An−1) <∞. Then, letting vi = χAi and v = χA, the observations

above imply immediately that the “return-time sequence” {nk} defined by
nk = inf{l ∈ Z : T l(x) ∈ Ak, l ≥ nk−1}

is good a.e. in L1. Also, it follows that the frequency of the relation T
nx ∈ An

exists a.e. and is equal to µ(A) iff T is ergodic.

4. Purely subadditive parts of admissible processes. By the “de-
composition theorem” of Kingman any bounded T -superadditive process
F = {Fn} ⊂ L1 can be decomposed into a difference G−H, where G = {Gn}
is an additive process and H = {Hn} is a positive subadditive process [AS].
In fact, H is a purely subadditive process, in the sense that it does not dom-
inate any nonzero T -additive process and limn n

−1Hn = 0 a.e. (and hence
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in norm) [AS]. Furthermore, Gn =
∑n−1
k=0 T

kδ, where δ is an exact domi-
nant of F. If H = {Hn} is the purely subadditive part of a superadditive
process, then necessarily Hn =

∑n−1
i=0 hi ≥ 0 for each n ≥ 0, but this does

not imply that each hi ≥ 0. However, if F is admissible, then by Proposi-
tion 2.1 (and with the same notation as in its proof), hi = T

iδ − fi ≥ 0.
Also, ‖hi‖1 = ‖δ − vi‖1 for each i ≥ 0. Hence we have
Proposition 4.1. If H = {Hn} ⊂ L1 is the purely subadditive part of a

T -admissible process, where Hn =
∑n−1
i=0 hi, then hi ≥ 0 for all i ≥ 0.

The limit in Theorem 2.2 is identified (as 0 for λ 6= 1) if T is weakly
mixing. For more general cases of weights involving admissible processes,
one utilizes the positivity of the purely subadditive part of an admissible
process and the following observation.

Proposition 4.2. If H = {hn} ⊂ L1 is the purely subadditive part of
a T -admissible process and a ∈ l∞ is a sequence which is good a.e., then
limn n

−1
∑n−1
k=0 akhk = 0 a.e. and in norm.

Proof. If a is good a.e., then by [Ç, Theorem 3.1] it is good a.e. for any
bounded admissible process F ⊂ L1. In particular, if H = {hn} is the purely
subadditive part of F, then limn n

−1
∑n−1
k=0 akhk exists a.e. Furthermore (see

[AS]),

0 ≤ lim
n

1

n

∣∣∣∣
n−1∑

k=0

akhk

∣∣∣∣ ≤ limn
1

n

n−1∑

k=0

hk = 0 a.e. and in norm.

Remarks. 1. If a ∈ l∞ is a sequence which is good a.e. or good in the
1-mean (in particular, an = λ

n, λ ∈ C), then for any bounded T -admissible
process F ⊂ L1,

lim
n

1

n

n−1∑

k=0

akfk = lim
n

1

n

n−1∑

k=0

akT
kδ,

where δ the exact dominant for F.
2. In [LOT] a series representation of the limit of weighted averages of

additive processes in Lp, 1 ≤ p < ∞, has been obtained. Proposition 4.2,
combined with their results and the remark above, also yields a series re-
presentation of the limit of weighted averages for admissible processes.
3. It is known that the spectrum σ(a) = {λ ∈ C : |λ| = 1, c(λ) 6= 0}

of a Hartman sequence a is countable [Ka]. If T is invertible and F is a
1-bounded admissible process with purely subadditive part H = {hk}, then
by Proposition 4.1, limn n

−1
∑n−1
k=0 λ

khk = 0 a.e., and hence

c(λ) = lim
n

1

n

n−1∑

k=0

λkfk = lim
n

1

n

n−1∑

k=0

λkT kδ.
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So, the spectrum of the weights induced by F is the same as the spectrum of
the weights induced by the additive process defined by its exact dominant.
Consequently, following the arguments in [LOT, Theorem 3.15], the limit in
Theorem 3.1 is equal to the limit of the additive part.

We close this section with the following observation on the behavior
of the purely subadditive part of an admissible process. Recall that, if a
sequence {ai} has mean zero (i.e. limn n−1

∑n−1
k=0 ai = 0), then there exists

a set K ⊂ N of zero density such that limn∈N\K,n→∞ an = 0. So, for a fixed

x ∈ X, since limn n−1
∑n−1
k=0 hi = 0, there exists a set K ⊂ N of density 0

such that limn∈N\K,n→∞ hn(x) = 0. On the other hand, since Hn ≤ 0, we
also have

0 ≤
\1
n
Hn =

1

n

\n−1∑
k=0

hi =
1

n

n−1∑

k=0

\
hi.

By subadditivity, Hn ≤
∑n−1
k=0 T

ih0, which implies that

0 ≤ 1
n
Hn ≤

1

n

n−1∑

k=0

T ih0

and the right hand side converges, so is bounded. Hence the sequence
{n−1Hn} is bounded. Now, if gn = n−1

∑n−1
k=0 T

ih0, then n
−1Hn ≤ gn,

and gn → g∗ a.e. for some g∗ ∈ L1. Since n−1Hn → 0 a.e., by the gen-
eralized Lebesgue convergence theorem, lim

T
gn →

T
g∗ implies that 0 =

limn n
−1
T
Hn = limn n

−1
∑n−1
k=0

T
hi. Consequently, there exists a set K ⊂ N

of density 0 such that limn∈N\K,n→∞

T
hn(x) = 0. Since, by admissibility,

hm ≤ T khm−k for any m ≥ k ≥ 0, we must have limn→∞
T
hn(x) = 0 while

n ranges through all positive integers.

5. Norm convergence of averages along generalized Besicovitch

weights. In what follows we will still consider a probability space (X,Σ, µ)
and a measure preserving transformation T : X → X, not necessarily invert-
ible. We will also consider the group U of all unimodular functions on X:

U = {u ∈ L∞(X) : |u(x)| = 1 a.e. on X}.
One can deduce from the Wiener–Wintner theorem that for every f ∈ L1
there exists a null set N such that for x /∈ N and any u ∈ U the averages

1

n

n−1∑

k=0

uk(x)f(T kx)

converge whenever |u(x)| = 1. This observation naturally motivates the
question of whether it is possible to obtain the norm and a.e. convergence
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of the averages of the form

(∗) 1

n

n−1∑

k=0

uk(T kx)f(T kx) =
1

n

n−1∑

k=0

[(ukf) ◦ T k](x)

if u ∈ U and f ∈ L1(X).
In this section we shall examine the norm convergence of the averages (∗).

Note that, due to the nature of these averages, a standard argument with the
telescoping sum effect for a uniformly bounded transformation in a Banach
space appears to be of no help. Still, it would be desirable to obtain the
L1-norm convergence of the averages (∗) for all u ∈ U and f ∈ L1. The
argument in this section will allow us to show that the norm convergence
takes place when u ∈ U assumes countably many values; in this case we will
write u ∈ Uc. Define

U1 = {u ∈ U : {uk : k ∈ Z} is precompact in L1}.
As is seen below the class U1 is not empty. In fact, Corollary 5.3 provides a
method of constructing nontrivial representatives of U1. At the same time,
the next example indicates that U1 6= U . The authors are thankful to the
anonymous referee for this example.

Example 5.1. If X = K with Lebesgue’s measure, and u(z) = z, z ∈ K,
then u 6∈ U1. In order to see this consider the sequence un(z) = zn, n =
1, 2, . . . , and show that, given any h ∈ L∞(K), we have

T
unh dµ → 0 as

n→∞. Indeed, for every positive integer m,\
zm dµ =

1\
0

eitm dt→ 0

as m → ∞, therefore,
T
unp dµ → 0 for every polynomial p on K. Since the

polynomials are dense in L1(K), we have un → 0 weakly in L1. Together with
the facts that U is closed in L1 and 0 /∈ U , this implies that {un : n ∈ N}
cannot have a subsequence converging in L1, hence {uk : k ∈ Z} is not
precompact in L1.

A sequence {En}∞n=1 ⊂ Σ will be called a disjoint measurable partition
(d.m.p.) of X if µ(En) > 0 for each n, X =

⋃
En, and Ei∩Ej = ∅ for i 6= j.

Lemma 5.2. Let gn : X → K be a sequence of measurable functions, and
let {Ei} be a d.m.p. of X such that gn|Ei ≡ λni = const for all n, i = 1, 2, . . . .
Then {gn} has a subsequence {gnm} converging in L1-norm.

Proof. We define the sets Gm inductively as follows. Let G0 = {gn} and
I0 = N. Let νi be an accumulation point of the set {λni}n∈Im−1 , and let
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Gm =
m⋂

i=1

{gn ∈ Gm−1 : |νi − λni| < [2imµ(Ei)]−1},

Im = {n : gn ∈ Gm}, m = 1, 2, . . . .

Define g0 to be such that g0|Em ≡ νm, m = 1, 2, . . ., and pick gnm ∈ Gm,
m ≥ 1. Then we have

‖g0 − gnm‖1 =
m∑

i=1

\
Ei

|g0 − gnm | dµ+
∞∑

i=m+1

\
Ei

|g0 − gnm | dµ

≤
m∑

i=1

\
Ei

|νi − λnmi| dµ+ 2
∞∑

i=m+1

µ(Ei)

<
1

m

m∑

i=1

1

2i
+ 2

∞∑

i=m+1

µ(Ei)

<
1

m
+ 2

∞∑

i=m+1

µ(Ei)→ 0 as m→∞.

Corollary 5.3. Uc ⊂ U1.
Remark. The authors do not know whether or not Uc = U1.

Now we shall state the following straightforward fact without proof.

Lemma 5.4. Let (B, ‖ · ‖) be a Banach space, and let {An} ⊂ B be a
sequence such that for every ε > 0 there is a convergent sequence {Ân} ⊂ B
and a positive integer N for which

‖An − Ân‖ < ε for all n ≥ N .
Then the sequence {An} also converges in B.
Let L∞(X) denote the *-algebra of all measurable functions on X (and

not their equivalence classes). Since µ is finite, there exists a *-homomor-
phism L∞(X) ∋ g 7→ g̃ ∈ L∞(X) such that 1̃(x) = 1 and 0̃(x) = 0 for all
x ∈ X. Such a homomorphism is called a lifting (see [Ku], for example).
Theorem 5.5. For every u ∈ Uc and f ∈ L∞, the averages

An(u; f) =
1

n

n−1∑

k=0

(ukf) ◦ T k

converge in Lp-norm for all 1 ≤ p <∞.
Proof. We start with an adaptation of the scheme of the proof of The-

orem 5 in [Ry]. Let [u] denote the L1-closure of the group {uk : k ∈ Z},
which, by Corollary 5.3, is a compact group. Consider the Haar measure
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on [u]. Define

X ′ = X ⊗ [u]
and Tu : X

′ → X ′ by
Tu(x, v) = (Tx, uv).

By the invariance property of Haar measure, Tu is a MPT on X
′. Let L∞ ∋

g 7→ g̃ ∈ L∞ be a lifting. If we define f
′ on X ′ by f ′(x, v) = (ṽf)(x) =

ṽ(x)f(x), then f ′ is measurable by Theorem A.5 (see Appendix), so f ′ ∈
L∞(X

′). By Birkhoff’s individual ergodic theorem, the averages

1

n

n−1∑

k=0

f ′(T ku (x, v)) =
1

n

n−1∑

k=0

f ′(T kx, ukv) =
1

n

n−1∑

k=0

(ũkvf)(T kx)

=
1

n

n−1∑

k=0

(ukvf)(T kx)

converge for almost all (x, v) ∈ X ′. It follows from Fubini’s theorem that,
for almost all v ∈ [u], the averages

An(u, v; f) =
1

n

n−1∑

k=0

(ukvf) ◦ T k

converge a.e. on X. Since the L∞-norms of these averages are bounded
(by ‖f‖∞), the bounded convergence theorem yields Lp-convergence of
An(u, v; f) for almost every v ∈ [u].
Since the Haar measure of an open set is positive, any L1-neighborhood

of the unit 1 ∈ [u] contains a v ∈ [u] for which {An(u, v; f)} converges in Lp.
Therefore, for ε > 0 one can find v ∈ [u] such that

{An(u, v; f)} converges in Lp and ‖1− v‖1 < 2
(
ε

2‖f‖∞

)p
.

Then

‖An(u; f)−An(u, v; f)‖p

=

∥∥∥∥
1

n

n−1∑

k=0

(ukf − ukvf) ◦ T k
∥∥∥∥
p

≤ 1
n

n−1∑

k=0

‖ukf − ukvf‖p

≤ 1
n

n−1∑

k=0

‖uk‖∞‖f − vf‖p = ‖f − vf‖p ≤ ‖1− v‖p‖f‖∞

≤ ‖1− v‖(p−1)/p∞ · ‖1− v‖1/p1 · ‖f‖∞

< 2(p−1)/p · 21/p · ε

2‖f‖∞
· ‖f‖∞ = ε.
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Thus, by Lemma 5.4, {An(u; f)} converges in Lp-norm for every 1 ≤ p
<∞.
Remarks. 1. The function F onX⊗[u] defined by F (x, v) = ṽ(x) ceases

to be well defined if ṽ is replaced by v. However, it would be possible to avoid
the usage of lifting if the group [u] were countable, which, in general, is not
true.
2. By Theorem A.5 in the Appendix, the function F is measurable on

X ⊗ [u] only if u assumes countably many values. That is why in Theorem
5.5 we assume that u ∈ Uc.
Corollary 5.6. Given any u ∈ Uc and f ∈ Lp, the averages An(u; f)

converge in Lp-norm for every 1 ≤ p <∞.
Proof. Fix ε > 0, and let h ∈ L∞ be such that ‖f−h‖p < ε. By Theorem

5.5, the averages An(u;h) converge in Lp. We also have

‖An(u; f)−An(u;h)‖p ≤
1

n

n−1∑

k=0

‖uk‖∞‖f − h‖p < ε.

Therefore, by Lemma 5.4, we obtain Lp-convergence of An(u; f).

Corollary 5.7. For every function u ∈ Uc, the averages

An(u) =
1

n

n−1∑

k=0

uk ◦ T k

converge in Lp-norm for every 1 ≤ p <∞.
Assume now that G is a subset of the group U .

Definition 5.8. Ps : Z→ L∞ is called a trigonometric polynomial over
G if

Ps(·) =
s∑

j=1

rju
(·)
j

for some {rj}sj=1 ⊂ C and {uj}sj=1 ⊂ G.
By linearity, from Corollary 5.6 we obtain the following.

Proposition 5.9. Let Ps be a trigonometric polynomial over the
group Uc. Then, for every f ∈ Lp, the averages

An(Ps; f) =
1

n

n−1∑

k=0

(Ps(k)f) ◦ T k

converge in Lp for all 1 ≤ p <∞.
Definition 5.10. Let 1 ≤ p ≤ ∞. A sequence {bk} ⊂ Lp is called a

Gp-Besicovitch (Gp) sequence if for every ε > 0 there is a trigonometric
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polynomial Ps over G such that

(∗∗) lim sup
n

1

n

n−1∑

k=0

‖bk − Ps(k)‖p < ε.

A Gp sequence {bk} is called bounded if there exists a constant C such that
‖bk‖∞ ≤ C <∞ for every k.
Theorem 5.11. Let 1 ≤ q ≤ p <∞ be such that 1/p+ 1/q = 1. If {bk}

is a (Uc)p sequence and f ∈ L∞, then the averages

An({bk}; f) =
1

n

n−1∑

k=0

(bkf) ◦ T k

converge in Lp-norm. For f ∈ Lp, the averages An({bk}; f) converge in
Lp-norm if {bk} is a bounded (Uc)p sequence. If {bk} is a (Uc)p sequence
with ‖bk‖q ≤ C <∞ for every k, then these averages converge in L1 for all
f ∈ Lp.
Proof. Let {bk} be a (Uc)p sequence and assume that f ∈ L∞. Fix ε > 0

and choose Ps such that (∗∗) is satisfied. Then

‖An({bk}; f)−An(Ps; f)‖p ≤
1

n

n−1∑

k=0

‖(bk − Ps(k))f‖p

≤ 1
n

n−1∑

k=0

‖bk − Ps(k)‖p‖f‖∞ < ε‖f‖∞

for all n large enough. Hence, by Lemma 5.4 and Proposition 5.9, the aver-
ages An({bk}; f) converge in Lp-norm.
Now, let {bk} be a bounded (Uc)p sequence, and let f ∈ Lp. Fix ε > 0

and pick h ∈ L∞ such that ‖f −h‖p < ε. By the first part of this proof, the
sequence {An({bk};h)} converges in Lp. Moreover,

‖An({bk}; f)−An({bk};h)‖p ≤ ‖bk‖∞‖f − h‖p < Cε,
which, by Lemma 5.4, yields the desired convergence.
Finally, let {bk} be a (Uc)p sequence with ‖bk‖q ≤ C < ∞ for every k.

Let f ∈ Lp. Given ε > 0, one can find h ∈ L∞ with ‖f − h‖p < ε. Again,
we know that {An({bk};h)} converges in L1. Also,

‖An({bk}; f)−An({bk};h)‖1 ≤ ‖bk‖q‖f − h‖p < εC,
and the proof is complete by Lemma 5.4.

6. Almost everywhere convergence along generalized Besicov-

itch weights. In this section we will study almost everywhere convergence
of the averages of the type (∗). It turns out that the tools available are far
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from leading to a conclusive result if one considers the whole group U. In-
stead, we will restrict ourselves to the subgroup UF of Uc consisting of all
unimodular functions that assume a finite number of values.

Proposition 6.1. For every u ∈ UF and any function f ∈ L1, the av-
erages (∗) converge almost everywhere.
Proof. Pick u ∈ UF, and let {λ1, . . . , λm} with λi 6= λj , i 6= j, be the

range of u. Then u =
∑m
i=1 λiχEi , where Ei = u

−1(λi), i = 1, . . . ,m, which
implies that

uk =
m∑

i=1

λki χEi

for every k. Therefore,

An(u; f)(x) =
1

n

n−1∑

k=0

( m∑

i=1

λki χEif
)
(T kx) =

m∑

i=1

1

n

n−1∑

k=0

λki fi(T
kx),

where we set fi = fχEi , so fi ∈ L1. Since the averages n−1
∑n−1
k=0 λ

k
i fi(T

kx)
converge a.e. [Ry] for every i, we get the desired convergence.

Remarks. 1. One can check that if u ∈ U , then the Dunford–Schwartz
operator Tu given by (Tuf)(x) = (uf)(Tx), f ∈ L1, does not generate the
averages (∗), so one cannot employ the idea of the proof in [LO] to obtain
the almost everywhere convergence of (∗) for u ∈ U .
2. It may seem that, due to Lemma 6.3 below, applying the argument of

Theorem 5.5 one can strengthen the result of Proposition 6.1 if G consists
of elements u such that {uk : k ∈ Z} is precompact in L∞. But the L∞-
precompactness of {uk} implies that u ∈ UF:
Proposition 6.2. If u ∈ U , then the group {uk : k ∈ Z} is precompact

in L∞ if and only if u assumes finitely many values.

Proof. The “if” part is obvious. Now, let {uk : k ∈ Z} be precompact in
L∞. Then, by the spectral theorem, {zk : k ∈ Z} is precompact in C(∆),
where ∆ is the closure of the range of u. Assume that ∆ is not finite. Then
one can find a sequence {λn}∞n=1 ⊂ ∆ converging to some λ0 ∈ ∆ such that
λn 6= λ0 for every n. By Arzelà’s theorem, given ε > 0, there exists δ > 0
such that |zk−wk| < ε for all k whenever |z−w| < δ. Let ε = 1; there exists
n0 such that for n > n0 we have |λn − λ0| < δ, so |(λnλ−10 )k − 1| < 1 for
every k. But this is possible only if λnλ

−1
0 = 1 for n > n0, a contradiction.

Therefore, ∆ is finite, and hence so is the range of u.

To proceed with the almost everywhere convergence along generalized
Besicovitch weights we will need the following generalization of Lemma 5.4.
Note that in [Ry] a version of this result is used implicitly. However, due to
its important role, we found it worthwhile to state and prove it separately.
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Lemma 6.3. Let {An} be a sequence of measurable functions such that ,
given ε, δ > 0, there exist a set E ⊂ X with µ(Ec) < ε, an almost everywhere
convergent sequence {Ân} and a positive integer N with

‖(An − Ân)χE‖∞ < δ for all n ≥ N .
Then {An} itself converges almost everywhere. In particular , {An} con-
verges a.e. if the above condition holds with E = X.

Proof. By Egorov’s theorem, given ε, δ > 0, it is enough to find E ⊂ X
with µ(Ec) < ε and a number N such that

‖(Am −An)χE‖∞ < δ whenever m,n ≥ N .
By the assumption, we can find an almost everywhere convergent sequence

{Ân}, a set E1 ⊂ X with µ(Ec1) < ε/2, and a number N1 such that
‖(An − Ân)χE1‖∞ < δ/3 when n ≥ N1.

Then, by Egorov’s theorem, find E2 ⊂ X with µ(Ec2) < ε/2 such that ân
converges uniformly on E2. Therefore, it is possible to find a number N2 for
which

‖(Âm − Ân)χE2‖∞ < δ/3 whenever m,n ≥ N2.
Finally, letting N = max{N1, N2} and E = E1 ∩ E2, we get µ(Ec) < ε and
‖(Am −An)χE‖∞
≤ ‖(Am − Âm)χE‖∞ + ‖(Âm − Ân)χE‖∞ + ‖(An − Ân)χE‖∞ < δ

as soon as m,n ≥ N .
Now, by linearity, from Proposition 6.1 we obtain the following result.

Proposition 6.4. Let Ps be a trigonometric polynomial over the group
UF. Then the averages An(Ps; f) converge a.e. for every f ∈ L1.
Theorem 6.5. If {bk} is a (UF)∞ sequence (Definition 5.7), then the

averages An({bk}; f) converge a.e. for every f ∈ L∞. If {bk} is a bounded
(UF)∞ sequence, then these averages converge for all f ∈ L1.
Proof. Fix ε > 0, and let Ps be such that condition (∗∗) is satisfied. By

Proposition 6.4, the averages An(Ps; f) converge a.e. Further,

‖An({bk}; f)−An(Ps; f)‖∞ =
∥∥∥∥
1

n

n−1∑

k=0

(bkf) ◦ T k −
1

n

n−1∑

k=0

(Ps(k)f) ◦ T k
∥∥∥∥
∞

≤ 1
n

n−1∑

k=0

‖((bk − Ps(k))f) ◦ T k‖∞

≤ 1
n

n−1∑

k=0

‖bk − Ps(k)‖∞‖f‖∞.
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Therefore, for large enough n, we obtain

‖An({bk}; f)−An(Ps; f)‖∞ ≤ lim sup
n

1

n

n−1∑

k=0

‖bk − Ps(k)‖∞ · ‖f‖∞

< ε‖f‖∞,
which, by Lemma 6.3, completes the first part of the proof.

Now, observe that, if {bk} is a bounded (UF)∞ sequence, then, for every
f ∈ L1,

|An({bk}; f)(x)| =
∣∣∣∣
1

n

n−1∑

k=0

bk(T
kx) · f(T kx)

∣∣∣∣ ≤ ‖bk‖∞ ·
1

n

n∑

k=0

|f |(T kx)

almost everywhere, and the averages n−1
∑n−1
k=0 |f |(T kx) converge almost

everywhere by the pointwise ergodic theorem for |f | ∈ L1. Hence,
supn |An({bk}; f)(x)| < ∞ a.e. on X, for all f ∈ L1. Since we have the
a.e. convergence of An({bk}; f) for all f ∈ L∞, and L∞ is dense in L1, by
the Banach principle, the assertion follows.

Remark. If one replaces UF with {u ∈ U : u(x) ≡ λ, |λ| = 1}, then the
classical result [Ry] follows: if {βk} ⊂ C is a bounded Besicovitch sequence,
then the weighted averages

An({βk}; f)(x) =
1

n

n−1∑

k=0

βkf(T
kx)

converge almost everywhere on X for all f ∈ L1.

Now, using the tools employed to obtain the basic result in Section 2,
we generalize Theorem 6.5 to the setting of T -admissible processes.

Theorem 6.6. Let F = {fn} ⊂ L1 be a bounded T -admissible process,
where T is an invertible MPT , and {bi} be a bounded (UF)∞ sequence. Then
the averages

An({bi};F )(x) :=
1

n

n−1∑

i=0

bi(T
ix)fi(x)

converge almost everywhere on X.

Proof. We use the same machinery as in Theorem 2.2. For a fixed
m ∈ Z

+, define

gmi (x) =

{
fm(T

i−mx) for i > m,

fi(x) for 0 ≤ i ≤ m.
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Hence fi − gmi ≤ T icm and

Dn :=
1

n

n−1∑

i=0

(fi − gmi ) ≤
1

n

n−1∑

i=0

T icm, where cm = δ − vm.

Now, let

f∗(x) = lim sup
n
An({bi};F )(x), f∗(x) = lim inf

n
An({bi};F )(x).

Then

0 ≤ |f∗(x)− f∗(x)| ≤ 2 lim sup
n
|An({bi};F )(x)−An({bi}; {gmi })(x)|

≤ 2 lim sup
n

∣∣∣∣
1

n

n−1∑

i=0

bi(T
ix)(fi − gmi )(x)

∣∣∣∣

≤ 2B lim sup
n
Dn(x).

Given α > 0, define E = {ω : f∗(x) − f∗(x) > α}. In order to prove
a.e. convergence of An({bi};F ) it is enough to show that µ(E) = 0. First,
limnAn({bi}; gmi )(x) exists a.e. by Theorem 6.5. Thus,

E ⊂
{
x : sup

n
|Dn(x)| >

α

2B

}
⊂
{
x : sup

n

∣∣∣∣
1

n

n−1∑

i=0

T icm(x)

∣∣∣∣ >
α

2B

}
.

By the a.e. convergence, the additive process {∑n−1i=0 T icm} admits a maxi-
mal inequality along {bi}. Therefore, for some constant C,

µ(E) ≤ µ
({
x : sup

n

∣∣∣∣
1

n

n−1∑

i=0

T icm(x)

∣∣∣∣ >
α

2B

})
≤ 2BC
α
‖cm‖1.

Since ‖cm‖1 ↓ 0 as m→∞, we obtain µ(E) = 0.
As mentioned earlier, the Wiener–Wintner theorem implies that, for any

function u ∈ U , the averages n−1∑n−1k=0 uk(x)f(T kx) converge a.e. for all
f ∈ L1. Consequently, for all f ∈ L1 and any trigonometric polynomial Ps
over U , the averages

1

n

n−1∑

k=0

Ps(k)(x)f(T
kx)

converge a.e. Therefore, one can also define weights using linear combina-
tions of uk’s, u ∈ U , and ask whether such weights are good for a.e. con-
vergence. The following theorems are obtained by using the methods used
above in this section verbatim. Hence, we will state them only.

Theorem 6.7. Let {bk} be a bounded U∞ sequence (Definition 5.10).
For every f ∈ L1 the weighted averages n−1

∑n−1
k=0 bk(x)f(T

kx) converge
almost everywhere on X.
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Theorem 6.8. Let F = {fn} ⊂ L1 be a bounded T -admissible process,
where T is invertible, and {bk} be a bounded U∞ sequence. Then the averages
n−1
∑n−1
k=0 bk(x)fk(x) converge almost everywhere on X.

7. Identification of the limits in Theorems 5.11, 6.5, and 6.7. As
in [Ry], we will identify the limits when T is a weakly mixing transformation.
Recall that a measure preserving transformation T is weakly mixing if and
only if

(i) T is ergodic, i.e. f ∈ L1(X), f ◦ T = f imply f = const; and
(ii) f ∈ L1(X), f ◦ T = λ · f, λ 6= 1 imply f = 0.
Proposition 7.1. Let {bk} be a bounded (Uc)p sequence (Defini-

tion 5.10). Then the averages An({bk}; f) converge in Lp to constants for
every f ∈ Lp and every {bk} if and only if the transformation T is weakly
mixing.

Proof. Repeating a standard argument [Ry], one can check that if the
averages An({bk}; f) converge in Lp to constants for all f ∈ Lp, then T is
weakly mixing.
Next, assume that T is weakly mixing. Pick u ∈ Uc, and let f ∈ Lp. By

Corollary 5.6, we have

(1) An(u; f) =
1

n

n−1∑

k=0

(ukf) ◦ T k → fu in Lp.

We shall show that fu is constant. Applying the spectral theorem to the
unitary function u, one has

u = ‖ · ‖∞- lim
m→∞

m∑

j=1

λj(m)χEj(m),

where |λj(m)| = 1 for all m and j, and µ(Ej(m)∩Ej′(m)) = 0 for every m
whenever j 6= j′. Therefore, for a fixed k,

m∑

j=1

λkj (m)χEj(m) =
[ m∑

j=1

λj(m)χEj(m)

]k
→ uk in L∞

as m→∞, which implies that
( m∑

j=1

λkj (m)χEj(m)f
)
◦ T k → (ukf) ◦ T k in Lp

for every k as m→∞. It now follows that

(2) fmn =
1

n

n−1∑

k=0

( m∑

j=1

λkj (m)χEj(m)f
)
◦ T k → an(u; f) in Lp
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as m→∞. On the other hand,

fmn =

m∑

j=1

1

n

n−1∑

k=0

λkj (m)fj(m) ◦ T k,

where fj(m) = χEj(m)f (∈ Lp). By Theorem 7 in [Ry], the averages
n−1
∑n−1
k=0 λ

k
j (m)fj(m) ◦ T k converge a.e. to a constant for all j. There-

fore, by the bounded convergence theorem, it can be easily seen that these
averages converge to a constant in Lp for every j. Thus,

(3) fmn → cm = const, n→∞.
Now, due to (1)–(3), it is possible to find a subsequence cml converging to
fu in Lp. Then it can be easily verified that fu is constant.
Let now {bk} be a bounded (Uc)p sequence. Then for every m one can

find a trigonometric polynomial Ps(m) over U such that

lim sup
n

1

n

n−1∑

k=0

‖bk − Ps(m)(k)‖∞ <
1

m
.

For h ∈ L∞, defining

Amn = An(Ps(m);h) =
1

n

n−1∑

k=0

(Ps(m)(k)h) ◦ T k,

we get

‖An({bk};h)−Amn‖p ≤
1

n

n−1∑

k=0

‖bk − Ps(m)(k)‖p · ‖h‖∞ <
‖h‖∞
m

for all n ≥ n(m). Therefore, for some subsequence {nm}, we have
(4) ‖Anm({bk};h)−Amnm‖p → 0, m→∞.
At the same time, by the first part of the proof,

(5) Amnm → Am = const in Lp

as m→∞. Since we also know that the sequence {Anm({bk};h)} converges
in Lp to some h̄, taking (4) and (5) into account, we infer that h̄ is constant.
Finally, let {hm} ⊂ L∞ be such that ‖f − hm‖p < 1/m. Then, for every

m and n, we have

‖An({bk}; f)−An({bk};hm)‖p ≤ ‖bk‖∞ · ‖f − hm‖p < C/m.
Remembering that {An({bk}; f)} converges in Lp, one can see now that it
must converge to a constant.

Theorem 7.2. Let {bk} be a bounded (UF)∞ sequence. Then the aver-
ages An({bk}; f) converge a.e. to constants for every f ∈ L1 if and only if
T is weakly mixing.
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Proof. Again, it is enough to show the “if” part. If T is weakly mixing,
since UF ⊂ Uc, by Theorem 7.1, the averages An({bk}; f) converge to con-
stants in L1 for all f ∈ L1. Since we also know that these averages converge
a.e. to some f̄ ∈ L1, it follows that f̄ is constant.
In a similar fashion we obtain the following result.

Theorem 7.3. If {bk} is a bounded (UF)∞ sequence, then the averages
n−1
∑n−1
k=0 bk(x)f(T

kx) converge a.e. to constants for every f ∈ L1 if and
only if T is weakly mixing.

Appendix: A measurability criterion. The results of this section
are due to A. Ber and V. Chilin (see Acknowledgements).

Let G be a compact group equipped with the Borel σ-algebra. If Ĝ is
the group of all continuous characters on G, then the following two results
are known.

Theorem A.1 (see [HR, Corollary 22.19]). For a measurable character

φ : G→ C, we have φ ∈ Ĝ.
Theorem A.2 (see [HR, Theorem 24.15]). If G is Abelian, then it is

metrizable if and only if Ĝ is countable.

LetG be a metrizable compact subgroup of U = {v ∈ L∞(X) : |v(x)| = 1
a.e.}. Let B be the Borel σ-algebra on G. Define a function F : X ⊗G→ C

by F (x, v) = ṽ(x) (here L∞ ∋ g 7→ g̃ ∈ L∞ is a lifting; see Section 5). Also,
if x ∈ X, we define x̂ : G → C by x̂(v) = ṽ(x). Note that x̂ is a character
on G for every x ∈ X.
Theorem A.3. If x̂ is measurable on G for every x ∈ X, then there

exists a d.m.p. {Xn}∞n=1 of X (see Section 5) such that , for any v ∈ G and n,
there is a constant cn(v) such that v(x) = cn(v) a.e. on Xn. Moreover , the
function F (x, v) = ṽ(x) is measurable on X ⊗G.
Proof. By Theorem A.1, x̂ ∈ Ĝ for every x ∈ X. Furthermore, since G

is Abelian and metrizable, Theorem A.2 shows that Ĝ = {φn}∞n=1, where
φi 6= φj whenever i 6= j. Set x̂ = Φ(x), and let

An = Φ
−1(φn), n = 1, 2, . . . .

Then Ai ∩ Aj = ∅ if i 6= j and X =
⋃
An. Pick xn ∈ An, n = 1, 2, . . . ,

arbitrarily. Since

x ∈ An ⇔ Φ(x) = φn(= Φ(xn)) ⇔ x̂ = x̂n
⇔ ṽ(x) = ṽ(xn) ∀v ∈ G ⇔ x ∈ (ṽ)−1(ṽ(xn)) ∀v ∈ G,

we have
An =

⋂

v∈G

(ṽ)−1(ṽ(xn)).
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Also, since G is metrizable and compact, it is separable. Let G = {vm}∞m=1.
If we define

Xn =

∞⋂

m=1

(ṽm)
−1(ṽm(xn)), n = 1, 2, . . . ,

then each Xn is measurable.

We now show that Xn = An for every n. Indeed, because An ⊂ Xn
and X =

⋃
An, it is enough to prove that Xi ∩ Xj = ∅ if i 6= j. Assume

that x ∈ Xi ∩Xj and i 6= j. Then ṽm(x) = ṽm(xi) and, at the same time,
ṽm(x) = ṽm(xj), that is, ṽm(xi) = ṽm(xj), or x̂i(vm) = x̂j(vm) for all m.
Since {vm} is dense in G and x̂i and x̂j are continuous on G, we get x̂i = x̂j ,
which implies that Ai = Aj , a contradiction. Therefore, {Xn} is a d.m.p. of
X (we discard the sets Xi with zero measure). If we define ṽ(xn) = cn(v),
then for any x ∈ Xn and v ∈ G we have ṽ(x) = ṽ(xn) = cn(v), so v(x) =
cn(v) a.e. on Xn.

We now show that the function F is measurable. Let B be any Borel set
in C. Since x ∈ Xn is equivalent to ṽ(x) = ṽ(xn) for all v ∈ G, we have

F−1(B) = F−1(B) ∩
∞⋃

n=1

(Xn ×G) =
∞⋃

n=1

(F−1(B) ∩ (Xn ×G))

=
∞⋃

n=1

{(x, v) ∈ Xn ×G : ṽ(x) ∈ B}

=
∞⋃

n=1

(Xn × {v ∈ G : ṽ(xn) ∈ B}) ∈ Σ ⊗ B,

because, by our assumption, the set {v ∈ G : ṽ(xn) ∈ B} = {v ∈ G :
x̂n(v) ∈ B} is measurable.
Theorem A.4. Let the metric in G be generated by the L1-norm. If

there exists a d.m.p. {Xn} of X such that , for every v ∈ G and n, there
is a constant cn(v) such that v(x) = cn(v) a.e. on Xn, then the function
F (x, v) = ṽ(x) is measurable on X ⊗G.
Proof. We will write χE for the characteristic function of a set E ∈ Σ,

while [χE ] will denote its class in L∞(X). Obviously, [χXn ]
∼ = χEn for some

En ∈ Σ. Also µ(Xn △ En) = 0 and [χEn ]∼ = χEn , for n = 1, 2, . . . . Define
Y1 = E1 and Yn = En \

⋃n−1
i=i Ei, n ≥ 2. Because χYn =

∏n−1
i=1 χEn(1−χEi),

and lifting is a homomorphism, it follows that [χYn ]
∼ = χYn for every n.

Since also µ(
⋃∞
n=1 Yn) = 1, Yi ∩ Yj = ∅ if i 6= j, and v(x) = cn(v) a.e. on Yn

for every n, without loss of generality we can assume that [χXn ]
∼ = χXn ,

n = 1, 2, . . . . Then v[χXn ] = cn(v)[χXn ] implies that ṽ(x) = cn(v) for all
x ∈ Xn and v ∈ G.
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By Theorem A.3, the proof will be finished if we show that the character
x̂ is continuous on G for every x ∈ X. Let vk, v ∈ G and ‖vk − v‖1 → 0 as
k →∞. For each pair k and m we have

|v − vk|[χXm ] = |(v − vk)[χXm ]| = |cm(v)− cm(vk)|,
which implies that\

Xm

|v − vk| dµ = |cm(v)− cm(vk)| · µ(Xm).

If x ∈ X, then there exists an index n0 such that x ∈ Xn0 . Therefore,
|x̂(v)− x̂(vk)| · µ(Xn0)

= |ṽ(x)− ṽk(x)| · µ(Xn0) = |cn0(v)− cn0(vk)| · µ(Xn0)

=
\
Xn0

|v − vk| dµ ≤
\
X

|v − vk| dµ = ‖v − vk‖1 → 0,

that is, x̂ is continuous on G for every x ∈ X.
The following is a direct consequence of Theorems A.3 and A.4.

Theorem A.5. Let (X,Σ, µ) be a probability space, and let G be an
L1-compact subgroup of the group U of all unimodular measurable functions
on X. Consider the Borel σ-algebra on G. Let f 7→ f̃ be a lifting on L∞(X).
Then the function F : X ⊗G→ C given by F (x, v) = ṽ(x) is measurable if
and only if there exists a d.m.p. {Xn} of X such that for every v ∈ G and
n there is a constant cn(v) with v(x) = cn(v) a.e. on Xn.
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