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Multidimensional weak resolvents and spatialequivalene of normal operatorsby
Michał Jasiczak (Pozna«)Abstrat. The aim of this paper is to answer some questions onerning weak re-solvents. Firstly, we investigate the domain of extension of weak resolvents Ω and �nd aformula linking Ω with the Taylor spetrum.We also show that equality of weak resolvents of operator tuples A and B resultsin isomorphism of the algebras generated by these operators. Although this isomorphismneed not be of the form(1) X 7→ U

∗

XU,where U is an isometry, for normal operators it is always possible to �nd a �large� subspaeon whih unitary similarity holds. This observation is used to prove that the in�nitein�ation of the spatial isomorphism between algebras generated by in�ations of A and B,respetively, does have the form (1).These fats are generalized to other not neessarily ommuting operators. We dealmostly with the self-adjoint ase.1. Introdution. Let A be an operator on a Banah spae X with thedual spae denoted by X⋆. The paper [13℄ (f. also [12℄) started a systematistudy of sets of weak resolvents, i.e. funtions of the form ζ 7→ G((ζ−A)−1f),where f ∈ X and G ∈ X⋆. It is natural to expet, espeially in light of resultsin loal spetral theory, that the set of all funtions of this form, denoted by
W (A), should ontain some relevant information about the operator A.It was proved that for yli operators ating on a �nite-dimensionalspae W (A) is a omplete similarity invariant of A. The same harateriza-tion was obtained for normal operators having spetra of zero area. It wasalso shown that an operator is algebrai if and only if W (A) onsists only ofmeromorphi funtions.In fat, the study of weak resolvents had started earlier. In [11℄ it wasproved that if eah weak resolvent of an operator A belongs to the Hardyspae H1(D), then the spetral radius of A is less than one. This was gener-2000 Mathematis Subjet Classi�ation: 47B15, 47C05, 47L99.Key words and phrases: weak resolvent, spatial isomorphism, Taylor spetrum.[129℄



130 M. Jasizakalized to tuples of operators and Taylor spetrum in [9℄. It should be pointedout that it is still not lear for whih ontrations weak resolvent sets areontained in other Hardy spaes.Let n ≥ 1 be an integer and B be a unit ball in Cn. We will denote by H aHilbert spae and by B(H) the algebra of all bounded operators on H. In [15℄operator-valued Cauhy and Poisson kernels were de�ned. Let A ∈ B(H)nbe a ommuting n-tuple. Then the operator-valued Cauhy kernel is de�nedby the formula
C(A, ζ) = [1− 〈A, ζ〉]−n = [1− (A1ζ1 + · · ·+Anζn)]−n.The Poisson kernel is given by(2) P (A, ζ) = C(A, ζ)∆n

AC(A∗, ζ),where ∆n
A =

∑

α≥0 kn,αA
∗αAα (for the de�nition of the numbers kn,α see[15℄). Throughout the paper we use standard multi-index notation.Assume that the Taylor spetrum of A is ontained in the unit ball. Forfuntions in the ball algebra A(B) the following formula holds:(3) f(A) =

\
S

f(ζ)K(A, ζ) dσ(ζ),where σ is the unique rotation-invariant normalized positive Borel measureon S = ∂B and K(A, ζ) is the Cauhy or Poisson kernel. Aordingly, it isnatural to investigate properties of funtions of the form
φ(ζ) = 〈K(A, ζ)f, g〉, f, g ∈ H,whih will thereafter be alled multidimensional weak resolvents or brie�yweak resolvents of an n-tuple A of operators. For the operator-valued Cauhykernel we may and will onsider weak resolvents for ommuting n-tuples ofoperators ating on a Banah spae X.It is the aim of this paper to give, at least partial, answers to someproblems posed in [8℄ and [13℄. We will show that weak resolvents of n-tuplesof ommuting operators annot be used to investigate the Taylor spetrum.We will prove a relation between the Taylor spetrum and the domain ofextension of eah weak resolvent Ω(A). This fat, generalizing results of [9℄,shows that there exist plenty of operators for whih Ω(A) is the same butwhose Taylor spetra di�er signi�antly.We also investigate onsequenes of inlusions of the formW (A) ⊂W (B)for normal ommuting operators. We deal mostly with the self-adjoint ase.This is again onneted with questions posed in [13℄ and [8℄.For operators A1, . . . , An ∈ B(H) we will denote by P(A) the image ofthe homomorphism
C[Z1, . . . , Zn] ∋ p 7→ p(A) ∈ B(H)



Multidimensional weak resolvents 131It is an easy onsequene of the above-mentioned theorem of F.-H. Vasilesu,in light of results in [13℄, that the homomorphism Φ : P(A)→ P(B) de�nedby p(A) 7→ p(B) is bounded (homomorphisms of this kind are alled spatial).Thus, if W (A) = W (B) (this ondition will be referred to as the resolventequality) then P(A) and P(B) are isomorphi as Banah algebras.It is natural to ask about the form of this isomorphism. It is almost obvi-ous that the operators A and B need not be unitarily equivalent. However,we shall prove that for ommuting normal operators the resolvent equalityresults in equivalene of the operators on eah maximal yli subspae. Thisondition turns out to be also neessary for the weak resolvent equality tohold.Although a spatial isomorphism need not be of the form X 7→ U∗XU ,where U is unitary or isometri on H, the ondition W (A,A∗) = W (B,B∗)implies that Φ : p(A,A∗) 7→ p(B,B∗) an be written in the form
Φ(p(A,A∗)) = V ∗p(A(∞), A(∞)∗)V ι,where A(∞) denotes the in�nite in�ation of A and ι is the inlusion of aHilbert spae H into the in�nite orthogonal sum of opies of H. Again, thisfat is a neessary ondition for the weak resolvent equality.We generalize these theorems to other operators using elementary C∗-algebra tehniques.Aknowledgments. The author wishes to thank the referee for sugges-tions whih helped the author not only to improve the style of the paper butalso orret some mistakes.2. Connetion with Taylor spetrum. Let A1, . . . , An be ommutingoperators ating on a Banah spae X. De�ne

c(A) := {z ∈ C
n : 1− 〈A, z〉 /∈ InvB(X)}.Definition 1. For f ∈ X and g ∈ X⋆, the funtion φ = φf,g : c(A)c → C(U c denotes the omplement of the set U) de�ned by(4) φ(ζ1, . . . , ζn) = 〈C(A, ζ)f, g〉is alled a weak (Cauhy) resolvent of the operators A1, . . . , An. The set ofall funtions of this form will be denoted byWC(A), orW (A) if no onfusionan our.Observe that, a priori, a funtion of the form (4) is well de�ned on c(A)c.Obviously, it may happen that it an be extended, as an antiholomorphifuntion, to a larger domain. A trivial example onsists in taking f in a jointinvariant subspae of A and g ∈ X∗ annihilating [P(A)f ] (if S is a subset ofa Banah spae, [S] stands for the losure of the span of S). Then φ(ζ) =



132 M. Jasizak
〈C(A, ζ)f, g〉 = 0 on c(A)c and φ an be extended as an antiholomorphifuntion to the whole Cn.We will show that c(A)c is the largest set, in the sense of inlusion, onwhih one an de�ne every funtion from W (A). From the spetral mappingproperty of the Taylor spetrum [5℄ it follows that

c(A) = {z ∈ C
n : 1 ∈ σ(〈A, z〉)}

= {z ∈ C
n : ∃ζ ∈ σT(A), 1 = ζ1z1 + · · ·+ ζnzn}.Let U be an open onneted set (domain) in Cn with U ∩ c(A)c 6= ∅ suhthat for eah weak resolvent f ∈ W (A), there exists an antiholomorphifuntion F : U → C whih extends f . We denote by Ω(A) the union of alldomains U satisfying the above-desribed ondition. It follows that c(A)c ⊂

Ω(A). We investigate the reverse inlusion.Let us also de�ne a loal version of c(A) denoted by c(A, x) (see also [6℄and [14℄). We will say that z ∈ Cn does not belong to c(A, x) if there existsan antiholomorphi funtion F : Uz → X de�ned on an open neighbourhood
Uz of z suh that(5) (1− 〈A, ζ〉)nF (ζ) = xfor ζ ∈ Uz (in the terminology of [14℄ this funtion is A-assoiated to x).From the de�nition it follows that the set c(A, x)c is open. We will need thefollowing lemma:Lemma 1. Let xα be elements of a Banah spae X. The domain ofabsolute onvergene of the power series ∑

α xαz
α is equal to the interior ofthe set

⋂

ξ∈X⋆

∞
⋃

k=1

{z ∈ C
n : sup

α
|ξ(xα)zα| ≤ k}.Proof. This follows from the Banah�Steinhaus theorem and the Abellemma (see for example [10℄).Proposition 2. If z ∈ Ω(A), then for eah x ∈ X there exists an openneighbourhood V of z and an antiholomorphi funtion G suh that

C(A, ζ)G(ζ) = x for ζ ∈ V.In other words, Ω(A) ∩ c(A, x) = ∅ for every x ∈ X.Proof. Let x ∈ X. From the de�nition, for eah z ∈ Ω(A) there existsa domain U ontaining z and an antiholomorphi extension of eah weakresolvent to the domain U .Choose open polydiss P1 = P (z1, r1), . . . , Pm = P (zm, rm) with losuresontained in U with z1 ∈ c(A)c, zi ∈ Pi−1 for i = 2, . . . ,m and z ∈ Pm. Wemay assume that the Taylor series at zk of eah weak resolvent is onvergenton Pk, for eah k = 1, . . . ,m.



Multidimensional weak resolvents 133Sine z1 ∈ P1, it follows from Lemma 1 that the Taylor series of C(A, ζ)xat z1 onverges uniformly on ompat subsets of P1. The sum of this series,denoted by F1, satis�es for ζ ∈ P1 ∩Ω(A) the equation(6) (1− 〈A, ζ〉)nF1(ζ) = x.Both F1 and (1 − 〈A, ζ〉)n are antiholomorphi. Therefore, (6) must alsobe satis�ed for ζ ∈ P1. Indutively, for eah k = 1, . . . ,m there exists anantiholomorphi funtion Fk : Pk → C satisfying the equation and whoseTaylor extension is onvergent, by Lemma 1, on the whole Pk. This provesthe lemma sine z belongs to Pm.If λ belongs to the boundary of the spetrum of an operator A, then λ−Ais not a surjetion. This is a onsequene of the fat that the boundary ofthe set of invertible elements of a Banah algebra onsists of topologialzero divisors. This argument also shows that for ζ ∈ ∂c(A) the operator
1 − 〈A, ζ〉 is a topologial zero divisor. Consequently, its range is a propersubspae of X. We will use this fat in the proof of the following lemma.Lemma 3. The set {x ∈ X : ∂c(A) \ c(A, x) 6= ∅} is of the �rst Baireategory.Proof. We may assume that c(A)c 6= Cn. Take a sequene λk whih isdense in ∂c(A) and de�ne Mk = {x ∈ X : λk /∈ c(A, x)}. It is easy to showthat

{x ∈ X : ∂c(A) \ c(A, x) 6= ∅} =
∞
⋃

k=1

Mk.Thus, it is enough to prove that eahMk is of the �rst ategory. Take x ∈Mk;then there is an open neighbourhood U of λk and an antiholomorphi fun-tion F : U → X suh that
(1− 〈A, z〉)nF (z) = x.Consequently, x belongs to the range of the operator 1−〈A, λk〉. Sine λk ∈

∂c(A), R(1 − 〈A, λk〉) is a proper subspae of X and by the open mappingtheorem, it is of the �rst Baire ategory. In other words, Mk is ontained ina set of the �rst ategory. This yields the desired onlusion.Theorem 4. Ω(A) ∩ ∂c(A) = ∅. Consequently , Ω(A) = c(A)c.Proof. Lemma 3 shows that there exists x ∈ X suh that ∂c(A) ⊂ c(A, x).On the other hand, from Proposition 2 we know that Ω(A) ⊂ c(A, x)c foreah x ∈ X. Thus Ω(A) ∩ ∂c(A) = ∅.From the de�nition it follows that c(A)c ⊂ Ω(A). It is easy to show thatif there existed z ∈ Ω(A) \ c(A)c, then we ould �nd ζ ∈ Ω(A) ∩ ∂c(A).Remark 1. The previous theorem an be proved in a simpler way.Namely, one an take a diret route, applying the Banah�Steinhaus The-



134 M. Jasizakorem and mimiking the proof of Proposition 2, to onstrut an antiholo-morphi funtion F : V → B(X), V an open neighbourhood of z ∈ Ω(A),satisfying (5). It is the impression of the author that the proof presentedabove is more instrutive.Remark 2. It is easy to observe that instead of the operator-valuedCauhy kernel one an take any other operator-valued holomorphi or an-tiholomorphi kernel, for instane the Bergman kernel. We shall not pursuethis observation further. Instead, in the next setion we introdue the oneptof a spatial isomorphism of �nitely generated subalgebras of B(H), whosedual preserves elementary funtionals. This notion allows us to relieve theonsiderations from a partiular hoie of a kernel funtion.Remark 3. Assume now that A1, . . . , An and B1, . . . , Bn are tuples ofommuting operators. We ould have de�ned weak resolvents as germs on
c(A)c (whih is open) of funtions of the form (4).From the previous theorem it would then follow that if WC(A1) =
WC(B1), then c(A1) = c(B1). It is obvious that 0 belongs to c(A)c foreah A ∈ B(H). Consequently, if WC(A1) = WC(B1), then σ(A1) \ {0} =
σ(B1) \ {0}.From the equality WC(A1, . . . , An) = WC(B1, . . . , Bn) we an only inferthat c(A1, . . . , An) = c(B1, . . . , Bn). It is easy to show that there exist n-tuples A and B suh that c(A) = c(B), but σT(A) 6= σT(B).3. Weak resolvents of normal operators. Assume that A1, . . . , Anand B1, . . . , Bn are ommuting n-tuples of operators on a Banah spae X. Itwas proved in [8℄ that the equality of the sets of one-dimensional weak resol-vents implies that the algebras generated by these operators are isomorphi.The same holds true in the ase of multidimensional weak resolvents.Let f be an element of a Banah spae X and g ∈ X⋆. The symbol A⋆

X×Xwill stand for the set of all elementary funtionals ating on a subspae
A ⊂ B(X). Reall that a funtional is alled elementary if it is of the form
X 7→ 〈Xf, g〉. We will use the notation

P(A1, . . . , An) ∼= P(B1, . . . , Bn)if the map Φ sending p(A1, . . . , An) to p(B1, . . . , Bn) extends to a boundedalgebra isomorphism. Equivalently, it an be said that P(A1, . . . , An) and
P(B1, . . . , Bn) are spatially isomorphi. The fat that Φ is an isomorphismand the dual map

Φ⋆ : P(B1, . . . , Bn)⋆ → P(A1, . . . , An)⋆maps P(B1, . . . , Bn)⋆
X×X

onto P(A1, . . . , An)⋆
X×X

will be denoted by
P(A1, . . . , An) ≅ P(B1, . . . , Bn).



Multidimensional weak resolvents 135Theorem 5. Assume that σT(A), σT(B) ⊂ B. The equality WC(B) =
WC(A) holds if and only if P(A) ≅ P(B).Proof. First of all, observe that if W (B) ⊂ W (A) then the mapping
Φ : p(A) 7→ p(B) is well de�ned. De�ne ontinuous bilinear operators a, b :
X× X⋆ → C(B) by

a(f, g) = 〈C(A, ζ)f, g〉, b(f, g) = 〈C(B, ζ)f, g〉.From the assumption it follows that the range of b is ontained in the rangeof a. Consequently, from the Grabiner theorem (see [8℄) we infer that thereexists a onstant c suh that for eah ξ ∈ C(B)⋆,
‖ξ ◦ b‖ ≤ c‖ξ ◦ a‖.Fix a polynomial p ∈ C[Z1, . . . , Zn] and let

ξp(f) =
\
S

f(z)p(z) dσ(z) for f ∈ C(B).Sine by (3), ξp(a(f, g)) = 〈p(A)f, g〉 (see [15℄), we obtain
‖p(B)‖ = ‖ξp ◦ b‖ ≤ c‖ξp ◦ a‖ = c‖p(A)‖for some c ∈ R+. This proves the ontinuity of the map Φ : p(A) 7→ p(B).Similarly we prove the ontinuity of Φ−1.Let f ∈ X, g ∈ X⋆ and assume again that W (B) ⊂W (A). It follows thatthere exist h ∈ X and k ∈ X⋆ suh that

〈C(B, ζ)f, g〉 =
∑

α≥0

(n+ |α| − 1)!

(n− 1)!α!
〈Bαf, g〉ζα(7)

=
∑

α≥0

(n+ |α| − 1)!

(n− 1)!α!
〈Aαh, k〉ζα

= 〈C(A, ζ)h, k〉.This implies that 〈Bαf, g〉 = 〈Aαh, k〉 for eah α. Consequently,
〈Φ(p(A))f, g〉 = 〈p(A)h, k〉for eah polynomial p. This proves that the resolvent equality implies that Φ⋆maps P(B1, . . . , Bn)⋆

X×X
onto P(A1, . . . , An)⋆

X×X
. The onverse impliationan be proved in the same manner.Signi�antly, the reproduing formula with Poisson integral an be ob-tained not only for polynomials or more generally for funtions belong-ing to the ball algebra but also for funtions of the form p + q, where

p, q ∈ C[Z1, . . . , Zn].Proposition 6. Let A1, . . . , An be ommuting operators on Hilbert spae
H with σT(A) ⊂ B. Then for any polynomials p, q ∈ C[Z1, . . . , Zn],

p(A) + q(A∗) =
\
S

(p(ζ) + q(ζ))P (A, ζ) dσ(ζ).



136 M. JasizakProof. The method of proof is exatly the same as in [15℄.Assume now that σT(A) ⊂ B. One an de�ne a weak Poisson resolventin a similar manner using the operator-valued Poisson kernel (2) instead ofthe Cauhy kernel, i.e. a weak Poisson resolvent is a funtion on B of theform
ψf,g(ζ) = 〈P (A, ζ)f, g〉,where f, g ∈ H. The set of all weak Poisson resolvents will be denoted by

WP (A).Using the previous proposition, as in Theorem 5, one an prove that if
A1, . . . , An and B1, . . . , Bn are ommuting operators on a Hilbert spae H,then from the inlusion WP (B) ⊂WP (A) it follows that the mapping

P(A) + P(A∗) ∋ p(A) + q(A∗) 7→ p(B) + q(B∗) ∈ P(B) + P(B∗)is linear ontinuous and thus an be extended to a ontinuous linear map on
P(A) + P(A∗).Theorem 7. For ommuting n-tuples A and B of operators ating on aHilbert spae H suh that σT(A), σT(B) ⊂ B the equality WP (A) = WP (B)implies P(A) + P(A∗) ≅ P(B) + P(B∗).The proof follows the lines of the orresponding one for the Cauhy weakresolvents. The only di�erene is in using Proposition 6 instead of powerseries expansion in the proof that spatial isomorphism preserves elementaryfuntionals.In [13℄ an example was given of a pair of normal operators having thesame sets of weak resolvents whih are not similar on any reduing subspae.In other words, for these operators, neither the isomorphism Φ : P(A) →
P(B) nor its inverse is of the form X 7→ U∗XU , where U is unitary.The symbol C∗(A) will stand for the C∗-algebra generated by the n-tuple
A = (A1, . . . , An). To simplify the notation we shall sometimes write A forthis algebra. We will show that under the assumption C∗(A) ≅ C∗(B) (byTheorem 5 equivalent toW (A,A∗) = W (B,B∗), provided the Taylor spetraof these tuples are ontained in the unit ball) the map Φ has the above formon no maximal reduing subspae. We assume in this setion that H isseparable.Denote by EA the joint spetral measure of the n-tuple A = (A1, . . . , An)(see [2℄ for its de�nition and properties). The basi deomposition of a normaloperator (f. [7℄) an also be arried out for ommuting tuples of normaloperators ating on a separable Hilbert spae. Namely, it an be shown thatthere exist vetors x0, x1, . . . suh that, if we de�ne ompatly supportedpositive measures by

µk(∆) = 〈EA(∆)xk, xk〉, k ∈ N,



Multidimensional weak resolvents 137then the operators A1, . . . , An are jointly unitarily equivalent to the operators
Mi = ⊕kMzi,k given by

Mi :

∞
⊕

k=0

L2(µk) ∋ ⊕kfk 7→ ⊕kzifk ∈
∞

⊕

k=0

L2(µk).The measures µk an be hosen in suh a way that µk is absolutely ontin-uous with respet to µk−1 for k ∈ N. Thus there exist measurable funtions
dµk/dµ0 ∈ L1(µ0) suh that dµk = (dµk/dµ0)dµ0. Observe that sine themeasures µk are positive, the funtions dµk/dµ0 are nonnegative a.e. for
k ∈ N.Proposition 8. Let A1, . . . , An be normal ommuting operators on aseparable Hilbert spae H and let y0 ∈ H. Then there exists x ∈ H suh thatfor eah y ∈ H the measure 〈EA(·)y, y〉 is absolutely ontinuous with respetto 〈EA(·)x, x〉 and

y0 ∈M(x) := Ax.Proof. The proof an be arried out as that of Lemma 7 on p. 913 in [7℄.The spae M(x) and the vetor x, whose existene is proved in the aboveproposition, are alled maximal relative to A. If C is any operator ating on
H, then we denote by C(∞) its in�nite in�ation, i.e. C ⊗ idH. This operatorats on ⊕∞

0 H, the in�nite orthogonal sum of opies of H. This spae willthereafter be denoted by H(∞). The symbol ι will stand for the inlusionof H onto a �xed, say the �rst, omponent of H(∞). If C = (C1, . . . , Cn)is an n-tuple of operators ating on H, then C(∞) stands for the n-tuple
(C

(∞)
1 , . . . , C

(∞)
n ). This onvention makes lear the meaning of the symbol

p(C(∞)), when p ∈ C[Z1, . . . , Zn].Lemma 9. If x is maximal relative to A then ιx is maximal relativeto A(∞).Proof. Observe that if EA is a spetral measure of the n-tuple A, then
E(∞) = E⊗ idH is a spetral measure of A(∞). Thus, if 〈E(∞)(∆)ιx, ιx〉 = 0for a Borel set ∆, then for any ⊕kxk ∈ H(∞) we obtain

〈E(∞)(∆)(⊕xk),⊕xk〉 =
∑

k

〈E(∆)xk, xk〉 = 0.Theorem 10. Assume that A1, . . . , An and B1, . . . , Bn are ommuting
n-tuples of normal operators on a Hilbert spae H. The following onditionsare equivalent :(i) C∗(A) ≅ C∗(B).(ii) If MA and MB are maximal subspaes relative to A and B, then

A|MA
and B|MB

are jointly unitarily equivalent.



138 M. Jasizak(iii) There exist isometries V,W ∈ B(H(∞)) suh that
p(A(∞), A(∞)∗) = V ∗p(B(∞), B(∞)∗)V,

p(B(∞), B(∞)∗) = W ∗p(A(∞), A(∞)∗)W.Proof. (i)⇒(ii). From the above-skethed model theory for normal oper-ators and Lebesgue dominated onvergene theorem it follows that for eahpolynomial p of 2n variables,
〈p(A)(⊕kfk),⊕kgk〉 =

∑

k

\
σ(A)

p(z, z)fk(z) gk(z) dµk(z)

=
\

σ(A)

p(z, z)

(

∑

k

fk(z) gk(z)
dµk

dµ0

)

dµ0(z),sine one an prove as in [13℄ that the series
∑

k

fk(z)gk(z)
dµk

dµ0onverges absolutely in L1(µ0). It is known (f. [3℄, [5℄) that for ommutingnormal operators A1, . . . , An the equality σT(A) = σA(A) holds. Therefore,we write σ(A) for any of the equivalent notions of spetrum.Thus, for eah subspae MA, maximal relative to A, we an always �ndvetors f ′, g′ ∈MA satisfying
〈p(A,A∗)f, g〉 = 〈p(A|MA

, A|∗MA
)f ′, g′〉.In other words,(8) C

∗(A) ≅ C
∗(A|MA

).Observe that if C∗(A) and C∗(B) are spatially isomorphi, then σ(A) = σ(B).Denote this set by σ.From the previous observations and the assumption, it follows that thereexist vetors h, k ∈MB suh that\
σ

p(z, z) dµA
0 =
\
σ

p(z, z)h(z)k(z)dµB
0for eah polynomial p. From the Stone�Weierstrass theorem it follows thatthe measure µA

0 is absolutely ontinuous with respet to µB
0 . Similarly weprove the inverse relation. Consequently, A|MA

and B|MB
are unitarily equiv-alent.(ii)⇒(i). From (8) it follows that it is enough to show that

C
∗(A|MA

) ≅ C
∗(B|MB

).This follows easily from the assumption, sine
〈p(A|MA

, A|∗MA
)f, g〉 = 〈p(B|MB

, B|∗MB
)Uf, Ug〉.



Multidimensional weak resolvents 139(i)⇒(iii). Deompose the spae H into reduing subspaes of the form
Afi. Let µA

i , i ∈ N0, be the orresponding measures. Denote by Ai,j , i, j ∈ N0,the jth opy of the spae Afi in H(∞). Let Bi,j be the analogous deompo-sition of H for B suh that B0,j is maximal relative to B for eah j ∈ N0.Let φ be any bijetion between N0 × N0 and N0.From part (i)⇒(ii) of the proof, it follows that µA
i ≪ µA

0 ≪ µB
0 , i ∈ N.De�ne an operator Vi,j : Ai,j → B0,φ(i,j) by

Vi,jf =

√

dµA
i

dµB
0

f.Sine dµA
i /dµ

B
0 belongs to L1(µB

0 ), the operator Vi,j is an isometry. Conse-quently, the operator V = ⊕i,jVi,j is an isometry. Straightforward omputa-tion shows that for any polynomial
p(A(∞), A(∞)∗) = Φ(∞)(p(B(∞), B(∞)∗)) = V ∗p(B(∞), B(∞)∗)V.Similarly, we prove the existene of the isometry W .(iii)⇒(i). From the assumption it follows that the map p(A(∞), A(∞)∗) 7→

p(B(∞), B(∞)∗) extends to a bounded isomorphism of C∗(A) and C∗(B).Denote by ι : H → H(∞) the inlusion onto the �rst omponent. By theassumption we have
〈p(A,A∗)f, g〉 = 〈p(A(∞), A(∞)∗)ιf, ιg〉 = 〈p(B(∞), B(∞)∗)V ιf, V ιg〉.Sine for eah vetor h ∈ H maximal relative to B, ιh is maximal relativeto B(∞), the onlusion follows from (8).Example 11. In [13℄ an example was given of normal operators A,Bwhih satisfy the weak resolvent equality (i.e.W (A) = W (B) or equivalently

P(A) ≅ P(B)) but are not unitarily equivalent on any reduing subspae. Weinfer that the relation ≅ annot be extended from algebras A,B of operatorsto C∗-algebras generated by them.For the onveniene of the reader we desribe the example in detail.Let {rn : n ∈ N} and {sn : n ∈ N} be disjoint ountable subsets of (0, 1),eah dense in [0, 1]. Let µn (resp. νn) be 2−n times normalized Lebesguemeasure on the irle with entre 0 and of radius rn (resp. sn) for n ∈ N.Put µ =
∑

n∈N
µn and ν =

∑

n∈N
νn, so µ and ν are mutually singular. Let

A and B be multipliation by z on L2(µ) and L2(ν), respetively.It is easy to show that P(A) ≅ P(B). Observe that the C∗-algebras Aand B generated by A and B, respetively, are spatially isomorphi. Indeed,the map whih sends a funtion f ∈ C(D) to the operator Mf ∈ B(L2(µ))of multipliation by f is a ontinuous ∗-isomorphism. Consequently, A ∼= B,although we have notied that A 6≅ B.



140 M. JasizakTheorem 10 implies that if the weak resolvent equality holds for normaloperators, then there always exist �large� subspaes on whih the n-tuples Aand B are unitarily equivalent. A simple example of a normal operator andits in�ation shows that one annot expet that the relevant unitaries an beextended onto the whole spae. We shall refer to this remark later.Although one annot expet to �nd an isometry satisfying Φ(·) =
U∗( · )U , ating on H, it is always possible to write Φ as a ompositionof a projetion π : H(∞) → H onto a �xed omponent, a map of the form
U∗( · )U , U being an isometry in B(H(∞)), and the inlusion ι. In otherwords, by Theorem 10(iii), the following diagram ommutes:

H
ι1−−−−→ H(∞) V−−−−→ H(∞)

p(A)





y





y
p(A(∞),A(∞)∗)





y
p(B(∞),B(∞)∗)

H
π1←−−−− H(∞) V ∗

←−−−− H(∞)Su�ient onditions for the equality P (K) = C(K) or
P(K) + P(K)∗ = C(K)to hold, where K ⊂ Cn, n > 1, is a ompat set, are muh more sophistiatedthan in the one-dimensional ase. In this onnetion it seems that a propergeneralization of Theorem 6.3 from [8℄ is the following fat, whih an beproved exatly like Theorem 10.Theorem 12. Let A and B be ommuting n-tuples of normal operators.Assume, additionally , that σ = σ(A) = σ(B) and that both P(A) and P(B)are Dirihlet algebras on σ. The following onditions are equivalent :(i) P(A) + P(A∗) ≅ P(B) + P(B∗).(ii) If MA and MB are maximal subspaes relative to A and B, then

A|MA
and B|MB

are unitarily equivalent.(iii) There exist isometries V,W ∈ B(H(∞)) suh that
p(A(∞), A(∞)∗) = V ∗p(B(∞), B(∞)∗)V,

p(B(∞), B(∞)∗) = W ∗p(A(∞), A(∞)∗)W.We have proved that if n-tuples of normal operators A = (A1, . . . , An)and B = (B1, . . . , Bn) have the same sets of weak resolvents, then C∗(A) ≅

C∗(B). From Example 11 it follows that the existene of a spatial isomor-phism between C∗(A) and C∗(B) is not su�ient for C∗(A) ≅ C∗(B). How-ever, as we intend to show, the ondition C∗(A) ∼= C∗(B) implies that thelosures, in the topology of uniform onvergene on ompat subsets of B,of the sets of weak resolvents are equal.



Multidimensional weak resolvents 141Lemma 13. Assume that A and B are ommuting n-tuples of operatorson a separable Hilbert spae. The algebras C∗(A) and C∗(B) are spatially iso-morphi if and only if A(∞) and B(∞) are strongly approximately equivalent.We will sketh the proof for onveniene of the reader. However, themethod is exatly the same as for one operator (f. Theorem 42.7 and Corol-lary 42.8 in [4℄).Proof. If A(∞) and B(∞) are strongly approximately equivalent, then itis easy to show that C∗(A(∞)) and C∗(B(∞)) are spatially isomorphi. Onthe other hand, C∗(A(∞)) ∼= C∗(A).Assume now that C∗(A) and C∗(B) are spatially isomorphi. Denote thespatial isomorphism by Φ. De�ne Ψ : C∗(A)→ C∗(B(∞)) by Ψ(T ) = Φ(T )(∞).Then Ψ is a ∗-homomorphism. It is enough to show that A(∞) and A(∞) ⊕
B(∞) are strongly approximately equivalent sine the same reasoning maybe applied to Ψ−1.De�ne a representation Υ : C∗(A(∞)) → C∗(B(∞)) by Υ (T (∞)) = Ψ(T ).Observe that Υ (C∗(A(∞)) ∩K) = Υ (0) = 0, where K denotes the ideal ofompat operators on H(∞).Denote by id the trivial representation of C∗(A(∞)), whih, by the de�-nition, is a subalgebra of B(H(∞)). From the Voiulesu�Arveson theorem[1℄, [16℄ it follows that id and id⊕ Υ are strongly approximately equivalent.This proves the lemma.Theorem 14. Assume that C∗(A) and C∗(B) are spatially isomorphi,where A and B are ommuting n-tuples of normal operators satisfying theondition σ(A), σ(B) ⊂ B. Then the losures of W (A) and W (B) in thetopology of uniform onvergene on ompat subsets of B are equal.Proof. Denote by Φ the spatial isomorphism whih maps C∗(A) onto
C∗(B). From Lemma 13 it follows that there exists a sequene of isometries
Un ∈ B(H(∞)) suh that

‖Φ(∞)(p(A(∞), A(∞)∗))− U∗
np(A

(∞), A(∞)∗)Un‖ → 0.Consequently, for eah ζ ∈ B, ⊕kfk,⊕gk ∈ H(∞),(9) |〈C(B(∞), ζ)(⊕fk),⊕gk〉 − 〈U∗
nC(A(∞), ζ)Un(⊕fk),⊕gk〉| → 0.Take f, g ∈ H. From (9) it follows that for eah ζ ∈ B,

〈C(B, ζ)f, g〉 = lim
n→∞

〈C(A(∞), ζ)Unιf, Unιg〉.Set ⊕kf
n
k = Unιf and ⊕kg

n
k = Unιg. Observe that the series
∑

k

fn
k (z) gn

k (z)
dµk

dµ1



142 M. Jasizakonverges absolutely in L1(µ1). Therefore, as in Theorem 10,
〈C(A(∞), ζ)(⊕kf

n
k ),⊕kg

n
k 〉 =

∑

k

\
σ

C(z, ζ)fn
k (z) gn

k (z) dµk

=
\
σ

C(z, ζ)

{

∑

k

fn
k (z) gn

k (z)
dµk

dµ1

}

dµ1

= 〈C(A, ζ)f ′n, g
′
n〉,where f ′n, g′n are funtions in L2(µ1) satisfying

f ′n(z) g′n(z) =
∑

k

fn
k (z) gn

k (z)
dµk

dµ1
.This yields the desired onlusion, sine by the Montel theorem the sequeneof holomorphi funtions 〈C(A, ·)f ′n, g′n〉 onverges uniformly on ompatsubsets of B.4. Generalizations to other operators. We ontinue the investiga-tion of impliations of the weak resolvent equality for other, not neessarilynormal, operators ating on a Hilbert spae. It is of interest what an besaid about spatial isomorphism suh that the dual map also preserves vetorstates. This fat will be denoted by A ≅s B. Theorem 10 and Proposi-tion 8 show that for normal operators, C∗(A) ≅ C∗(B) implies that for eah

g, h ∈ H there exist subspaes MA ∋ g and MB ∋ h suh that the restritionsof A and B to MA and MB, respetively, are unitarily equivalent. From thenext proposition it follows that this implies that C∗(A) ≅s C∗(B). The sym-bol C〈Z1, . . . , Z2n〉 stands for the algebra of nonommutative polynomials of
2n variables.Proposition 15. Let H be a Hilbert spae. Assume that there exist fam-ilies of subspaes HA

γ and HB
γ suh that

H =
⋃

γ

H
A
γ =

⋃

γ

H
B
γand isometries Vγ : HA

γ → HB
γ and Wγ : HB

γ → HA
γ suh that

p(A,A∗)|HA
γ

= V ∗
γ p(B,B

∗)Vγ and p(B,B∗)|HB
γ

= W ∗
γ p(A,A

∗)Wγfor all p ∈ C〈Z1, . . . , Z2n〉. Then C∗(A) ≅s C∗(B).Proof. Let f ∈ H. Then there exists γ suh that f ∈ HA
γ . Thus

〈p(A,A∗)f, f〉 = 〈V ∗
γ p(B,B

∗)Vγf, f〉 = 〈p(B,B∗)Vγf, Vγf〉for eah polynomial p ∈ C〈Z1, . . . , Z2n〉. Similarly we prove the reverse in-lusion.



Multidimensional weak resolvents 143Let S and T be n-tuples of operators, not neessarily normal, ating ona Hilbert spae H. The symbol W∗(S) stands for the smallest von Neumannalgebra generated by S. We write X ′ to denote the ommutant of the set
X ⊂ B(H) in B(H).Proposition 16. Assume that C∗(A) ≅s C∗(B). Then the map

Φ : p(A,A∗) 7→ p(B,B∗),where p ∈ C〈Z1, . . . , Z2n〉, extends to a ontinuous ∗-homomorphism betweenthe SOT-losures of C∗(A) and C∗(B), when both these spaes are equippedwith either the SOT , WOT or norm topology. Furthermore, the dual of Φmaps the set of vetor states of W∗(B) onto the set of vetor states of W∗(A),i.e. W∗(A) ≅s W∗(B).Proof. For T = (SOT) limTα with Tα ∈ C∗(A) and supα ‖Tα‖ < ∞ onede�nes Φ(T ) = (SOT) limα Φ(Tα) (abusing the notation we use the samesymbol for Φ and its extension). The limit exists, sine, by assumption,(10) for all f ∈ H there exists g ∈ H satisfying 〈Tg, g〉 = 〈Φ(T )f, f〉for all T ∈ C∗(A). Consequently, ondition (10) must also hold for T ∈
W∗(A). This implies that Φ extends to a SOT-SOT and WOT-WOT on-tinuous map between W∗(A) and W∗(B).It is also easy to observe that Φ and onsequently its extension is mul-tipliative. Indeed, multipliation is separately SOT ontinuous. Therefore,
Φ(ST ) = Φ(S)Φ(T ) for S ∈ P(A,A∗) and T ∈ P(B,B∗)

SOT. Repeatingthe argument shows that Φ(ST ) = Φ(S)Φ(T ) for S ∈ P(A,A∗)
SOT and

T ∈ P(B,B∗)
SOT.The fat that Φ : W∗(A) → W∗(B) is a ∗-homomorphism follows fromnorm ontinuity of Φ and the fat that Φ|P(A,A∗) is a ∗-homomorphism.If A is a subspae of B(H), then an A-yli subspae of H is a spae ofthe form Ah, where h ∈ H. The orthogonal projetion on this spae will bealled a yli projetion and denoted by [Ah]. We will use the symbol [Ah]for the projetion or its image. The next lemma is well known.Lemma 17. Let A be a C∗-subalgebra of B(H). There exists a family ofunit vetors hγ suh that

∑

γ

[Ahγ ] = I.One of the vetors hγ an be hosen ompletely arbitrary.Let S and T be n-tuples of operators ating on a Hilbert spae. Observethat neither S nor T has to be ommutative.



144 M. JasizakTheorem 18. If C∗(S) ≅s C∗(T ), then there exists a partial isometry Vsuh that(11) p(S, S∗) = V ∗p(T, T ∗)Von its initial spae. The initial or �nal spae of V an be hosen to ontaina �xed arbitrary vetor. If there exists an m-tuple A belonging to the entreof W∗(S) and vetors xγ suh that
∑

γ

[A′xγ ] = Iand C∗(S)xγ is dense in [A′xγ ], then there exists an isometry V satisfy-ing (11). The symbol A stands for C∗(A).The most important step in the proof of this theorem is the following:Proposition 19. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be n-tuples of operators. Denote the C∗-algebras generated by these tuples by Aand B, respetively. Assume that
∑

γ

[A′ xγ ] = Ifor some vetors xγ. If C∗(A) ≅s C∗(B) then there exist vetors yγ suh that
∑

γ

[B′ yγ ] = I,(12)
‖p(A,A∗)xγ‖ = ‖p(B,B∗)yγ‖.(13)In other words, if C∗(A) ≅s C∗(B) then for eah deomposition of theHilbert spae H into A
′-yli subspaes, there exists a orresponding de-omposition into B

′-yli subspaes.In the proof of Proposition 19 we will repeatedly make use of the followingwell known fats.Lemma 20. Let C be a C∗-subalgebra of B(H). Then(i) The yli projetions for C ommute with C.(ii) Conversely , if Q is a projetion in the ommutant C ′ and x ∈ R(Q)then Q ≥ [Cx].Proof of Proposition 19. From the assumption A = C∗(A) ≅s C∗(B) = Bit follows that Φ is a ∗-isomorphism between A
SOT and B

SOT. From the vonNeumann double ommutant theorem we know that these losures are A
′′and B

′′, respetively.Sine Φ is a ∗-isomorphism and the projetion [A′ xγ ] belongs to thedouble ommutant of A for eah γ, it follows that Φ([A′ xγ ]) is a projetion.Furthermore, {[A′ xγ ]} is a family of mutually orthogonal projetions and



Multidimensional weak resolvents 145thus its image under Φ has the same property. From the SOT ontinuity of
Φ we also have the equality

∑

γ

Φ([A′ xγ ]) = I.By Proposition 16 there exist vetors yγ suh that
‖Fxγ‖ = ‖Φ(F )yγ‖,for any F ∈W∗(A). Thus we may write

‖yγ‖ = ‖xγ‖ = ‖[A′ xγ ]xγ‖ = ‖Φ([A′ xγ ])yγ‖.It follows that yγ belongs to the range of Φ([A′]xγ). Sine the projetions
Φ([A′xγ ]) belong to the double ommutant of B we have Φ([A′xγ ]) ≥ [B′ yγ ].Thus the projetions [B′ yγ ] are mutually orthogonal.We will show that

[B′ yγ ] = Φ[A′ xγ ].Sine [B′ yγ ] ∈ B
′′ we may de�ne a family of mutually orthogonal projetionsby Qγ = Φ−1[B′ yγ ]. Observe that from the ontinuity of the ∗-isomorphism

Φ−1 it follows that
‖Qγxγ‖ = ‖[B′ yγ ]yγ‖ = ‖yγ‖ = ‖xγ‖.In other words, xγ belongs to the range of Qγ for eah γ. Thus, [A′ xγ ] ≤ Qγ .Sine the ∗-isomorphism Φ preserves ≤, we get Φ([A′xγ ]) ≤ Φ(Qγ) = [B′yγ ],whih ompletes the proof.Proof of Theorem 18. It follows from the assumption that for eah f ∈ Hthere exists h ∈ H suh that for any nonommutative polynomial p,
〈p(S, S∗)f, f〉 = 〈p(T, T ∗)g, g〉.Thus the �rst part is trivial. Let V : C∗(S)f → C∗(T )g be a linear operatorwhih ontinuously extends the map p(S, S∗)f 7→ p(T, T ∗)g.Straightforward omputations yield

p(S, S∗) = V ∗p(T, T ∗)Von C∗(S)f . It remains to extend V onto the whole spae H omposing withthe projetion on the losure of C∗(S)f .To prove the seond part, denote by B the image of A under Φ. Observethat
A = C

∗(A) ≅s C
∗(B) = B,sine C∗(S) ≅s C∗(T ). By assumption there exist xγ suh that

∑

γ

[A′xγ ] = I.



146 M. JasizakOne an hoose yγ satisfying
∑

γ

[B′yγ ] = I and ‖p(S, S∗)xγ‖ = ‖p(T, T ∗)yγ‖for p ∈ C〈Z1, . . . , Z2n〉. This an be done as in the proof of Proposition19, but for the ∗-isomorphism whih implements the equivalene relation
W∗(S) ≅s W∗(T ). It is now straightforward to omplete the proof.De�ne A = C∗(A) and B = C∗(B). To omplete the investigation of theonsequenes of the weak resolvent equality one would also need to under-stand when A ≅ B implies that A ≅s B.Theorem 21. Let A,B be C∗-algebras generated by n-tuples A and B,respetively. Assume that both A and B are irreduible. If A ≅ B, then
A ≅s B. Consequently , there exists a unitary operator U suh that

p(S, S∗) = U∗p(T, T ∗)U.Proof. We have to show that for eah f ∈ H there exists k ∈ H suh that(14) 〈af, f〉 = 〈Φ(a)k, k〉for eah a ∈ A. The onverse impliation ould be proved similarly. By as-sumption, for eah f ∈ H, whih obviously may be assumed not to be 0, thereexist g, h ∈ H suh 〈af, f〉 = 〈Φ(a)g, h〉 for every a ∈ A. Take any b ∈ B.Sine Φ is an isomorphism, there exists a ∈ A suh that b = Φ(a). Then(15) 〈b∗bg, h〉 = 〈Φ(a∗a)g, h〉 = 〈a∗af, f〉 = ‖af‖2 ≥ 0.If g and h are linearly dependent, say h = αg, α ∈ C, then from (15) itfollows easily that α ∈ R+. Consequently, de�ning k =
√
α g we obtain (14).Assume now that g and h are linearly independent, hene eah is non-zero. From the Kadison transitivity theorem it follows that there exists c ∈ Bsuh that cg = g and ch = −g. Thus

0 ≤ 〈c∗cg, h〉 = 〈cg, ch〉 = −‖g‖2.Consequently, g and h have to be linearly dependent. This proves the �rstpart of the theorem.Sine the dual map of Φ preserves vetor states, the proof of the seondpart is exatly the same as the proof of Theorem 18. Just notie that if Sis irreduible, then eah non-zero vetor is yli. Consequently, the partialisometry an be extended onto the whole spae and has dense image.
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