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A strong convergence theorem for H
1(Tn)

by

Feng Dai (Edmonton)

Abstract. Let T
n denote the usual n-torus and let S̃δ

u(f), u > 0, denote the Bochner–
Riesz means of order δ > 0 of the Fourier expansion of f ∈ L1(Tn). The main result of
this paper states that for f ∈ H1(Tn) and the critical index α := (n − 1)/2,

lim
R→∞

1

log R

R\
0

‖S̃α
u (f) − f‖H1(Tn)

u + 1
du = 0.

1. Introduction. In this introduction we describe the main results
and their background with a minimum of definitions. We give the necessary
details and appropriate definitions, as needed, in the next section.

Let Λ denote the unit lattice in the n-dimensional Euclidean space R
n

having integral coordinates, and let T
n be the n-torus, identified with R

n/Λ.
By Hp(Tn), 0 < p ≤ 1, we denote the usual Hardy spaces on T

n. Let

f(x) ∼
∑

k∈Λ

ak(f)e2πik·x

be the Fourier expansion of an integrable function on the fundamental cube

Q = {(x1, . . . , xn) ∈ R
n : −1/2 ≤ xj < 1/2, j = 1, . . . , n}.

For u > 0, we define the Bochner–Riesz means of order δ > −1 of the
Fourier expansion by

S̃δ
u(f)(x) =

∑

|k|<u

(
1 −

|k|2

u2

)δ

ak(f)e2πik·x,

where k = (k1, . . . , kn) ∈ Λ and |k| = (k2
1 + · · · + k2

n)1/2. It is well known
(see [STW] and [CF]) that for δ > α := (n − 1)/2,

sup
u>0

‖S̃δ
u(f)‖H1(Tn) ≤ C‖f‖H1(Tn)
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while for δ = (n − 1)/2,

‖S̃δ
u‖(H1(Tn),L1(Tn)) ≥ C log(u + 1).

The main purpose of this paper is to investigate the strong summability of
the Bochner–Riesz means on H1(Tn) at the critical index α = (n − 1)/2.
We will always use the letter α for the critical index (n − 1)/2 for the rest
of the paper.

The background for the problem treated here is as follows. In 1983,
B. Smith [Sm] proved that for every f ∈ H1(T),

1

log N

N∑

k=1

1

k
‖Sk(f)‖H1(T) ≤ C‖f‖H1(T),(1.1)

where Sk(f) denotes the usual kth partial sum of Fourier series. A new proof
of this inequality was given by Belinskii [Be2] in 1996. However, the multi-
dimensional generalization of this inequality seems to be more complicated.
In fact, the two-dimensional result for rectangle partial sums with bounded
ratio of sides was obtained by Weisz in [We] while the n-dimensional re-
sult for the cubic partial sums and a modified product H1(Tn) space was
obtained by Belinskii in [Be1].

It was Bochner [Bo] who first pointed out that when the dimension
n > 1, summability at the critical index (n − 1)/2 was the correct analogue
of convergence, for phenomena near L1. In this sense, versions of many of the
results for Sk are known for Sα

u in the case of general n (see [SW, Ch. VII]
and [St1]). Of related interest is the fact that an inequality similar to (1.1)
was proved in [JLL] for the space Hp(Tn), 0 < p < 1, with the Bochner–
Riesz means with critical index δ = n/p− (n + 1)/2 instead of partial sums
(see also [Lu, Theorem 4.3, p. 196]). Therefore, a problem that remained
was what happens for functions in H1(Tn), n > 1.

This paper is devoted to the proof of the following theorem, which gives
an affirmative answer to a question raised by S. Z. Lu [Lu, p. 204].

Theorem 1. For f ∈ H1(Tn) and R > 0,

1

log(R + 1)

R\
0

‖S̃α
u (f)‖H1(Tn)

u + 1
du ≤ C‖f‖H1(Tn),

where C is a positive constant independent of f and R.

As a consequence, we have

Corollary 2. For f ∈ H1(Tn) and R > 0,

R\
0

‖S̃α
u (f) − f‖H1(Tn)

u + 1
du ≈

R\
0

Eu(f, H1)

u + 1
du,
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where

Eu(f, H1) = inf
{
‖f − g‖H1(Tn) : g(x) =

∑

|k|≤u

cke
2πik·x, ck ∈ C

}
,

and “≈” means that the ratio of both sides lies between two positive constants

independent of f and R.

Corollary 3. For f ∈ H1(Tn) and R > 0,

1

log(R + 1)

R\
0

‖S̃α
u (f) − f‖H1(Tn)

u + 1
du ≤ Cω

(
f,

1

log(R + 1)

)

H1(Tn)

,

where C is a positive constant independent of f and R, and ω(f, t)H1(Tn)

denotes the first-order modulus of smoothness of f on H1(Tn).

We point out that in the one-dimensional case, Corollaries 2 and 3 for
the partial sums of Fourier series are due to Belinskii [Be2] and the authors
of [CJL], respectively.

The paper is organized as follows. Section 2 contains some basic defini-
tions and notation. The proof of Theorem 1 is divided into two parts: the
first part is given in Section 3, where we prove

1

log(R + 1)

R\
0

‖S̃α
u (f)‖L1(Tn)

u + 1
du ≤ C‖f‖H1(Tn),(1.2)

while the second part is given in Section 4, where we show

‖S̃α
u (f)‖H1(Tn) ≤ C(‖f‖H1(Tn) + ‖S̃α

u (f)‖L1(Tn)).

This last inequality combined with (1.2) will prove Theorem 1. In the final
Section 5, we prove Corollaries 2 and 3.

2. Basic definitions and notations. In this section we introduce some
basic definitions and notations, most of which can be found in [SW] and [Lu].

Let S(Tn) denote the space of test functions on T
n and S ′(Tn) be the

dual of S(Tn). The Poisson kernel on T
n is defined by

P̃t(x) =
∑

k∈Λ

e−2π|k|te2πik·x, t > 0,

where Λ is the unit lattice in R
n, k = (k1, . . . , kn) and |k| = (k2

1+· · ·+k2
n)1/2.

For f ∈ S ′(Tn), we define

P̃+(f)(x) = sup
t>0

|f ∗ P̃t(x)|.
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Definition 2.1. The Hardy space Hp(Tn), 0 < p ≤ 1, is the linear space

of distributions f ∈ S ′(Tn) with ‖f‖Hp ≡ ‖P̃+(f)‖Lp < ∞.

We denote by B(x, r) the ball

B(x, r) := {y ∈ R
n : |x − y| ≤ r}

with center at x ∈ R
n and radius r > 0, and we write χE for the character-

istic function of a measurable set E ⊂ R
n . Let Q denote the fundamental

cube

Q = {(x1, . . . , xn) ∈ R
n : −1/2 ≤ xj < 1/2, j = 1, . . . , n}.

We now turn to the “atomic” characterization of Hardy spaces.

Definition 2.2. Let 0 < p ≤ 1. A function a ∈ L∞(Rn) is an Hp(Rn)-
atom with support B(x, r), x ∈ R

n, r > 0, if it satisfies

(i) supp a ⊂ B(x, r),
(ii) ‖a‖∞ ≤ r−n/p,
(iii)

T
Rn a(x)P (x) dx = 0 for all polynomials P (x) of degree less than or

equal to [n(1/p − 1)].

A function a ∈ L∞(Tn) is a regular Hp(Tn)-atom having support B(z, r),
z ∈ R

n, r > 0, if aχz+Q is an Hp(Rn)-atom with support B(z, r). An
exceptional H1(Tn)-atom is a function a ∈ L∞(Tn) with ‖a‖∞ ≤ 1.

Lemma 2.1 ([F]). Let 0 < p ≤ 1. If {aj}
∞
j=0 is a sequence of exceptional

or regular Hp(Tn)-atoms, and {cj}
∞
j=0 is a sequence of complex numbers

with
( ∞∑

j=0

|cj|
p
)1/p

< ∞,

then
∑∞

j=0 cjaj converges in Hp(Tn) and

∥∥∥
∞∑

j=0

cjaj

∥∥∥
Hp

≤ A
( ∞∑

j=0

|cj|
p
)1/p

,

where A > 0 depends on p and n.

Conversely , if f ∈ Hp(Tn) then there exist a sequence of exceptional or

regular Hp(Tn)-atoms {aj}
∞
j=0 and a sequence of complex numbers {cj}

∞
j=0

such that

f =

∞∑

j=0

cjaj and
( ∞∑

j=0

|cj|
p
)1/p

≤ B‖f‖Hp ,

where B depends on p and n.
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The conclusion of Lemma 2.1 is often described as the “atomic” charac-
terization of Hardy spaces.

Let m be a nonnegative integer, t be a positive real number, and let h
be a vector in R

n. For f ∈ S ′(Tn), we define

∆m
h f(x, s) =

m∑

j=0

(−1)m−j

(
m

j

)
(f ∗ P̃s)(x + jh), x ∈ R

n, s > 0,

and

ωm(f, t)Hp(Tn) = sup
|h|≤t

∥∥sup
s>0

|∆m
h f(·, s)|

∥∥
Lp(Tn)

.

ωm(f, t)Hp(Tn) is called the mth modulus of smoothness of f on Hp(Tn).

3. Proof of Theorem 1: Part I. The main goal in this section is to
prove

1

log(R + 1)

R\
0

‖S̃α
u (f)‖L1(Tn)

u + 1
du ≤ C‖f‖H1(Tn).(3.1)

This same inequality with L1(Tn)-norm on the left-hand side replaced by
H1(Tn)-norm will be shown in the next section.

Let

Kα
u (x) :=

∑

|k|<u

(
1 −

|k|2

u2

)α

e2πik·x.

Then we have

S̃α
u (f)(x) =

\
Q

f(x − y)Kα
u (y) dy.

We also define

Su(f)(x) = π(n−1)/2

(
n + 1

2

)
u1/2

\
Q

f(x − y)|y|−(n−1/2)Jn−1/2(2πu|y|) dy,

where Jν(t) denotes the Bessel function of order ν. Then by Lemma 2.1
and the following well known estimate of Stein (see [St2, Theorem 1], or
[SW, p. 285]):

sup
u>0

∥∥∥∥Kα
u (y) − π(n−1)/2

(
n + 1

2

)
u1/2|y|−(n−1/2)Jn−1/2(2πu|y|)

∥∥∥∥
L1(Q)

≤ An,

it will suffice to prove that for every H1(Tn)-atom a,

1

log(R + 1)

R\
0

‖Su(a)‖L1(Q)

u + 1
du ≤ C.(3.2)
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For the proof of this last inequality, we claim that it is enough to
prove (3.2) for every H1(Rn)-atom with support B(z, r) for some z ∈ [−1, 1]n

and r ∈ (0, 0.001). To see this, first, we note that by the translation in-

variance of the operator S̃α
u and the fact that ‖S̃α

u ‖(L2(Tn),L2(Tn) ≤ 1, we

may assume a is a regular H1(Tn)-atom with support B(0, r) for some
r ∈ (0, 0.001). Second, we note that by the definition, for every regular
H1(Tn)-atom a with support B(0, r), r ∈ (0, 0.001), aχ[−3/2,3/2]n can be

expressed as a sum of 3n H1(Rn)-atoms, each having a support B(z, r) for
some z ∈ [−1, 1]n. Since the definition of Su(a)(x) for x ∈ Q involves only
the values of a on [−1, 1]n, the claim follows.

For the rest of this section, the letter a will always denote an H1(Rn)-
atom with support B(z, r) for some z ∈ [−1, 1]n and r ∈ (0, 0.001).

The proof of (3.2) for an H1(Rn)-atom a relies on the following

Lemma 3.1. With the above notation, we have

∞\
0

[ \
{x∈Q : |x−z|≥5r}

|Su(a)(x) dx
]2

du ≤ Cnr−1 log2 1

r
;(i) \

{x∈Q : |x−z|≤5r}

|Su(a)(x)| dx ≤ Cn;(ii) \
{x∈Q : |x−z|≥5r}

|Su(a)(x)| dx ≤ Cn

[
(u + 1)r log

1

r
+ 1

]
.(iii)

For the moment we take this last lemma for granted and proceed with
the proof of (3.2).

By Lemma 3.1(ii), it suffices to prove

1

log(R + 1)

R\
0

1

u + 1

\
{x∈Q : |x−z|≥5r}

|Su(a)(x)| dx du ≤ Cn.(3.3)

To prove (3.3), we consider the following two cases:

Case 1: r−1 ≤ R. In this case, on one hand, by Lemma 3.1(iii),

r−1\
0

1

u + 1

\
{x∈Q : |x−z|≥5r}

|Su(a)(x)| dx du

≤ Cn

r−1\
0

1

u + 1

(
1 + (u + 1)r log

1

r

)
du ≤ Cn log

1

r
≤ Cn log(R + 1),

but on the other hand, by Lemma 3.1(i) and Hölder’s inequality,
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R\
r−1

1

u + 1

\
{x∈Q : |x−z|≥5r}

|Su(a)(x)| dx du

≤

( R\
r−1

du

(u + 1)2

)1/2( R\
r−1

[ \
{x∈Q : |x−z|≥5r}

|Su(a)(x)| dx
]2

du
)1/2

≤ Cr1/2r−1/2 log
1

r
≤ C log R.

Case 2: R < r−1. In this case, using Lemma 3.1(iii), we obtain

R\
0

1

u + 1

\
{x∈Q : |x−z|≥5r}

|Su(a)(x)| dx du

≤ Cn

R\
0

1

u + 1

(
(u + 1)r log

1

r
+ 1

)
du

≤ CnRr log
1

r
+ Cn log(R + 1) ≤ Cn log(R + 1).

The last inequality follows since the function log x
x is decreasing over (e,∞).

Now combining the above two cases we obtain (3.3). This proves the first
part of Theorem 1, assuming Lemma 3.1.

For the proof of Lemma 3.1, we need the following

Lemma 3.2. Let x ∈ Q be such that |x − z| ≥ 5r. For t > 0, put

gx(t) := tn−1
\

Sn−1

a(x − ty)χQ(ty) dσ(y),

where dσ(y) denotes the usual Lebesgue measure on S
n−1 normalized by

σ(Sn−1) = 1. Then

(i) supp gx(·) ⊂ [|x − z| − r, |x − z| + r];
(ii) |gx(t)| ≤ Cnr−1, with Cn > 0 depending only on n.

Proof. By the definition, we have

|gx(t)| ≤ tn−1
\

Sn−1

|a(x − ty)| dσ(y) =
\

S(x,t)∩B(z,r)

|a(y)| dσt(y),(3.4)

where S(x, t) = {y ∈ R
n : |x−y| = t}, and dσt(y) denotes the usual Lebesgue

measure on S(x, t) normalized by σt(S(x, t)) = tn−1. Since S(x, t) ∩ B(z, r)
= ∅ whenever t /∈ [|x − z| − r, |x − z| + r], (i) follows by (3.4).

To show (ii) we note that for t ∈ [|x − z| − r, |x − z| + r],

σt(S(x, t) ∩ B(z, r)) ≤ Crn−1.
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Thus, by (3.4), it follows that

|gx(t)| ≤ Crn−1r−n = Cr−1,

which gives (ii).

Now we are in a position to prove Lemma 3.1.

Proof of Lemma 3.1. (i) Recall that the Plancherel theorem for the
Fourier–Bessel transform (see, for instance, [GS, p. 656]) asserts that for
any β > −1/2 and f ∈ L2((0,∞), t2β+1 dt),

∞\
0

|f(t)|2t2β+1 dt = 4π2
∞\
0

∣∣∣∣
∞\
0

Jβ(2πts)

(ts)β
f(s)s2β+1 ds

∣∣∣∣
2

t2β+1 dt.(3.5)

This last formula will play an important role in our proof below.
Let gx(t) be as defined in Lemma 3.2, and write

Su(a)(x) = Cnu1/2
\

Rn

a(x − y)χQ(y)|y|−(n−1/2)Jn−1/2(2πu|y|) dy

= Cnu1/2
∞\
0

gx(t)t−(n−1/2)Jn−1/2(2πut) dt.

Then using Lemma 3.2 and (3.5) with β = n−1/2 and f(t) = gx(t)t−2n, we
deduce that for |x − z| ≥ 5r,

∞\
0

|Su(a)(x)|2 du = Cn

∞\
0

u
∣∣∣
∞\
0

gx(t)t−(n−1/2)Jn−1/2(2πut) dt
∣∣∣
2
du

=
Cn

4π2

|x−z|+r\
|x−z|−r

|gx(t)|2t−2n dt

≤ Cr−1|x − z|−2n.

Noticing that z ∈ [−1, 1]n, we obtain, by Hölder’s inequality,
∞\
0

[ \
{x∈Q : |x−z|≥5r}

|Su(a)(x)| dx
]2

du

≤
∞\
0

[ \
5r≤|x−z|≤10

|x − z|−n dx
][ \

5r≤|x−z|≤10

|x − z|n|Su(a)(x)|2 dx
]
du

≤ Cnr−1 log
1

r

\
5r≤|x−z|≤10

|x − z|n|x − z|−2n dx ≤ Cnr−1 log2 1

r
,

which gives (i).
(ii) Since for |x − z| ≤ 5r,

x − Q ⊇ B(z, r),
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it follows that

Su(a)(x) = Cnu1/2
\
Q

a(x − y)|y|−(n−1/2)Jn−1/2(2πu|y|) dy(3.6)

= Cnu1/2
\

Rn

a(x − y)|y|−(n−1/2)Jn−1/2(2πu|y|) dy,

=: S(n−1)/2
u (a)(x),

where

S(n−1)/2
u (f)(x) = Cnu1/2

\
Rn

f(x − y)|y|−(n−1/2)Jn−1/2(2πu|y|) dy.

It is well known that (see [SW, Theorem 4.15, p. 171])

S(n−1)/2
u (f)(x) = Cn

\
|ξ|≤u

f̂(ξ)e2πix·ξ

(
1 −

|ξ|2

u2

)(n−1)/2

dξ,

where

f̂(ξ) =
\

Rn

f(y)e−2πiy·ξ dy,

and that (see [Du, Theorem 8.15, p. 169])

sup
u>0

‖S(n−1)/2
u (f)‖L2(Rn) ≤ C‖f‖L2(Rn).(3.7)

Now using (3) and (3.7), we obtain, by Hölder’s inequality,\
{x∈Q : |x−z|≤5r}

|Su(a)(x)| dx

=
\

{x∈Q : |x−z|≤5r}

|S(n−1)/2
u (a)(x)| dx

≤ Crn/2
( \

Rn

|S(n−1)/2
u (a)(x)|2 dx

)1/2
≤ Crn/2‖a‖L2(Rn) ≤ Cn.

This gives (ii).

(iii) To show (iii), we consider the following two cases:

Case 1: 5r ≤ |x − z| ≤ 0.1. In this case x − Q ⊃ B(z, r), and hence\
Q

a(x − y) dy = 0.(3.8)

For simplicity, we put t0 = |x − z|, ϕ(t) = t−(n−1/2)Jn−1/2(t), and

gx(t) = tn−1
\

Sn−1

a(x − ty)χQ(ty) dσ(y).
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Then, by Lemma 3.2(i) and (3.8), we have

Su(a)(x) = Cnun
t0+r\
t0−r

gx(t)[ϕ(2πut)− ϕ(2πut0)] dt.(3.9)

Since
|ϕ′(t)| = |t−(n−1/2)Jn+1/2(t)| ≤ C min{t, t−n},

it follows that for t0 − r ≤ t ≤ t0 + r,

|ϕ(2πut) − ϕ(2πut0)| ≤ Cur min{ut0, (ut0)
−n}.

Hence, by (3.9) and Lemma 3.2(ii),

(3.10) |Su(a)(x)| ≤ Cnun
t0+r\
t0−r

|gx(t)|ur min{ut0, (ut0)
−n} dt ≤ Cnurt−n

0

in the case when 5r ≤ t0 = |x − z| ≤ 0.1.

Case 2: |x − z| > 0.1. In this case B(x, 0.005) ∩ B(z, r) = ∅, so

(3.11) |Su(a)(x)|

= Cnu1/2
∣∣∣

\
{y∈Q : |y|≥0.005}

a(x − y)|y|−(n−1/2)Jn−1/2(2πu|y|) dy
∣∣∣

≤ Cnu1/2
\

{y∈x−B(z,r) : 0.05≤|y|≤10}

r−n min{un−1/2, u−1/2} dy ≤ Cn.

Now putting the above two cases together, combining (3.10) with (3.11),
we deduce\

{x∈Q : |x−z|≥5r}

|Su(a)(x)| dx ≤ C(u + 1)r
\

5r≤|x−z|≤0.1

1

|x − z|n
dx + Cn

≤ Cn

[
(u + 1)r log

1

r
+ 1

]
,

which gives (iii).
This completes the proof of Lemma 3.1.

4. Proof of Theorem 1: Part II. This section is devoted to the proof
of the inequality

‖S̃α
u (f)‖H1(Tn) ≤ C(‖f‖H1(Tn) + ‖S̃α

u (f)‖L1(Tn)),(4.1)

with C > 0 independent of f and u. This combined with (3.1) proved in the
last section will complete the proof of Theorem 1.

The referee kindly pointed out to us that Theorem 1 is, in fact, a direct
consequence of (3.1) proved in Part I because of the following fact: S̃α

u is
translation invariant and the Hardy space H1(Tn) can be characterized by
a system of Riesz transforms (see, for instance, [Lu, Remark 6.1, p. 152]).
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Our proof of (4.1) in this section is independent of this fact and may be of
independent interest (see, for instance, [Da]).

For the proof of (4.1), we define

σδ
u(f)(x) =

∑

|k|<u

(
1 −

|k|

u

)δ

ak(f)e2πik·x, δ > −1, u > 0,

and

σδ
∗(f)(x) = sup

u>0
|σδ

u(f)(x)|.

We need the following lemmas.

Lemma 4.1. Let 0 < p ≤ 1, δ > δ(p) := n/p−(n + 1)/2 and f ∈ S ′(Tn).
Then f ∈ Hp(Tn) if and only if σδ

∗(f) ∈ Lp(Tn). Moreover , if f ∈ Hp(Tn)
then

‖f‖Hp(Tn) ≈ ‖σδ
∗(f)‖Lp(Tn).

Lemma 4.2. Let ℓ ≥ 0 be an integer and let m be an ℓ + 1 times differ-

entiable function on [0,∞) such that limu→∞ m(u) = 0 and

∞\
0

|m(ℓ+1)(u)|uℓ du < ∞.

Define

Tm(f) :=
∑

k∈Λ

m(|k|)ak(f)e2πik·x.

Then for f ∈ S(Tn),

Tm(f)(x) =
(−1)ℓ−1

ℓ!

∞\
0

m(ℓ+1)(u)uℓσℓ
u(f)(x) du, x ∈ R

n.

For the moment we take these last two lemmas for granted and proceed
with the proof of (4.1). By Lemma 4.1, it is sufficient to prove that for
f ∈ S(Tn),

σ2n
∗ (S̃α

u (f))(x) ≤ C[σ
[α]+1
∗ (f)(x) + |S̃α

u (f)(x)|].(4.2)

To prove (4.2), we have to estimate |σ2n
y (S̃α

u (f))(x)| for y, u > 0. We put
ℓ = [α] + 1 and consider the following two cases:

Case 1: 0 < y < u. In this case we will prove

|σ2n
y (S̃α

u (f))(x)| ≤ Cnσℓ
∗(f)(x).(4.3)
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To this end, we write

σ2n
y (S̃α

u (f))(x) =
∑

|k|<y

(
1 −

|k|

y

)2n(
1 −

|k|2

u2

)α

ak(f)e2πik·x

=
∑

k∈Λ

m(|k|)ak(f)e2πik·x,

where

m(t) =
(y − t)2n

+

y2n

(u2 − t2)α

u2α
, g+(x) = max{g(x), 0}.(4.4)

We claim that for 0 < t < y < u,

|m(ℓ+1)(t)| ≤ Cny−ℓ−1,(4.5)

which, combined with Lemma 4.2, will imply that for 0 < y < u,

|σ2n
y (S̃α

u (f))(x)| = Cn

∣∣∣
y\
0

m(ℓ+1)(t)tℓσℓ
t(f)(x) dt

∣∣∣ ≤ Cnσℓ
∗(f)(x),

and hence will prove (4.3).

In fact, by (4.4), for 0 < t < y,

|m(ℓ+1)(t)| ≤ C max
i1+i2+i3=ℓ+1

(y − t)2n−i1

y2n

(u − t)α−i2

uα

(u + t)α−i3

uα
.

So, if 0 < y < u/2 then, clearly,

|m(ℓ+1)(t)| ≤ Cy−ℓ−1, 0 < t < y;

if u/2 ≤ y ≤ u then for 0 < t < y,

|m(ℓ+1)(t)| ≤ Cy−2n−2α max
i1+i2+i3=ℓ+1

(u − t)2n+α−i1−i2uα−i3 ≤ Cy−ℓ−1.

Therefore, in either case, we have, for 0 < t < y < u,

|m(ℓ+1)(t)| ≤ Cy−ℓ−1,

proving the claim.

Case 2: y ≥ u. In this case we will prove

|σ2n
y (S̃α

u (f))(x)| ≤ Cn[σℓ
∗(f)(x) + |S̃α

u (f)(x)|],(4.6)

which combined with (4.3) in Case 1 will complete the proof of (4.2).

We write

σ2n
y (S̃α

u (f))(x) =
∑

|k|<u

(
1 −

|k|

y

)2n(
1 −

|k|2

u2

)α

ak(f)e2πik·x(4.7)

=: Tm(f)(x) +

(
1 −

u

y

)2n

S̃α
u (f)(x),
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where

Tm(f)(x) :=
∑

k∈Λ

m(|k|)ak(f)e2πik·x,

m(t) = a(t)

(
1 −

t2

u2

)α

+

,

a(t) =
1

y2n
[(y − t)2n − (y − u)2n].

For 0 < t < u, it is easy to verify

|a(t)| ≤ C(u − t)/y, max
1≤i≤ℓ+1

yi|a(i)(t)| ≤ C.

Using these estimates, we have: if α = (n − 1)/2 is an integer then ℓ = α+1
and for 0 < t < u,

|m(ℓ+1)(t)| ≤ C max
i1+i2+i3=ℓ+1

i2≤α=ℓ−1

|a(i1)(t)|
(u − t)α−i2

uα

(u + t)α−i3

uα
≤ Cu−ℓ−1;

if α = (n − 1)/2 is not an integer then ℓ = [α] + 1 and for 0 < t < u,

|m(ℓ+1)(t)| ≤ C|a(t)|
(u − t)α−ℓ−1

uα
+ C

(u − t)α−ℓ

uα
max
i+j=1

|a(i)(t)|
(u + t)α−j

uα

+ C max
i1+i2+i3=ℓ+1
i2≤[α]=ℓ−1

|a(i1)(t)|
(u − t)α−i2

uα

(u + t)α−i3

uα

≤ Cu−ℓ−1 + C
(u − t)α−[α]−1

uα+1
.

In either case, we have
u\
0

|m(ℓ+1)(t)|tℓ dt ≤ Cn.

So, by Lemma 4.2,

|Tm(f)(x)| ≤ Cσℓ
∗(f)(x).

Now (4.6) follows by (4.7).

This completes the proof of Theorem 1, assuming the validity of Lem-
mas 4.1 and 4.2.

So, it remains to prove Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. Using the transference theorem in [CF] and fol-
lowing the proof in [STW], one can easily verify that for f ∈ Hp(Tn) and
δ > δ(p) := n/p − (n + 1)/2,

‖σδ
∗(f)‖Lp(Tn) ≤ C‖f‖Hp(Tn).
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On the other hand, since

e−2πt|k| =
(2πt)1+δ

Γ (1 + δ)

∞\
0

yδe−2πty

(
1 −

|k|

y

)δ

+

dy,

it follows that

P̃t(f)(x) =
(2πt)1+δ

Γ (1 + δ)

∞\
0

yδe−2πtyσδ
y(f)(x) dy,

which implies

P̃+(f)(x) ≤ σδ
∗(f)(x)

and hence the inverse inequality

‖f‖Hp(Tn) ≤ ‖σδ
∗(f)‖Lp(Tn).

This completes the proof.

Proof of Lemma 4.2. First, we note that under the assumptions of Lem-
ma 4.2 the following is true:

lim
t→∞

m(i)(t) = 0, i = 0, . . . , ℓ,

and
∞\
0

|m(i+1)(t)|ti dt < ∞, i = 0, . . . , ℓ.

In view of these last two facts, we obtain by integration by parts ℓ times

m(t) =
(−1)ℓ−1

ℓ!

∞\
0

m(ℓ+1)(u)uℓ

(
1 −

t

u

)ℓ

+

du.

The identity

Tm(f)(x) =
(−1)ℓ−1

ℓ!

∞\
0

m(ℓ+1)(u)uℓσℓ
u(f)(x) du, f ∈ S(Tn),

then follows. This completes the proof.

5. Proof of Corollaries 2 and 3

Proof of Corollary 2. The lower estimate is obvious. For the proof of the
upper estimate, we let η be a C∞-function on [0,∞) such that η(t) = 1 for
0 ≤ t ≤ 1, and η(t) = 0 for t ≥ 2, and define for u > 0,

Vu(f)(x) =
∑

k∈Λ

η

(
|k|

u

)
ak(f)e2πik·x,

and for u ≤ 0,

Vu(f)(x) = a0(f).
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Then it is easy to show that

‖f − Vu(f)‖H1 ≤ CEu(f, H1), u ≥ 0.

For simplicity, we set

gj = V
22j−2 (f), j ≥ 2.

Without loss of generality, we may assume R > 16, 22m
≤R < 22m+1

with
m ≥ 2, and

T
Tn f(x) dx = 0. Since

16\
0

‖S̃α
u (f) − f‖H1

u + 1
du ≤ CE0(f, H1),

it is sufficient to show
R\
16

‖S̃α
u (f) − f‖H1

u + 1
du ≤ C

R\
0

Eu(f, H1)

u + 1
du.(5.1)

We have

R\
16

‖S̃α
u (f) − f‖H1

u + 1
du ≤

m+1∑

j=3

22j\
22j−1

‖f − gj‖H1

u + 1
du

+
m+1∑

j=3

22j\
22j−1

1

u + 1
‖S̃α

u (f − gj)‖H1 du

+
m+1∑

j=3

22j\
22j−1

1

u + 1
‖S̃α

u (gj) − gj‖H1 du,

=: I + J + L.

For the first sum, we have

I ≤ C
m+1∑

j=3

( 22j\
22j−1

E
22j−2 (f, H1)

u + 1
du

)
≤ C

m+1∑

j=3

22j−2\
22j−3

Eu(f, H1)

u + 1
du

≤ C

R\
2

Eu(f, H1)

u + 1
du.

For the second sum, using Theorem 1, we have

J ≤ C
m+1∑

j=3

2j‖f − gj‖H1 ≤ C
m+1∑

j=3

22
j−2\

22j−3

Eu(f, H1)

u + 1
du ≤ C

R\
1

Eu(f, H1)

u + 1
du.

To estimate the third sum, we first claim that for 22j−1
≤ u ≤ 22j

and j ≥ 3,

‖S̃α
u (gj) − gj‖H1 ≤ Cu−2‖∆(gj)‖H1 ,(5.2)
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where ∆ =
∑n

j=1(∂/∂xj)
2 denotes the Laplacian on T

n. For the moment
we take this last inequality for granted and proceed with the proof. Using
Bernstein’s inequality, we deduce that for 22j−1

≤ u ≤ 22j
,

u−2‖∆(gj)‖H1 = u−2‖∆(V
22j−2 (f))‖H1 ≤ Cu−222j−1

‖V
22j−2 (f)‖H1

≤ Cu−1‖V
22j−2 (f)‖H1 .

Since a0(f) = 0, it follows that

u−1‖V
22j−2 (f)‖H1 ≤ u−1

2j−2∑

l=0

‖V2l−1(f) − V2l(f)‖H1 ≤Cu−1
2j−2∑

l=0

E2l−1(f, H1),

where E2−1(f, H1) = E0(f, H1). Then from (5.2) we get

‖S̃α
u (gj) − gj‖H1 ≤ Cu−1

2j−2∑

l=0

E2l−1(f, H1),

and hence

L ≤ C
m+1∑

j=3

22j\
22j−1

du

(u + 1)2

2j−2∑

l=0

E2l−1(f, H1) ≤ C
m+1∑

j=3

2−2j−1
2j−2∑

l=0

E2l−1(f, H1)

≤ C
2m−1∑

l=0

2−2lE2l−1(f, H1) ≤ C
2m−1∑

l=3

2l−1\
2l−2

Eu(f, H1)

(u + 1)3
du + CE0(f, H1)

≤ C

R\
0

Eu(f, H1)

(u + 1)3
du.

Putting the above together, we prove (5.1) and hence the desired upper
estimate, assuming (5.2).

Now it remains to prove (5.2). To this end, let ξ ∈ C∞(R) be such that
ξ(x) = 1 for 0 ≤ |x| ≤ 1/2 and ξ(x) = 0 for |x| ≥ 3/4. For simplicity, we
define

Pu =
{ ∑

|k|≤u

cke
2πik·x : ck ∈ C, |k| ≤ u

}
.

Since
gj = V

22j−2 (f) ∈ P
2·22j−2 ,

it follows that for j ≥ 3 and 22j−1
≤ u ≤ 22j

we get gj ∈ Pu/2, and hence

S̃α
u (gj) − gj =

∑

|k|<u

[(
1 −

|k|2

u2

)α

− 1

]
ξ

(
|k|

u

)
ak(gj)e

2πik·x(5.3)

= u−2
∑

k∈Λ

m

(
|k|

u

)
ak(∆(gj))e

2πik·x,
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where

m(t) =
(1 − t2)α − 1

t2
ξ(t).

We note that m ∈ C∞[0,∞) and suppm ⊂ [0, 3/4]. Hence,
∥∥∥∥

∑

k∈Λ

m

(
|k|

u

)
ak(∆(gj))e

2πik·x

∥∥∥∥
H1

≤ Cn‖∆(gj)‖H1 ,

and (5.2) then follows by (5.4).
This completes the proof of Corollary 2.

Proof of Corollary 3. By Corollary 2 and the Jackson inequality, we have

1

log(R + 1)

R\
0

‖S̃α
u (f) − f‖H1

u + 1
du

≤
C

log(R + 1)

R\
0

Eu(f, H1)

u + 1
du ≤

C

log(R + 1)

R\
0

ω(f, (u + 1)−1)H1

u + 1
du

≤ C
ω(f, 1/log(R + 1))H1

log(R + 1)

log(R+1)\
0

log(R + 1)

(u + 1)2
du

+ C
ω(f, 1/log(R + 1))H1

log(R + 1)

R\
log(R+1)

1

u + 1
du

≤ Cω

(
f,

1

log(R + 1)

)

H1

,

proving Corollary 3.
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