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a-Weyl's theorem and perturbationsby
Mourad Oudghiri (Lille)

Abstrat. We study the stability of a-Weyl's theorem under perturbations by op-erators in some known lasses. We establish in partiular that if T is a �nite a-isoloidoperator, then a-Weyl's theorem is transmitted from T to T + R for every Riesz operator
R ommuting with T .1. Introdution. Throughout this paper, X will denote an in�nite-dimensional omplex Banah spae, L(X ) the algebra of all linear boundedoperators on X, and K(X) its ideal of ompat operators. For an operator
T ∈ L(X ), write T ∗ for its adjoint; N(T ) for its kernel; R(T ) for its range;
σ(T ) for its spetrum; σap(T ) for its approximate point spetrum; and σp(T )for its point spetrum.For an operator T ∈ L(X ), the asent a(T ) and desent d(T ) are givenby a(T ) = inf{n ≥ 0 : N(Tn) = N(Tn+1)} and d(T ) = inf{n ≥ 0 : R(Tn) =
R(Tn+1)}, respetively; the in�mum over the empty set is taken to be ∞. Ifthe asent and desent of T ∈ L(X ) are both �nite, then a(T ) = d(T ) = p,
X = N(T p) ⊕ R(T p) and R(T p) is losed (see [16℄).Also, an operator T ∈ L(X ) is alled semi-Fredholm if R(T ) is losedand either dim N(T ) or codimR(T ) is �nite. For suh an operator the indexis de�ned by ind(T ) = dim N(T ) − codimR(T ), and if the index is �nite,
T is said to be Fredholm. For T ∈ L(X ), the essential spetrum σe(T ),the semi-Fredholm spetrum σSF(T ), the Weyl spetrum σw(T ), the Browderspetrum σb(T ), the essential approximate point spetrum σea(T ) and theBrowder essential approximate point spetrum σab(T ) are given by

σe(T ) = {λ ∈ C : T − λ is not Fredholm},

σSF(T ) = {λ ∈ C : T − λ is not semi-Fredholm},

σw(T ) = {λ ∈ C : T − λ is not Fredholm of index 0},
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194 M. Oudghiri
σb(T ) = {λ ∈ C : T − λ is not Fredholm of �nite asent and desent},
σea(T ) = {λ ∈ C : T − λ is not semi-Fredholm of non-positive index},
σab(T ) = {λ ∈ C : T − λ is not semi-Fredholm of �nite asent}.It is well known that

σea(T ) ⊆ σw(T ) ⊆ σb(T )and
σea(T ) ⊆ σab(T ) ⊆ σb(T ).For a subset K of C, we write isoK for its isolated points and acc Kfor its aumulation points. A omplex number λ is said to be a Riesz pointof T ∈ L(X ) if λ ∈ isoσ(T ) and the spetral projetion orresponding tothe set {λ} has �nite-dimensional range. The set of all Riesz points of Tis denoted by Πo(T ), and we note that Πo(T ) = isoσ(T ) ∩ ̺e(T ) where

̺e(T ) = C \ σe(T ) (see [3℄ or [11℄). Also, from [4℄ we reall that if T ∈ L(X )and λ ∈ σ(T ), then λ ∈ Πo(T ) if and only if T − λ is Fredholm of �niteasent and desent. Consequently, σb(T ) = σ(T )\Πo(T ) = σe(T )∪accσ(T ).The set of isolated points λ in the spetrum (resp. approximate spetrum)for whih N(T − λ) is non-zero and �nite-dimensional is denoted by Πoo(T )(resp. Πa
oo(T )).

Definition. Let T be a bounded operator on X. We will say that(i) Weyl's theorem holds for T if σw(T ) = σ(T ) \ Πoo(T ).(ii) a-Weyl's theorem holds for T if σea(T ) = σap(T ) \ Πa
oo(T ).(iii) Browder's theorem holds for T if σw(T ) = σb(T ).(iv) a-Browder's theorem holds for T if σea(T ) = σab(T ).It is well known that the following impliations hold ([3℄, [13℄):a-Weyl's theorem ⇒ Weyl's theorem ⇒ Browder's theorem;a-Weyl's theorem ⇒ a-Browder's theorem ⇒ Browder's theorem.In this paper, we examine the stability of a-Weyl's theorem under pertur-bations by operators in some known lasses. We prove that if T ∈ L(X ) is a�nite a-isoloid operator that satis�es a-Weyl's theorem and F is a boundedoperator ommuting with T and for whih there exists a positive integer nsuh that Fn has �nite rank, then Weyl's theorem holds for T + F . Further,we establish that if, in addition, T is �nite a-isoloid, then T +R obeys Weyl'stheorem where R is an arbitrary Riesz operator ommuting with T .2. a-Weyl's theorem under perturbations. Before stating our re-sults, we need to introdue the following two subspaes that will play afundamental role in this paper.



a-Weyl's theorem and perturbations 195Let T be a bounded operator on X. The quasi-nilpotent part of T isde�ned by
Ho(T ) := {x ∈ X : lim

n→∞
‖Tnx‖1/n = 0},and the analyti ore of T by

K(T ) := {x ∈ X : ∃{xn}n≥0 ⊆ X and ∃c > 0 suh that x = x0,

Txn+1 = xn and ‖xn‖ ≤ cn‖x‖ for all n ≥ 0}.These subspaes are T -hyperinvariant, i.e. if S is a bounded operator on Xthat ommutes with T , then SHo(T ) ⊆ Ho(T ) and SK(T ) ⊆ K(T ), and gen-erally not losed. However, if Ho(T ) is losed, then T|Ho(T ) is quasi-nilpotent(see [10℄). Also, if T semi-Fredholm or semi-regular (i.e. R(T ) is losed and
N(Tn) ⊆ R(T ) for all positive integers n), then K(T ) =

⋂∞
n=1 R(Tn) islosed (see [10℄). The following fats are easy to verify: T (K(T )) = K(T ) and⋃∞

n=1 N(Tn) ⊆ Ho(T ); if T is injetive with losed range then Ho(T ) = {0}.From Theorem 1.6 of [8℄, we reall the following useful haraterization:
λ /∈ acc σ(T ) if and only if X = Ho(T − λ)⊕K(T − λ) where the diret sumis topologial; and in this ase, Ho(T − λ) is non-zero preisely when λ is anisolated point of the spetrum.The equivalenes (i)�(v) in the following lemma were �rst established in[2℄ (see also [1, Chapter 3, �2℄); we give here the proof for ompleteness.Lemma 2.1. Let T be a semi-Fredholm operator. The following assertionsare equivalent :(i) T has �nite asent ;(ii) Ho(T ) ∩ K(T ) = {0};(iii) Ho(T ) is �nite-dimensional ;(iv) there exists a positive integer p for whih Ho(T ) = N(T p);(v) Ho(T ) is losed.Moreover , 0 is an isolated point of σap(T ) if and only if Ho(T ) is a non-zerolosed subspae.Proof. First, sine T is semi-Fredholm, the Kato deomposition [7, The-orem 4℄ provides two losed T -invariant subspaes X1, X2 suh that X =
X1 ⊕ X2, X1 is �nite-dimensional, T1 := T|X1

is nilpotent and T2 := T|X2is semi-regular. Consequently, X1 ⊆ Ho(T ), Ho(T ) = X1 ⊕ Ho(T ) ∩ X2 and
K(T ) =

⋂
R(Tn) = K(T2).(i)⇒(ii). Sine T2 is semi-regular, Ho(T2) =

⋃
n N(Tn

2 ) by [10, Lemma1.1℄. Moreover, T has �nite asent; then so does T2 and hene Ho(T2) =
N(T p

2 ) where p = a(T2). Consequently, Ho(T2) is losed and so Ho(T )∩X2 =
Ho(T2) = {0} (see [8℄). Thus Ho(T ) ∩ K(T ) = Ho(T2) ∩ K(T2) = {0}.(ii)⇒(iii). Sine Ho(T2) ⊆ Ho(T )∩K(T ) = {0}, we see that Ho(T ) = X1is �nite-dimensional.



196 M. Oudghiri(iii)⇒(iv). If Ho(T ) is �nite-dimensional then T|Ho(T ) is nilpotent, andtherefore there exists p ≥ 1 suh that Ho(T ) ⊆ N(T p). Thus, Ho(T ) = N(T p).(iv)⇒(v) is lear.(v)⇒(i). From the fat that Ho(T2) = Ho(T ) ∩ X2 is losed and T2 issemi-regular, we dedue that Ho(T2) = {0}. Thus T2 is injetive, and beause
X1 is �nite-dimensional, we onlude that T has �nite asent.For the �moreover� part suppose that Ho(T ) is a non-zero losed subspae.It follows from the proof of (i)⇒(ii) that 0 is an isolated point of σap(T ).Conversely, if 0 ∈ isoσap(T ), and beause R(T ) is losed, we �nd that N(T ),and onsequently Ho(T ), is non-zero. Let λ 6= 0 in a onneted neighborhoodof 0 be suh that T −λ is injetive with losed range. Then T2−λ is injetivewith losed range and Ho(T2 − λ) = {0}, whih implies that Ho(T2) = {0}by Lemma 1.3 of [10℄. Finally, Ho(T ) = X1 is losed.Obviously, it follows from the previous lemma that every semi-Fredholmoperator with �nite asent has a non-positive index.For an operator T , we denote by Πa

o (T ) the set of all isolated points λof σap(T ) for whih T − λ is semi-Fredholm.
Remark. Let T be a bounded operator on X. As immediate onse-quenes of Lemma 2.1, we derive the following assertions:(i) Πa

o (T ) ⊆ Πa
oo(T ) and σab(T ) = σap(T ) \ Πa

o (T ) = acc σap(T ) ∪
σSF(T ).(ii) If T satis�es a-Browder's theorem, then a-Weyl's theorem holds for Tif and only if Πa

o (T ) = Πa
oo(T ).(iii) If a-Weyl's theorem holds for T then so does a-Browder's theorem.Indeed, a-Weyl's theorem for T implies Πa

oo(T )∩σSF(T ) ⊆ Πa
oo(T )∩

σea(T ) = ∅, and so Πa
oo(T ) ⊆ Πa

o (T ) = isoσap(T ) ∩ ̺SF(T ). Thus,
Πa

o (T ) = Πa
oo(T ) and σea(T ) = σab(T ).An operator R ∈ L(X ) is alled Riesz if R − λ is Fredholm for everynon-zero omplex number λ. It is well known that the restrition of R to oneof its losed invariant subspae is a Riesz operator (see [4℄). In [15℄, it is shownby M. Shehter and R. Whitley that if T is a semi-Fredholm operator thatommutes with R, then T + R is semi-Fredholm and ind(T + R) = ind(T ).Lemma 2.1 allows us to derive a shorter proof of the following result dueto V. Rako£evi¢ [14℄.Proposition 2.2. Let T ∈ L(X ) be a semi-Fredholm operator and R bea Riesz operator that ommutes with T . The following assertions hold :(i) If T has �nite asent then so does T + R.(ii) If T has �nite desent then so does T + R.



a-Weyl's theorem and perturbations 197Proof. (i) Suppose �rst that T is injetive. It follows that the operator
S := T + R is semi-Fredholm and ind(S) = ind(T ) ≤ 0. Therefore N(Sp) is�nite-dimensional and hene TN(Sp) = N(Sp) for every p ≥ 1; onsequently,(2.1) N(Sp) ⊆ K(T ) for all p ∈ N.On the other hand, K(T ) =

⋂
R(Tn) is losed, and sine T|K(T ) is invertibleand R|K(T ) is a Riesz operator that ommutes with T|K(T ), [6, Theorem 3.5℄implies that the restrition of S to K(T ) has �nite asent, that is, by (2.1),

S has �nite asent. Now, if T is semi-Fredholm with �nite asent, then,by Lemma 2.1, Ho(T ) = N(T d) is �nite-dimensional, where d is a positiveinteger. Consider the maps T̂ , Ŝ, R̂ on X/H0(T ) indued respetively by T ,
S and R. It is straightforward that T̂ is injetive with losed range and R̂ isa Riesz operator ommuting with T̂ . Therefore Ŝ is semi-Fredholm of �niteasent k = a(Ŝ) and so N(Sp) ⊆ (Sk)−1(Ho(T )) for all positive integer p.Moreover, beause S is semi-Fredholm with ind(S) = ind(T ) < ∞, N(S) is�nite-dimensional and hene so is (Sk)−1(Ho(T )). Thus S has �nite asent,as desired.(ii) By duality.The following orollary follows from the previous proposition and the fatthat the essential approximate point spetrum is invariant under ommutingRiesz perturbation.Corollary 2.3. If T ∈ L(X ) satis�es a-Browder's theorem and R is aRiesz operator ommuting with T , then T +R satis�es a-Browder's theorem.For a bounded operator T on X, we use Πa

of(T ) to denote the set of iso-lated points λ of σap(T ) suh that N(T −λ) is �nite-dimensional. Evidently,
Πa

o (T ) ⊆ Πa
oo(T ) ⊆ Πa

of(T ).Proposition 2.4. Let T be a bounded operator on X. If R is a Rieszoperator that ommutes with T , then
Πa

of(T + R) ∩ σap(T ) ⊆ isoσap(T ).To prove this proposition, we need the following elementary lemma:Lemma 2.5. Let T ∈ L(X ) be a quasi-nilpotent operator with �nite-dimensional kernel. If R is a Riesz operator that ommutes with T , then
σ(T + R) is a �nite set.Proof. Suppose to the ontrary that there exists a sequene {λn} of dis-tint numbers in σ(T+R)\{0}. It follows that T−λn is invertible, and sine Ris a Riesz operator that ommutes with T , we �nd that T+R−λn is Fredholmwith index zero. Therefore N(T + R − λn) is a non-zero �nite-dimensionalsubspae beause T + R − λn is non-invertible, and hene the restrition of
T to N(T +R−λn) is nilpotent. Consequently, N(T +R−λn)∩N(T ) is not



198 M. Oudghiritrivial and so it ontains a non-zero element xn. Sine eah xn is an eigenve-tor of T +R assoiated to λn, and the numbers λn are mutually distint, wean easily hek that {xn} onsists of linearly independent vetors of N(T ).Thus N(T ) has in�nite dimension, whih is the desired ontradition.Proof of Proposition 2.4. Assume that λ ∈ Πa
of(T +R). Then there existsa puntured neighbourhood U of λ suh that T +R−µ is injetive with losedrange for all µ ∈ U . Therefore, by Proposition 2.2, T −µ is a semi-Fredholmoperator with �nite asent and hene Lemma 2.1 implies that Ho(T − µ) is�nite-dimensional and Ho(T − µ)∩K(T −µ) = {0} for µ ∈ U . On the otherhand, by Theorem 3.5 of [10℄, the losed subspaes Ho(T −µ) + K(T −µ) =

Ho(T − µ)⊕K(T − µ) are onstant on U . Let Z denote one of them and Toand Ro be respetively the restritions of T and R to Z.We laim that λ is not an aumulation point of σ(To). Let µ ∈ U . Sine
(T −µ)|K(T−µ) is invertible, (T +R−µ)|K(T−µ) is Fredholm with index zero,and hene so is To+Ro−µ beause Ho(T−µ) is �nite-dimensional. Moreover,
T + R − µ is injetive, therefore To + Ro − µ is invertible. This shows that
λ /∈ acc σ(To + Ro) and onsequently

Z = Ho(To + Ro − λ) ⊕ K(To + Ro − λ).Write To = T1 + T2 and Ro = R1 + R2 with respet to this deomposition.Sine T1+R1−λ is a quasi-nilpotent operator with �nite-dimensional kernel,Lemma 2.5 ensures that σ(T1) is �nite, and hene there exists a punturedneighbourhood V1 of λ suh that V1 ∩ σ(T1) = ∅. Also, beause T2 + R2 − λis invertible, T2 −λ has �nite asent and desent. Consequently, there existsa puntured neighbourhood V2 of λ suh that V2 ∩ σ(T2) = ∅. Now, if we let
V = V1 ∩ V2 ∩ U , we �nd that V ∩ σ(To) = ∅. Finally, we have N(T − µ) ⊆
Ho(T − µ) ⊆ Z and so N(T − µ) = N(To − µ) = {0} for µ ∈ V . But forsuh µ, T − µ is semi-Fredholm, hene T − µ is injetive with losed range.This ompletes the proof.An operator T ∈ L(X ) is said to be a-isoloid if all isolated points of
σap(T ) are eigenvalues of T .Theorem 2.6. Let T be an a-isoloid operator on X that satis�es a-Weyl's theorem. If F is an operator that ommutes with T and for whihthere exists a positive integer n suh that Fn has �nite rank , then T + Fsatis�es a-Weyl's theorem.Proof. First observe that F is a Riesz operator. Sine a-Browder's theo-rem holds for T +F , by Corollary 2.3, it su�es to establish that Πa

oo(T +F )
= Πa

o (T + F ). Let λ ∈ Πa
oo(T + F ). If T − λ is injetive with losed range,then T +F −λ is semi-Fredholm, and therefore λ ∈ Πa

o (T +F ). Suppose that
λ ∈ σap(T ). Then it follows by Proposition 2.4 that λ ∈ isoσap(T ). Further-more, sine the restrition of (T +F −λ)n to N(T −λ) has �nite-dimensional



a-Weyl's theorem and perturbations 199range and kernel, we infer that also N(T − λ) is �nite-dimensional, and so
λ ∈ Πa

oo(T ) beause T is a-isoloid. On the other hand, a-Weyl's theorem for
T implies that Πa

oo(T ) ∩ σea(T ) = ∅. Consequently, T − λ is semi-Fredholmand hene so is T + F − λ, whih implies that λ ∈ Πa
o (T + F ). The otherinlusion is trivial, thus T + F satis�es a-Weyl's theorem.In the following orollary, we reapture the result of D. S. Djordjevi¢ [5℄.Corollary 2.7. Let T ∈ L(X ) be an a-isoloid operator. If a-Weyl'stheorem holds for T , then it also holds for T +F for every �nite rank operator

F ommuting with T .Notie that in the preeding result, it is essential to require that T isa-isoloid. Indeed, if we let F(X ) denote the set of �nite rank operators on
X, N (X ) the set of nilpotent operators on X and {T}′ the set of operatorsommuting with T , then we have:Proposition 2.8. Let T be a bounded operator suh that F(X)∩{T}′ *
N (X). If a-Weyl's theorem holds for T + F for every �nite rank operator Fthat ommutes with T , then T is a-isoloid.Proof. Suppose that T is not a-isoloid and let λ be an isolated pointof σap(T ) suh that N(T − λ) = {0}. By hypothesis, there exists a �niterank operator F that is not nilpotent and ommutes with T . Observe that
F annot be quasi-nilpotent, beause if not, the restrition of F to R(F ) isnilpotent, and hene so is F . Sine the spetrum of any �nite rank operatoron X is �nite and ontains 0, we have X = X1 ⊕ X2 where X1 = Ho(F )and X2 = K(F ). Furthermore, X1 and X2 are T -invariant, and from thefat that F is not quasi-nilpotent and F|X2

is an invertible operator of �niterank, we dedue that X2 is a non-zero subspae of �nite dimension.Let T = T1 ⊕ T2 be the deomposition of T with respet to X = X1 ⊕
X2, and let α be a omplex number for whih λ − α ∈ σap(T2) = σp(T2).Also, onsider the operator F̃ = 0⊕ αI2. Clearly F̃ is a �nite-rank operatorthat ommutes with T and σap(T + F̃ ) = σap(T1) ∪ σap(T2 + α). But sine
λ ∈ isoσap(T ) and T − λ is injetive, it follows that λ /∈ σap(T2) and λ ∈

isoσap(T1) ⊆ isoσap(T + F̃ ). Moreover, N(T + F̃ − λ) = N(T2 − (λ − α))is a non-trivial subspae of �nite dimension, so λ ∈ Πa
oo(T + F̃ ). On theother hand, sine λ /∈ Πa

o (T ) = isoσap(T ) ∩ ̺SF(T ), T − λ is not semi-Fredholm, and hene also T + F̃ − λ is not semi-Fredholm, whih impliesthat λ /∈ Πa
o (T + F̃ ). Therefore T + F̃ does not satisfy a-Weyl's theorem,whih is the desired ontradition.A bounded operator T on X is alled �nite a-isoloid if every isolatedpoint of σap(T ) is an eigenvalue of T of �nite multipliity.



200 M. OudghiriTheorem 2.9. Let T be a �nite a-isoloid operator on X that satis�es
a-Weyl's theorem. If R is a Riesz operator that ommutes with T , then T +Rsatis�es a-Weyl's theorem.Proof. Sine T + R obeys a-Browder's theorem, it su�es to show that
Πa

oo(T + R) = Πa
o (T + R). Let λ ∈ Πa

oo(T + R). If T − λ is injetive withlosed range, then T + R − λ is semi-Fredholm and hene λ ∈ Πa
0(T + R).Suppose that λ ∈ σap(T ). It follows by Proposition 2.4 that λ is an isolatedpoint of σap(T ), and beause T is �nite a-isoloid, we see that λ ∈ Πa
oo(T ). Onthe other hand, a-Weyl's theorem for T implies that σea(T ) ∩ Πa

oo(T ) = ∅,therefore T − λ is semi-Fredholm and hene so is T + R − λ. Consequently,
λ ∈ Πa

o (T +R). The other inlusion is trivial and so T +R satis�es a-Weyl'stheorem.Corollary 2.10. Let T be an a-�nite-isoloid operator on X that satis-�es a-Weyl's theorem. If K is a ompat operator ommuting with T , thena-Weyl's theorem holds for T + K.For the speial ase of quasi-nilpotent perturbations, we provide a rela-tively weak ondition that ensures the stability of a-Weyl's theorem.Proposition 2.11. Let T ∈ L(X ) be suh that σp(T ) ∩ isoσap(T ) ⊆
Πa

oo(T ). If T satis�es a-Weyl's theorem then so does T + Q for every quasi-nilpotent operator Q ommuting with T .Proof. We note �rst that σap(T +Q) = σap(T ) and σea(T +Q) = σea(T )(see [9℄ and [15℄); in partiular we have Πa
o (T + Q) = Πa

o (T ). Sine, byCorollary 2.3, a-Browder's theorem holds for T+Q, we only have to show that
Πa

oo(T +Q) = Πa
o (T +Q). Let λ ∈ Πa

oo(T +Q). It follows that the restritionof T − λ to the �nite-dimensional subspae N(T + Q − λ) is not invertibleand so N(T − λ) is non-trivial. Consequently, λ ∈ σp(T ) ∩ isoσap(T ) ⊆
Πa

oo(T ). But a-Weyl's theorem for T implies that Πa
oo(T ) = Πa

o (T ). Thus
λ ∈ Πa

o (T ) = Πa
o (T + Q), whih ompletes the proof.Aknowledgements. The author would like to thank Professor MostafaMbekhta for interesting disussions onerning this paper.
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