a-Weyl's theorem and perturbations

by

MOURAD OUDGHIRI (Lille)

Abstract. We study the stability of a-Weyl's theorem under perturbations by operators in some known classes. We establish in particular that if T is a finite a-isoloid operator, then a-Weyl's theorem is transmitted from T to T + R for every Riesz operator R commuting with T.

1. Introduction. Throughout this paper, X will denote an infinitedimensional complex Banach space, $\mathcal{L}(X)$ the algebra of all linear bounded operators on X, and $\mathcal{K}(X)$ its ideal of compact operators. For an operator $T \in \mathcal{L}(X)$, write T^* for its adjoint; N(T) for its kernel; R(T) for its range; $\sigma(T)$ for its spectrum; $\sigma_{ap}(T)$ for its approximate point spectrum; and $\sigma_p(T)$ for its point spectrum.

For an operator $T \in \mathcal{L}(X)$, the *ascent* a(T) and *descent* d(T) are given by $a(T) = \inf\{n \ge 0 : N(T^n) = N(T^{n+1})\}$ and $d(T) = \inf\{n \ge 0 : R(T^n) = R(T^{n+1})\}$, respectively; the infimum over the empty set is taken to be ∞ . If the ascent and descent of $T \in \mathcal{L}(X)$ are both finite, then a(T) = d(T) = p, $X = N(T^p) \oplus R(T^p)$ and $R(T^p)$ is closed (see [16]).

Also, an operator $T \in \mathcal{L}(X)$ is called *semi-Fredholm* if R(T) is closed and either dim N(T) or codim R(T) is finite. For such an operator the *index* is defined by $ind(T) = \dim N(T) - \operatorname{codim} R(T)$, and if the index is finite, T is said to be *Fredholm*. For $T \in \mathcal{L}(X)$, the *essential spectrum* $\sigma_{\mathrm{e}}(T)$, the *semi-Fredholm spectrum* $\sigma_{\mathrm{SF}}(T)$, the *Weyl spectrum* $\sigma_{\mathrm{w}}(T)$, the *Browder spectrum* $\sigma_{\mathrm{b}}(T)$, the *essential approximate point spectrum* $\sigma_{\mathrm{ea}}(T)$ and the *Browder essential approximate point spectrum* $\sigma_{\mathrm{ab}}(T)$ are given by

 $\sigma_{\mathbf{e}}(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm} \},\$

 $\sigma_{\rm SF}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not semi-Fredholm}\},\$

 $\sigma_{\mathbf{w}}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm of index } 0\},\$

²⁰⁰⁰ Mathematics Subject Classification: 47A53, 47A55.

Key words and phrases: a-Weyl's theorem, perturbations.

 $\sigma_{\rm b}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm of finite ascent and descent}\},\$

 $\sigma_{ea}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not semi-Fredholm of non-positive index}\},\$

 $\sigma_{\rm ab}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not semi-Fredholm of finite ascent}\}.$

It is well known that

$$\sigma_{\rm ea}(T) \subseteq \sigma_{\rm w}(T) \subseteq \sigma_{\rm b}(T)$$

and

$$\sigma_{\rm ea}(T) \subseteq \sigma_{\rm ab}(T) \subseteq \sigma_{\rm b}(T).$$

For a subset K of \mathbb{C} , we write iso K for its isolated points and acc K for its accumulation points. A complex number λ is said to be a *Riesz point* of $T \in \mathcal{L}(X)$ if $\lambda \in iso \sigma(T)$ and the spectral projection corresponding to the set $\{\lambda\}$ has finite-dimensional range. The set of all Riesz points of T is denoted by $\Pi_{o}(T)$, and we note that $\Pi_{o}(T) = iso \sigma(T) \cap \varrho_{e}(T)$ where $\varrho_{e}(T) = \mathbb{C} \setminus \sigma_{e}(T)$ (see [3] or [11]). Also, from [4] we recall that if $T \in \mathcal{L}(X)$ and $\lambda \in \sigma(T)$, then $\lambda \in \Pi_{o}(T)$ if and only if $T - \lambda$ is Fredholm of finite ascent and descent. Consequently, $\sigma_{b}(T) = \sigma(T) \setminus \Pi_{o}(T) = \sigma_{e}(T) \cup acc \sigma(T)$.

The set of isolated points λ in the spectrum (resp. approximate spectrum) for which $N(T - \lambda)$ is non-zero and finite-dimensional is denoted by $\Pi_{oo}(T)$ (resp. $\Pi_{oo}^{a}(T)$).

DEFINITION. Let T be a bounded operator on X. We will say that

- (i) Weyl's theorem holds for T if $\sigma_{w}(T) = \sigma(T) \setminus \Pi_{oo}(T)$.
- (ii) a-Weyl's theorem holds for T if $\sigma_{ea}(T) = \sigma_{ap}(T) \setminus \Pi^{a}_{oo}(T)$.
- (iii) Browder's theorem holds for T if $\sigma_{\rm w}(T) = \sigma_{\rm b}(T)$.
- (iv) a-Browder's theorem holds for T if $\sigma_{ea}(T) = \sigma_{ab}(T)$.

It is well known that the following implications hold ([3], [13]):

a-Weyl's theorem \Rightarrow Weyl's theorem \Rightarrow Browder's theorem;

a-Weyl's theorem \Rightarrow a-Browder's theorem \Rightarrow Browder's theorem.

In this paper, we examine the stability of a-Weyl's theorem under perturbations by operators in some known classes. We prove that if $T \in \mathcal{L}(X)$ is a finite a-isoloid operator that satisfies a-Weyl's theorem and F is a bounded operator commuting with T and for which there exists a positive integer nsuch that F^n has finite rank, then Weyl's theorem holds for T + F. Further, we establish that if, in addition, T is finite a-isoloid, then T + R obeys Weyl's theorem where R is an arbitrary Riesz operator commuting with T.

2. a-Weyl's theorem under perturbations. Before stating our results, we need to introduce the following two subspaces that will play a fundamental role in this paper. Let T be a bounded operator on X. The quasi-nilpotent part of T is defined by

$$\mathcal{H}_{o}(T) := \{ x \in X : \lim_{n \to \infty} \|T^{n}x\|^{1/n} = 0 \},\$$

and the *analytic core* of T by

$$\begin{split} \mathrm{K}(T) &:= \{ x \in X : \exists \{ x_n \}_{n \geq 0} \subseteq X \text{ and } \exists c > 0 \text{ such that } x = x_0, \\ Tx_{n+1} = x_n \text{ and } \|x_n\| \leq c^n \|x\| \text{ for all } n \geq 0 \}. \end{split}$$

These subspaces are *T*-hyperinvariant, i.e. if *S* is a bounded operator on *X* that commutes with *T*, then $SH_o(T) \subseteq H_o(T)$ and $SK(T) \subseteq K(T)$, and generally not closed. However, if $H_o(T)$ is closed, then $T_{|H_o(T)}$ is quasi-nilpotent (see [10]). Also, if *T* semi-Fredholm or semi-regular (i.e. R(T) is closed and $N(T^n) \subseteq R(T)$ for all positive integers *n*), then $K(T) = \bigcap_{n=1}^{\infty} R(T^n)$ is closed (see [10]). The following facts are easy to verify: T(K(T)) = K(T) and $\bigcup_{n=1}^{\infty} N(T^n) \subseteq H_o(T)$; if *T* is injective with closed range then $H_o(T) = \{0\}$.

From Theorem 1.6 of [8], we recall the following useful characterization: $\lambda \notin \operatorname{acc} \sigma(T)$ if and only if $X = \operatorname{H}_{o}(T - \lambda) \oplus \operatorname{K}(T - \lambda)$ where the direct sum is topological; and in this case, $\operatorname{H}_{o}(T - \lambda)$ is non-zero precisely when λ is an isolated point of the spectrum.

The equivalences (i)-(v) in the following lemma were first established in [2] (see also [1, Chapter 3, §2]); we give here the proof for completeness.

LEMMA 2.1. Let T be a semi-Fredholm operator. The following assertions are equivalent:

- (i) T has finite ascent;
- (ii) $H_o(T) \cap K(T) = \{0\};$
- (iii) $H_o(T)$ is finite-dimensional;
- (iv) there exists a positive integer p for which $H_o(T) = N(T^p)$;
- (v) $H_o(T)$ is closed.

Moreover, 0 is an isolated point of $\sigma_{\rm ap}(T)$ if and only if $H_{\rm o}(T)$ is a non-zero closed subspace.

Proof. First, since T is semi-Fredholm, the Kato decomposition [7, Theorem 4] provides two closed T-invariant subspaces X_1 , X_2 such that $X = X_1 \oplus X_2$, X_1 is finite-dimensional, $T_1 := T_{|X_1|}$ is nilpotent and $T_2 := T_{|X_2|}$ is semi-regular. Consequently, $X_1 \subseteq H_0(T)$, $H_0(T) = X_1 \oplus H_0(T) \cap X_2$ and $K(T) = \bigcap R(T^n) = K(T_2)$.

(i) \Rightarrow (ii). Since T_2 is semi-regular, $\overline{\mathrm{H}_{o}(T_2)} = \overline{\bigcup_n \mathrm{N}(T_2^n)}$ by [10, Lemma 1.1]. Moreover, T has finite ascent; then so does T_2 and hence $\mathrm{H}_{o}(T_2) = \mathrm{N}(T_2^p)$ where $p = \mathrm{a}(T_2)$. Consequently, $\mathrm{H}_{o}(T_2)$ is closed and so $\mathrm{H}_{o}(T) \cap X_2 = \mathrm{H}_{o}(T_2) = \{0\}$ (see [8]). Thus $\mathrm{H}_{o}(T) \cap \mathrm{K}(T) = \mathrm{H}_{o}(T_2) \cap \mathrm{K}(T_2) = \{0\}$.

(ii) \Rightarrow (iii). Since $H_o(T_2) \subseteq H_o(T) \cap K(T) = \{0\}$, we see that $H_o(T) = X_1$ is finite-dimensional.

M. Oudghiri

(iii) \Rightarrow (iv). If $H_o(T)$ is finite-dimensional then $T_{|H_o(T)}$ is nilpotent, and therefore there exists $p \ge 1$ such that $H_o(T) \subseteq N(T^p)$. Thus, $H_o(T) = N(T^p)$.

 $(iv) \Rightarrow (v)$ is clear.

 $(v) \Rightarrow (i)$. From the fact that $H_o(T_2) = H_o(T) \cap X_2$ is closed and T_2 is semi-regular, we deduce that $H_o(T_2) = \{0\}$. Thus T_2 is injective, and because X_1 is finite-dimensional, we conclude that T has finite ascent.

For the "moreover" part suppose that $H_o(T)$ is a non-zero closed subspace. It follows from the proof of (i) \Rightarrow (ii) that 0 is an isolated point of $\sigma_{ap}(T)$. Conversely, if $0 \in iso \sigma_{ap}(T)$, and because R(T) is closed, we find that N(T), and consequently $H_o(T)$, is non-zero. Let $\lambda \neq 0$ in a connected neighborhood of 0 be such that $T - \lambda$ is injective with closed range. Then $T_2 - \lambda$ is injective with closed range and $H_o(T_2 - \lambda) = \{0\}$, which implies that $H_o(T_2) = \{0\}$ by Lemma 1.3 of [10]. Finally, $H_o(T) = X_1$ is closed.

Obviously, it follows from the previous lemma that every semi-Fredholm operator with finite ascent has a non-positive index.

For an operator T, we denote by $\Pi_{o}^{a}(T)$ the set of all isolated points λ of $\sigma_{ap}(T)$ for which $T - \lambda$ is semi-Fredholm.

REMARK. Let T be a bounded operator on X. As immediate consequences of Lemma 2.1, we derive the following assertions:

- (i) $\Pi_{\rm o}^{\rm a}(T) \subseteq \Pi_{\rm oo}^{\rm a}(T)$ and $\sigma_{\rm ab}(T) = \sigma_{\rm ap}(T) \setminus \Pi_{\rm o}^{\rm a}(T) = \operatorname{acc} \sigma_{\rm ap}(T) \cup \sigma_{\rm SF}(T).$
- (ii) If T satisfies a Browder's theorem, then a Weyl's theorem holds for T if and only if $\Pi_{o}^{a}(T) = \Pi_{oo}^{a}(T)$.
- (iii) If a-Weyl's theorem holds for T then so does a-Browder's theorem. Indeed, a-Weyl's theorem for T implies $\Pi^{a}_{oo}(T) \cap \sigma_{SF}(T) \subseteq \Pi^{a}_{oo}(T) \cap \sigma_{ea}(T) = \emptyset$, and so $\Pi^{a}_{oo}(T) \subseteq \Pi^{a}_{o}(T) = \text{iso } \sigma_{ap}(T) \cap \varrho_{SF}(T)$. Thus, $\Pi^{a}_{o}(T) = \Pi^{a}_{oo}(T)$ and $\sigma_{ea}(T) = \sigma_{ab}(T)$.

An operator $R \in \mathcal{L}(X)$ is called *Riesz* if $R - \lambda$ is Fredholm for every non-zero complex number λ . It is well known that the restriction of R to one of its closed invariant subspace is a Riesz operator (see [4]). In [15], it is shown by M. Schechter and R. Whitley that if T is a semi-Fredholm operator that commutes with R, then T + R is semi-Fredholm and $\operatorname{ind}(T + R) = \operatorname{ind}(T)$.

Lemma 2.1 allows us to derive a shorter proof of the following result due to V. Rakočević [14].

PROPOSITION 2.2. Let $T \in \mathcal{L}(X)$ be a semi-Fredholm operator and R be a Riesz operator that commutes with T. The following assertions hold:

- (i) If T has finite ascent then so does T + R.
- (ii) If T has finite descent then so does T + R.

Proof. (i) Suppose first that T is injective. It follows that the operator S := T + R is semi-Fredholm and $\operatorname{ind}(S) = \operatorname{ind}(T) \leq 0$. Therefore $N(S^p)$ is finite-dimensional and hence $TN(S^p) = N(S^p)$ for every $p \geq 1$; consequently, (2.1) $N(S^p) \subset K(T)$ for all $n \in \mathbb{N}$

(2.1)
$$N(S^p) \subseteq K(T)$$
 for all $p \in \mathbb{N}$.

On the other hand, $\mathbf{K}(T) = \bigcap \mathbf{R}(T^n)$ is closed, and since $T_{|\mathbf{K}(T)}$ is invertible and $R_{|\mathbf{K}(T)}$ is a Riesz operator that commutes with $T_{|\mathbf{K}(T)}$, [6, Theorem 3.5] implies that the restriction of S to $\mathbf{K}(T)$ has finite ascent, that is, by (2.1), S has finite ascent. Now, if T is semi-Fredholm with finite ascent, then, by Lemma 2.1, $\mathbf{H}_0(T) = \mathbf{N}(T^d)$ is finite-dimensional, where d is a positive integer. Consider the maps $\hat{T}, \hat{S}, \hat{R}$ on $X/H_0(T)$ induced respectively by T, S and R. It is straightforward that \hat{T} is injective with closed range and \hat{R} is a Riesz operator commuting with \hat{T} . Therefore \hat{S} is semi-Fredholm of finite ascent $k = a(\hat{S})$ and so $\mathbf{N}(S^p) \subseteq (S^k)^{-1}(\mathbf{H}_0(T))$ for all positive integer p. Moreover, because S is semi-Fredholm with $\mathrm{ind}(S) = \mathrm{ind}(T) < \infty, \mathbf{N}(S)$ is finite-dimensional and hence so is $(S^k)^{-1}(\mathbf{H}_0(T))$. Thus S has finite ascent, as desired.

(ii) By duality. ■

The following corollary follows from the previous proposition and the fact that the essential approximate point spectrum is invariant under commuting Riesz perturbation.

COROLLARY 2.3. If $T \in \mathcal{L}(X)$ satisfies a-Browder's theorem and R is a Riesz operator commuting with T, then T + R satisfies a-Browder's theorem.

For a bounded operator T on X, we use $\Pi^{a}_{of}(T)$ to denote the set of isolated points λ of $\sigma_{ap}(T)$ such that $N(T - \lambda)$ is finite-dimensional. Evidently, $\Pi^{a}_{o}(T) \subseteq \Pi^{a}_{oo}(T) \subseteq \Pi^{a}_{of}(T)$.

PROPOSITION 2.4. Let T be a bounded operator on X. If R is a Riesz operator that commutes with T, then

$$\Pi_{\mathrm{of}}^{\mathrm{a}}(T+R) \cap \sigma_{\mathrm{ap}}(T) \subseteq \mathrm{iso}\,\sigma_{\mathrm{ap}}(T).$$

To prove this proposition, we need the following elementary lemma:

LEMMA 2.5. Let $T \in \mathcal{L}(X)$ be a quasi-nilpotent operator with finitedimensional kernel. If R is a Riesz operator that commutes with T, then $\sigma(T+R)$ is a finite set.

Proof. Suppose to the contrary that there exists a sequence $\{\lambda_n\}$ of distinct numbers in $\sigma(T+R)\setminus\{0\}$. It follows that $T-\lambda_n$ is invertible, and since R is a Riesz operator that commutes with T, we find that $T+R-\lambda_n$ is Fredholm with index zero. Therefore $N(T+R-\lambda_n)$ is a non-zero finite-dimensional subspace because $T+R-\lambda_n$ is non-invertible, and hence the restriction of T to $N(T+R-\lambda_n)$ is nilpotent. Consequently, $N(T+R-\lambda_n) \cap N(T)$ is not

trivial and so it contains a non-zero element x_n . Since each x_n is an eigenvector of T + R associated to λ_n , and the numbers λ_n are mutually distinct, we can easily check that $\{x_n\}$ consists of linearly independent vectors of N(T). Thus N(T) has infinite dimension, which is the desired contradiction.

Proof of Proposition 2.4. Assume that $\lambda \in \Pi_{\text{of}}^{a}(T+R)$. Then there exists a punctured neighbourhood U of λ such that $T+R-\mu$ is injective with closed range for all $\mu \in U$. Therefore, by Proposition 2.2, $T-\mu$ is a semi-Fredholm operator with finite ascent and hence Lemma 2.1 implies that $H_o(T-\mu)$ is finite-dimensional and $H_o(T-\mu) \cap K(T-\mu) = \{0\}$ for $\mu \in U$. On the other hand, by Theorem 3.5 of [10], the closed subspaces $H_o(T-\mu) + K(T-\mu) =$ $H_o(T-\mu) \oplus K(T-\mu)$ are constant on U. Let Z denote one of them and T_o and R_o be respectively the restrictions of T and R to Z.

We claim that λ is not an accumulation point of $\sigma(T_{\rm o})$. Let $\mu \in U$. Since $(T-\mu)_{|\mathcal{K}(T-\mu)|}$ is invertible, $(T+R-\mu)_{|\mathcal{K}(T-\mu)|}$ is Fredholm with index zero, and hence so is $T_{\rm o}+R_{\rm o}-\mu$ because $H_{\rm o}(T-\mu)$ is finite-dimensional. Moreover, $T+R-\mu$ is injective, therefore $T_{\rm o}+R_{\rm o}-\mu$ is invertible. This shows that $\lambda \notin \operatorname{acc} \sigma(T_{\rm o}+R_{\rm o})$ and consequently

$$Z = H_{o}(T_{o} + R_{o} - \lambda) \oplus K(T_{o} + R_{o} - \lambda).$$

Write $T_{o} = T_{1} + T_{2}$ and $R_{o} = R_{1} + R_{2}$ with respect to this decomposition. Since $T_{1} + R_{1} - \lambda$ is a quasi-nilpotent operator with finite-dimensional kernel, Lemma 2.5 ensures that $\sigma(T_{1})$ is finite, and hence there exists a punctured neighbourhood V_{1} of λ such that $V_{1} \cap \sigma(T_{1}) = \emptyset$. Also, because $T_{2} + R_{2} - \lambda$ is invertible, $T_{2} - \lambda$ has finite ascent and descent. Consequently, there exists a punctured neighbourhood V_{2} of λ such that $V_{2} \cap \sigma(T_{2}) = \emptyset$. Now, if we let $V = V_{1} \cap V_{2} \cap U$, we find that $V \cap \sigma(T_{o}) = \emptyset$. Finally, we have $N(T - \mu) \subseteq$ $H_{o}(T - \mu) \subseteq Z$ and so $N(T - \mu) = N(T_{o} - \mu) = \{0\}$ for $\mu \in V$. But for such μ , $T - \mu$ is semi-Fredholm, hence $T - \mu$ is injective with closed range. This completes the proof.

An operator $T \in \mathcal{L}(X)$ is said to be *a-isoloid* if all isolated points of $\sigma_{ap}(T)$ are eigenvalues of T.

THEOREM 2.6. Let T be an a-isoloid operator on X that satisfies a-Weyl's theorem. If F is an operator that commutes with T and for which there exists a positive integer n such that F^n has finite rank, then T + Fsatisfies a-Weyl's theorem.

Proof. First observe that F is a Riesz operator. Since a-Browder's theorem holds for T+F, by Corollary 2.3, it suffices to establish that $\Pi^{\rm a}_{\rm oo}(T+F)$ $= \Pi^{\rm a}_{\rm o}(T+F)$. Let $\lambda \in \Pi^{\rm a}_{\rm oo}(T+F)$. If $T-\lambda$ is injective with closed range, then $T+F-\lambda$ is semi-Fredholm, and therefore $\lambda \in \Pi^{\rm a}_{\rm o}(T+F)$. Suppose that $\lambda \in \sigma_{\rm ap}(T)$. Then it follows by Proposition 2.4 that $\lambda \in {\rm iso } \sigma_{\rm ap}(T)$. Furthermore, since the restriction of $(T+F-\lambda)^n$ to $N(T-\lambda)$ has finite-dimensional range and kernel, we infer that also $N(T - \lambda)$ is finite-dimensional, and so $\lambda \in \Pi_{oo}^{a}(T)$ because T is a-isoloid. On the other hand, a-Weyl's theorem for T implies that $\Pi_{oo}^{a}(T) \cap \sigma_{ea}(T) = \emptyset$. Consequently, $T - \lambda$ is semi-Fredholm and hence so is $T + F - \lambda$, which implies that $\lambda \in \Pi_{o}^{a}(T + F)$. The other inclusion is trivial, thus T + F satisfies a-Weyl's theorem.

In the following corollary, we recapture the result of D. S. Djordjević [5].

COROLLARY 2.7. Let $T \in \mathcal{L}(X)$ be an a-isoloid operator. If a-Weyl's theorem holds for T, then it also holds for T+F for every finite rank operator F commuting with T.

Notice that in the preceding result, it is essential to require that T is a-isoloid. Indeed, if we let $\mathcal{F}(X)$ denote the set of finite rank operators on $X, \mathcal{N}(X)$ the set of nilpotent operators on X and $\{T\}'$ the set of operators commuting with T, then we have:

PROPOSITION 2.8. Let T be a bounded operator such that $\mathcal{F}(X) \cap \{T\}' \notin \mathcal{N}(X)$. If a-Weyl's theorem holds for T + F for every finite rank operator F that commutes with T, then T is a-isoloid.

Proof. Suppose that T is not a-isoloid and let λ be an isolated point of $\sigma_{\rm ap}(T)$ such that $N(T - \lambda) = \{0\}$. By hypothesis, there exists a finite rank operator F that is not nilpotent and commutes with T. Observe that F cannot be quasi-nilpotent, because if not, the restriction of F to R(F) is nilpotent, and hence so is F. Since the spectrum of any finite rank operator on X is finite and contains 0, we have $X = X_1 \oplus X_2$ where $X_1 = H_o(F)$ and $X_2 = K(F)$. Furthermore, X_1 and X_2 are T-invariant, and from the fact that F is not quasi-nilpotent and $F_{|X_2}$ is an invertible operator of finite rank, we deduce that X_2 is a non-zero subspace of finite dimension.

Let $T = T_1 \oplus T_2$ be the decomposition of T with respect to $X = X_1 \oplus X_2$, and let α be a complex number for which $\lambda - \alpha \in \sigma_{ap}(T_2) = \sigma_p(T_2)$. Also, consider the operator $\widetilde{F} = 0 \oplus \alpha I_2$. Clearly \widetilde{F} is a finite-rank operator that commutes with T and $\sigma_{ap}(T + \widetilde{F}) = \sigma_{ap}(T_1) \cup \sigma_{ap}(T_2 + \alpha)$. But since $\lambda \in iso \sigma_{ap}(T)$ and $T - \lambda$ is injective, it follows that $\lambda \notin \sigma_{ap}(T_2)$ and $\lambda \in iso \sigma_{ap}(T_1) \subseteq iso \sigma_{ap}(T + \widetilde{F})$. Moreover, $N(T + \widetilde{F} - \lambda) = N(T_2 - (\lambda - \alpha))$ is a non-trivial subspace of finite dimension, so $\lambda \in \Pi_{oo}^a(T + \widetilde{F})$. On the other hand, since $\lambda \notin \Pi_o^a(T) = iso \sigma_{ap}(T) \cap \rho_{SF}(T)$, $T - \lambda$ is not semi-Fredholm, and hence also $T + \widetilde{F} - \lambda$ is not semi-Fredholm, which implies that $\lambda \notin \Pi_o^a(T + \widetilde{F})$. Therefore $T + \widetilde{F}$ does not satisfy a-Weyl's theorem, which is the desired contradiction.

A bounded operator T on X is called *finite a-isoloid* if every isolated point of $\sigma_{ap}(T)$ is an eigenvalue of T of finite multiplicity.

THEOREM 2.9. Let T be a finite a-isoloid operator on X that satisfies a-Weyl's theorem. If R is a Riesz operator that commutes with T, then T+R satisfies a-Weyl's theorem.

Proof. Since T + R obeys a-Browder's theorem, it suffices to show that $\Pi_{oo}^{a}(T+R) = \Pi_{o}^{a}(T+R)$. Let $\lambda \in \Pi_{oo}^{a}(T+R)$. If $T - \lambda$ is injective with closed range, then $T + R - \lambda$ is semi-Fredholm and hence $\lambda \in \Pi_{0}^{a}(T+R)$. Suppose that $\lambda \in \sigma_{ap}(T)$. It follows by Proposition 2.4 that λ is an isolated point of $\sigma_{ap}(T)$, and because T is finite a-isoloid, we see that $\lambda \in \Pi_{oo}^{a}(T)$. On the other hand, a-Weyl's theorem for T implies that $\sigma_{ea}(T) \cap \Pi_{oo}^{a}(T) = \emptyset$, therefore $T - \lambda$ is semi-Fredholm and hence so is $T + R - \lambda$. Consequently, $\lambda \in \Pi_{o}^{a}(T+R)$. The other inclusion is trivial and so T + R satisfies a-Weyl's theorem.

COROLLARY 2.10. Let T be an a-finite-isoloid operator on X that satisfies a-Weyl's theorem. If K is a compact operator commuting with T, then a-Weyl's theorem holds for T + K.

For the special case of quasi-nilpotent perturbations, we provide a relatively weak condition that ensures the stability of a-Weyl's theorem.

PROPOSITION 2.11. Let $T \in \mathcal{L}(X)$ be such that $\sigma_p(T) \cap iso \sigma_{ap}(T) \subseteq \Pi_{oo}^a(T)$. If T satisfies a-Weyl's theorem then so does T + Q for every quasinilpotent operator Q commuting with T.

Proof. We note first that $\sigma_{\rm ap}(T+Q) = \sigma_{\rm ap}(T)$ and $\sigma_{\rm ea}(T+Q) = \sigma_{\rm ea}(T)$ (see [9] and [15]); in particular we have $\Pi_{\rm o}^{\rm a}(T+Q) = \Pi_{\rm o}^{\rm a}(T)$. Since, by Corollary 2.3, a-Browder's theorem holds for T+Q, we only have to show that $\Pi_{\rm oo}^{\rm a}(T+Q) = \Pi_{\rm o}^{\rm a}(T+Q)$. Let $\lambda \in \Pi_{\rm oo}^{\rm a}(T+Q)$. It follows that the restriction of $T-\lambda$ to the finite-dimensional subspace $N(T+Q-\lambda)$ is not invertible and so $N(T-\lambda)$ is non-trivial. Consequently, $\lambda \in \sigma_{\rm p}(T) \cap \operatorname{iso} \sigma_{\rm ap}(T) \subseteq$ $\Pi_{\rm oo}^{\rm a}(T)$. But a-Weyl's theorem for T implies that $\Pi_{\rm oo}^{\rm a}(T) = \Pi_{\rm o}^{\rm a}(T)$. Thus $\lambda \in \Pi_{\rm o}^{\rm a}(T) = \Pi_{\rm o}^{\rm a}(T+Q)$, which completes the proof.

Acknowledgements. The author would like to thank Professor Mostafa Mbekhta for interesting discussions concerning this paper.

References

- [1] P. Aiena, Fredholm and Local Spectral Theory, with Application to Multipliers, Kluwer, 2004.
- [2] P. Aiena, M. L. Colasante and M. Gonzalez, Operators which have a closed quasinilpotent part, Proc. Amer. Math. Soc. 130 (2002), 2701–2710.
- B. A. Barnes, *Riesz points and Weyl's theorem*, Integral Equations Operator Theory 34 (1999), 187–196.
- [4] S. R. Caradus, W. E. Pfaffenberger and Y. Bertram, Calkin Algebras and Algebras of Operators on Banach Spaces, Dekker, New York, 1974.

- [5] D. S. Djordjević, Operators obeying a-Weyl's theorem, Publ. Math. Debrecen 55 (1999), 283-298.
- M. A. Kaashoek and D. C. Lay, Ascent, descent, and commuting perturbations, Trans. Amer. Math. Soc. 169 (1972), 35–47.
- [7] T. Kato, Perturbation theory for nullity, deficiency, and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
- [8] M. Mbekhta, Généralisations de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159–175.
- [9] M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II, Studia Math. 119 (1996), 129–147.
- [10] M. Mbekhta et A. Ouahab, Perturbation des opérateurs s-réguliers, in: Topics in Operator Theory, Operator Algebras and Applications (Timişoara, 1994), Rom. Acad., Bucharest, 1995, 239-249.
- M. Oudghiri, Weyl's and Browder's theorem for operators satisfying the SVEP, Studia Math. 163 (2004), 85-101.
- [12] V. Rakočević, On one subset of M. Schechter's essential spectrum, Mat. Vesnik 33 (1981), 389–391.
- [13] —, On the essential approximate point spectrum II, ibid. 36 (1984), 89–97.
- [14] —, Semi-Browder operators and perturbations, Studia Math. 122 (1997), 131–137.
- [15] M. Schechter and R. Whitley, Best Fredholm perturbation theorems, ibid. 90 (1988), 175–190.
- [16] A. Taylor and D. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, 1980.

UFR de Mathématiques Université Lille 1 UMR-CNRS 8524 59655 Villeneuve d'Ascq, France E-mail: Mourad.Oudghiri@math.univ-lille1.fr

> Received October 18, 2005 Revised version November 3, 2005 (5779)

201