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Domination by positive Banach–Saks operators

by

Julio Flores and César Ruiz (Madrid)

Abstract. Given a positive Banach–Saks operator T between two Banach lattices E

and F , we give sufficient conditions on E and F in order to ensure that every positive
operator dominated by T is Banach–Saks. A counterexample is also given when these con-
ditions are dropped. Moreover, we deduce a characterization of the Banach–Saks property
in Banach lattices in terms of disjointness.

1. Introduction. Banach–Saks operators were introduced by Beauza-
my in [4]. These operators form an operator ideal in the sense of Pietsch.
Recall that given two Banach spaces X and Y , a bounded operator T :
X → Y is called Banach–Saks if for every bounded sequence (xn)n in X,
the sequence of images (Txn)n has a subsequence which is Cesàro convergent
in Y (i.e, there exists a subsequence (Txnk

)k such that (r−1
∑r

k=1 Txnk
)r is

norm convergent in Y ). The Banach–Saks property was considered for the
first time by Banach and Saks for Lp spaces, 1 < p < ∞, in their seminal
paper [3]. Of course, X is said to have the Banach–Saks property (or to be
Banach–Saks) if the identity Id : X → X is a Banach–Saks operator.

In this note we present a domination result in the class of Banach–
Saks operators. Precisely, let T : E → F be a positive operator from the
Banach lattice E taking values in the Banach lattice F (that is, Tx ≥ 0
for every x ≥ 0 in E). Assume that T is Banach–Saks. We want to impose
conditions on the Banach lattices E and F in order to ensure that every
positive operator S : E → F dominated by T (that is, (T − S)x ≥ 0 for
every 0 ≤ x ∈ E) is also Banach–Saks. Note that such a result can be
regarded as a sufficient condition for an operator to be Banach–Saks.

This domination problem has been widely studied by some authors in
other classes of operators, such as compact operators by Dodds and Fremlim
([7]), weakly compact operators by Wickstead ([20]) and Dunford–Pettis
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operators by Kalton and Saab ([14]). More recently, the present authors
have obtained positive results in other classes such as that of strictly singular
operators (see [11], [10], [12]).

Observe that this domination problem is trivially solved if any of the
spaces involved is Banach–Saks. Thus, in order to avoid trivialities we want
to make sure that there are examples to which our results can apply. Many
Banach spaces are known to have the Banach–Saks property. For example,
every uniformly convex Banach space belongs to this class ([5]). In fact, the
Banach–Saks property of a Banach space implies reflexivity. Remarkably,
the converse is not true as shown by Baernstein ([2]).

Before presenting our result, let us recall some definitions. A Banach lat-
tice E with an order continuous norm has the subsequence splitting property

([19]) if for every bounded sequence (fn)n in E, there are a subsequence
(nk)k and sequences (gk)k , (hk)k in E with |gk|∧ |hk| = 0 and fnk

= gk +hk

such that

(i) (gk)k is L-weakly compact (see below),
(ii) |hk| ∧ |hl| = 0 if k 6= l.

The lower index of a Banach lattice E is defined as s(E) = sup{q ≥ 1 :
E satisfies an upper q-estimate}. The upper index of E is defined as σ(E) =
inf{q ≥ 1 : E satisfies a lower q-estimate}.

The subsequence splitting property will be central to our argument be-
low. As one can see in Proposition 3.2, it is an essential hypothesis. The
class of spaces with this property is quite broad. For instance, every Banach
lattice which does not uniformly contain copies of ℓ∞n , for all natural n,
has the subsequence splitting property ([13], [9]). This is the case for every
Banach lattice E with finite upper index σ(E). Also every rearrangement
invariant function space which contains no isomorphic copy of c0 has the
subsequence splitting property ([19]).

The main result of the paper is the following

Theorem 1.1. Let 0 ≤ S ≤ T : E → F be two positive operators defined

on a Banach lattice E and taking values in a Banach lattice F . Assume that

T is Banach–Saks. Then S is Banach–Saks if one of the following conditions

hold :

(a) E has the subsequence splitting property and E′ is order continuous,
(b) F has the subsequence splitting property.

We observe that the Baernstein space is a Banach lattice with the point-
wise order. Also it is an order continuous Banach lattice, as also is its dual,
because it is reflexive (cf. [16, Thm. 2.4.15]). Moreover, as a set, it is in-
cluded in ℓ2, therefore it is 2-concave (see [2]) and hence σ(E) < ∞ ([15,
p. 100]). According to the above it has the subsequence splitting property.



Domination by Banach–Saks operators 187

Thus, spaces like the Baernstein space or L1[0, 1] do not have the Banach–
Saks property but they satisfy hypotheses (a) and (b) of the theorem above,
respectively.

On the other hand, Dodds, Semenov and Sukochev have recently dealt
in [8] with the problem of characterizing the Banach–Saks property in re-
arrangement invariant spaces. To this end they consider a subsequence
splitting-type property. On our way to obtaining the domination result we
also obtain a characterization of the Banach–Saks property in the more gen-
eral setting of Banach lattices, in terms of disjointness (see Proposition 3.2
and corollaries after it).

The concepts and notation employed for Banach lattices and positive
operators are standard. For any unexplained terms we refer to [1], [15], [16]
or [21].

2. Domination theorem. Before presenting the proof of our theorem
we need to recall some facts.

First, it is known that for every order continuous Banach lattice E with
a weak unit there exists a probability space (Ω,Σ, µ), an (in general not
closed) order ideal I of L1(Ω,Σ, µ), a lattice norm ‖ ‖I on I and an order
isometry ψ1 between E and (I, ‖ ‖I) such that the canonical inclusion from I

into L1(Ω,Σ, µ) is continuous with ‖f‖1 ≤ ‖f‖I (cf. [15, Prop. 1.b.14]).

Let E be a Banach function space with an order continuous norm defined
on a finite measure space (Ω,Σ, µ). Recall that a bounded subset A ⊂ E is
uniformly integrable if for every ε > 0 there is δ > 0 such that ‖fχB‖E < ε

for every B ∈ Σ with µ(B) < δ and every f ∈ A. The concept of L-weakly
compact set generalizes the concept of uniformly integrable in the setting of
Banach lattices (see [16] for the definition).

The following result is known (see [11, Lemma 3.3] for a proof). It pro-
vides the characterization of L-weakly compact sets to be used later.

Lemma 2.1. Let E be a Banach lattice with order continuous norm and

a weak unit , and hence representable as an order ideal in L1(Ω,µ) for some

probability space (Ω,Σ, µ). Then:

(a) a bounded subset of E is uniformly integrable if and only if it is

L-weakly compact ,
(b) a norm bounded sequence (gn)n in E is convergent if and only if it

is uniformly integrable and ‖ ‖1-convergent.

A Banach space E has the weak Banach–Saks property (or it is weakly

Banach–Saks) if every weakly convergent sequence (fn)n in E has a subse-
quence which is Cesàro convergent.
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We will make use of an important result due to Szlenk, initially given
for [0, 1] with the Lebesgue measure ([18]), but easily extended to arbitrary
probability spaces.

Theorem 2.2 (Szlenk). Let (Ω,Σ, µ) be a probability space. Then

L1(Ω,µ) is weakly Banach–Saks.

Lemma 2.3. Let E be an order continuous Banach lattice. If a bounded

sequence (fn)n in E is L-weakly compact , then there exists a subsequence

(fnk
)k which is Cesàro convergent (i.e. (r−1

∑r
k=1 fnk

)r is convergent).

Proof. Denote by M the closed subspace spanned by (fn)n. Since M is
separable, there is a closed ideal G in E, with a weak unit, that contains M
(cf. [15, 1.a.9]). Thus, we can assume that E is an order continuous Banach
lattice with a weak unit and hence it is representable as an order ideal
in L1(Ω,µ) for some probability space (Ω,Σ, µ). Moreover, there is some
K > 0 such that, for every B ∈ Σ,

‖fnχB‖1 ≤ K‖fnχB‖E for all n in N.

Therefore (fn)n is uniformly integrable in L1(Ω) (Lemma 2.1(a)) and, by
the Dunford–Pettis theorem (see [17, Proposition IV-2-3]), we can choose a
subsequence (fnk

)k converging weakly to a function f in L1(Ω). By Szlenk’s
theorem, there exists another subsequence (fnkj

)j such that

∥∥∥∥
1

r

r∑

j=1

fnkj
− f

∥∥∥∥
1

→ 0 as r → ∞

for some function f ∈ L1(Ω,µ). Observe that the sequence (r−1
∑r

j=1 fnkj
)r

is also uniformly integrable in E and therefore (r−1
∑r

j=1 fnkj
)r converges

to f in E by Lemma 2.1(b).

Remark 2.4. Lemma 2.3 extends Theorem 4.10 in [8] to the setting of
order continuous Banach lattices, with slightly more restrictive assumptions.
Note that L-weak compactness implies both weak compactness (cf. [16, Prop.
3.6.5]) and uniform integrability (Lemma 2.1) used in Theorem 4.10 cited
above.

Lemma 2.5. Let E be a Banach lattice such that E′ is order continuous.

If 0 ≤ S ≤ T : E → F are two positive operators and T is a Banach–Saks

operator , then for every bounded sequence (hn)n in E of mutually disjoint

elements there exists a subsequence (Shnk
)k which is Cesàro convergent.

Proof. By considering the decomposition hn = h+
n − h−n , where h+

n and
h−n are the positive and negative parts of hn, respectively, we can assume that
hn is positive for every n ∈ N. Note that the sequence (hn)n is weakly null,
since E′ is order continuous ([16, Thm. 2.4.14]). Since T is a Banach–Saks
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operator, there exists a subsequence (hnk
)k such that (r−1

∑r
k=1 Thnk

)r is
convergent. In fact, its limit must be zero, since (Thnk

)k is weakly null.
Finally, observe that S is dominated by T and that (hnk

)k is a positive
sequence. Therefore we have

0 ≤
1

r

r∑

k=1

Shnk
≤

1

r

r∑

k=1

Thnk
.

The conclusion follows.

Theorem 2.6. Let E and F be two Banach lattices such that E has the

subsequence splitting property and E′ is order continuous, and let 0 ≤ S ≤
T : E → F be two positive operators. If T is Banach–Saks, then so is S.

Proof. Let (fn)n be a bounded sequence in E. Since E has the subse-
quence splitting property we can extract a subsequence (nk)k and write, for
all k,

fnk
= gk + hk,

where the sequence (gk)k is L-weakly compact in E, (hk)k is bounded pair-
wise disjoint, and (gk)k and (hk)k are mutually disjoint. Use jointly Lemma
2.3 and Lemma 2.5 to conclude.

Lemma 2.7. Let E be an order continuous Banach lattice. Let (hk)k

be a pairwise disjoint bounded sequence in E such that (r−1
∑r

k=1 hk)r is

convergent to some h ∈ E. Then h = 0.

Proof. As above, we can think of E as an order ideal of L1(µ) over some
probability space (Ω,Σ, µ). Since the inclusion of E into L1(µ) is continuous,
the sequence (r−1

∑r
k=1 hk)r converges to h in the norm of L1(µ); hence

there exists a subsequence (rj)j such that (r−1
j

∑rj

k=1 hk)rj
converges to h

everywhere. The disjointness of (hk)k implies that h must be 0.

Theorem 2.8. Let E and F be two Banach lattices such that F has the

subsequence splitting property , and let 0 ≤ S ≤ T : E → F be two positive

operators. If T is Banach–Saks, then so is S.

Proof. Choose an arbitrary bounded sequence (fn)n in E. We may as-
sume that fn ≥ 0 for every n ∈ N. Since T is a Banach–Saks operator
and F has the subsequence splitting property, there exist a subsequence
(nk)k, a uniformly integrable sequence (gk)k of positive elements in F ,
and a pairwise disjoint sequence (hk)k of positive elements in F such that
(r−1

∑r
k=1 Tfnk

)r is convergent and Tfnk
= gk + hk for all k. Moreover,

(r−1
∑r

k=1 gk)r is convergent by Lemma 2.3, while (r−1
∑r

k=1 hk)r converges
to zero by Lemma 2.7. Since 0 ≤ Sfnk

≤ Tfnk
for every k ∈ N, by the Riesz

decomposition property ([15, p. 2]), we can choose two positive sequences
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(g′k)k and (h′k)k in F such that

0 ≤ g′k ≤ gk, 0 ≤ h′k ≤ hk, Sfnk
= g′k + h′k.

Clearly, the sequence (r−1
∑r

k=1 h
′

k)r converges to zero and the sequence
(g′k)k has a Cesàro convergent subsequence since it is uniformly integrable.
The proof is complete.

Proof of Theorem 1.1. Put together Theorems 2.6 and 2.8.

As previously said, we cannot expect counterexamples to the domination
problem if either of the spaces involved is Banach–Saks. Also notice that the
space E given by Baernstein ([2]) is not suitable to furnish a counterexample,
since it meets the requirements of Theorem 1.1. As pointed out above, E is
2-concave and hence it has the subsequence splitting property.

To obtain a counterexample to the question of domination, we take ad-
vantage of the work in [11].

Example 2.9. There exist two operators 0 ≤ S ≤ T : ℓ1 → L∞[0, 1]
such that T is Banach–Saks and yet S is not.

Indeed, consider the isometry S̃ : ℓ1 → L∞[0, 1] that takes the nth
element en of the canonical basis of ℓ1 to the nth Rademacher function rn
on [0, 1] (cf. [6, p. 203]). The isometry S̃ cannot be Banach–Saks since ℓ1 is
not a Banach–Saks space. Now, consider the positive operators S1, S2 : ℓ1 →
L∞[0, 1] defined by S1(en) = r+n and S2(en) = r−n , where r+n and r−n denote

the positive and negative parts of rn, respectively. Clearly S̃ = S1 − S2

and 0 ≤ S1, S2 ≤ T , where T is the rank one operator defined by T (x) =
(
∑

∞

n=1 xn)χ[0,1]. Note that the operator T is Banach–Saks, being compact,
and yet neither S1 nor S2 is Banach–Saks, since we have the equalities
T = S1 + S2 and S̃ = S1 − S2.

3. Final remarks. The previous work yields a characterization of the
Banach–Saks property for Banach lattices in terms of disjointness, under
some general assumptions. To this end we introduce the following.

Definition 3.1. A Banach lattice E is disjointly Banach–Saks if, for
every pairwise disjoint bounded sequence (xn)n in E, there is a subsequence
(nk)k such that the sequence (xnk

)k is Cesàro convergent.

This definition differs from that in [8] since we do not assume the se-
quence involved to be weakly null. Think of L1[0, 1]. This definition also
differs from the Banach–Saks property. Indeed, the space c0 is not Banach–
Saks, since it is not reflexive, and yet it is disjointly Banach–Saks. Note that
c0 fails to have the subsequence splitting property. In contrast, we have the
following proposition.
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Proposition 3.2. Let E be a Banach lattice with the subsequence split-

ting property and with E′ order continuous. The following conditions are

equivalent :

(a) E is a Banach–Saks space,
(b) E is a weakly Banach–Saks space,
(c) E is a disjointly Banach–Saks space.

Note that the Baernstein space is a Banach lattice which does not have
any of the properties above. In fact, the canonical basis of ℓ1 contains no
Cesàro convergent subsequence (cf. [2]).

Proof of the proposition. It is obvious that (a) implies (b). If we as-
sume (b) and (hn)n ⊆ E is a bounded pairwise disjoint sequence, then it is
weakly null, since E′ is order continuous ([16, Thm. 2.4.14]); therefore (c)
follows. To see that (c) implies (a), let (fn)n be a bounded sequence in E.
As we saw in the proof of Theorem 2.6, there exists a subsequence (nk)k

such that fnk
= gk + hk, where (gk)k is uniformly integrable and (hk)k is

pairwise disjoint. By Lemma 2.3, there exists a subsequence (gkj
)j which is

Cesàro convergent in E. On the other hand, the sequence (hk)k has a Cesàro
convergent subsequence, by assumption. Hence (a) holds.

Corollary 3.3. Let E be a Banach lattice with the subsequence splitting

property. Then E is a Banach–Saks space if and only if E is a disjointly

Banach–Saks space.

Observe that L1[0, 1] is weakly Banach–Saks but not disjointly Banach–
Saks.

Corollary 3.4. Let E be a Banach lattice with the subsequence splitting

property. Then E is a weakly Banach–Saks space if and only if every pairwise

disjoint weakly convergent sequence in E has a subsequence which is Cesàro

convergent.

Notice that the last results extends, to the more general setting of Banach
lattices, the result given for rearrangement invariant spaces in [8, Theorem
4.5].

References

[1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, 1985.
[2] A. Baernstein, On reflexivity and summability, Studia Math. 42 (1972), 91–94.
[3] S. Banach and S. Saks, Sur la convergence forte dans les champs L

p, ibid. 2 (1930),
51–57.
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