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An exact functional Radon–Nikodym theorem
for Daniell integrals

by

E. de Amo (Almeŕıa), I. Chitescu (Bucureşti)
and M. Dı́az Carrillo (Granada)

Abstract. Given two positive Daniell integrals I and J , with J absolutely continuous
with respect to I, we find sufficient conditions in order to obtain an exact Radon–Nikodym
derivative f of J with respect to I. The procedure of obtaining f is constructive.

1. Introduction. In this paper we consider two positive Daniell inte-
grals I and J on a lattice of functions B which is also a unitary algebra, J
being absolutely continuous with respect to I. We give sufficient conditions
to obtain, in a constructive manner, an “exact” Radon–Nikodym derivative
f of J with respect to I, i.e., to have J(u) = I(fu) for every u in B. Gener-
ally, the derivative thus obtained must be in a larger space than B, so the
relation J(u) = I(fu) actually holds for the canonical extensions of I and J .

We recognize the strong influence of [6] and [8].

2. Main result. We shall consider a nonempty set X (the total space)
and a vector lattice B of functions f : X → R (with pointwise operations
and order). We shall also assume that B is an algebra with unit 1 ∈ B. We
denote by +B the positive elements in B.

In what follows, I : B → R will be a positive Daniell integral (i.e., I is
linear, positive and I(fn) ↘ 0 whenever the decreasing sequence (fn) in B
is such that fn ↘ 0 pointwise). For Daniell integrals, see [9] and [10], and
for general measure theory, see [5], [7] and [10].

Let also J : B → R be a positive linear functional. We shall assume that
J is absolutely continuous with respect to I, i.e., for all ε > 0 and for all u
in +B there exists δ > 0 such that, for all v in +B with v ≤ u and I(v) < δ
one has J(v) < ε (see [1] and [3]), which is denoted by J � I.
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Notice that J must also be a Daniell integral (due to its absolute conti-
nuity with respect to I).

According to the general theory, I generates the vector lattice L(I) of
all I-integrable functions and J generates the vector lattice L(J) of all J-
integrable functions. We shall denote by Lb(I) (resp. Lb(J)) the set of all
bounded I-integrable (resp. J-integrable) functions. Recall that for f : X →
R, to say that f is in L(I) means that for every ε > 0 there exist g, h : X → R
with the following three properties:

(a) There exists an increasing sequence (gn)n in B such that gn ↗ g and

I∗(g) := sup
n
I(gn) <∞.

(b) There exists a decreasing sequence (hn)n in B such that hn ↘ h and

I∗(h) := inf
n
I(hn) > −∞.

(c) One has the inequalities h ≤ f ≤ g and 0 ≤ I∗(g) − I∗(h) < ε (the
last inequality actually means that supn[I(gn − hn)] < ε).

In case f ≥ 0 one can suppose h ≥ 0.

Then I can be uniquely extended to a linear positive functional I :
L(I)→ R having the property that I∗(h) ≤ I(f) ≤ I∗(g) for all h and g as
above.

Similar considerations apply to the extension of J .

Lemma 1. If J � I, then Lb(I) ⊂ Lb(J).

Proof. Let u ≥ 0 in Lb(I). We shall prove that u ∈ L(J) (i.e., u ∈
Lb(J)) and this will imply Lb(I) ⊂ Lb(J), in view of the decomposition
u := u+ − u− with u+, u− in Lb(I) for arbitrary u ∈ Lb(I).

Consider a number M > 0 such that u ≤ M . Take ε > 0. Since J � I,
one can find δ > 0 such that for all 0 ≤ v ≤ 2M,v ∈ B, the inequality
I(v) < δ implies that J(v) < ε.

We can consider h ≤ u ≤ g with gn ↗ g, hn ↘ h ≥ 0, I∗(g) − I∗(h)
< δ/2, as above. One can assume 0 ≤ hn ≤ M, 0 ≤ gn ≤ M , because
gn ∨ 0 =: g′n ↗ g = g ∨ 0 and g′′n := g′n ∧M↗g ∧M ≥ u;hn ∨ 0 =: h′n↘h
= h ∨ 0; and

I∗(g∧M)−I∗(h) = sup
n

[I(g′′n−h′n)] ≤ I∗(g)−I∗(h) = sup
n

[I(gn−hn)] < δ/2.

For all n one has |gn − hn| ≤ gn + hn ≤ 2M . On the other hand,
|gn − hn| → |g − h| = g − h pointwise. Since all gn and hn are in L(I),
we can use the measure space generated by I and Lebesgue’s Dominated
Convergence Theorem to conclude that I(g − h) = limn I(|gn − hn|).

Since I(g − h) = I∗(g)− I∗(h) < δ/2, there exists a natural number n0

such that I(|gn − hn|) < δ for all n ≥ n0. It follows that for all n ≥ n0 one
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has J(|gn − hn|) < ε, because |gn − hn| ≤ 2M ; consequently,

J(gn − hn) ≤ J(|gn − hn|) < ε.

Since the sequence is increasing, one gets

sup
n
J(gn − hn) = J∗(g)− J∗(h) ≤ ε,

which means that u ∈ L(I), because ε is arbitrary.

Lemma 2. One has J � I for bounded functions; i.e., for every ε > 0
and every M > 0, there exists δ > 0 having the property that if u ∈ L(I)
is such that 0 ≤ u ≤ M and I(u) < δ, then J(u) < ε. Consequently , if
0 ≤ u ∈ L(I) is such that I(u) = 0, one has u ∈ L(J) and J(u) = 0.

Proof. Let ε,M > 0. There exists δ1 > 0 such that for all v ∈ B with
0 ≤ v ≤M and I(v) < δ1 one has J(v) < ε/2. Set δ := δ1/4.

Now, take u ∈ L(I) with 0 ≤ u ≤ M and I(u) < δ. Consider hn, gn in
B with gn ↗ g, hn ↘ h, h ≤ u ≤ g and I∗(g)− I∗(h) = supn[I(gn − hn)]
< δ1/4 as above. As we have seen, one can consider that 0 ≤ hn ≤ M,
0 ≤ gn ≤M .

Choose n0 ∈ N such that J(u) ≤ J∗(g) = supn J(gn) < J(gn0) + ε/2;
therefore

(1) J(u) < J(gn) + ε/2, ∀n ≥ n0.

For every n ∈ N, one has

(2) I(gn) = I(gn − hn) + I(hn) < I(hn) + δ1/4.

Since I∗(h) := infn I(hn), one can find n1 ∈ N such that I(hn1) < I∗(h) +
δ1/4 ≤ I(u) + δ1/4, therefore

(3) I(hn) < I(u) + δ1/4, ∀n ≥ n1.

Now, let n ≥ max{n0, n1}. In view of (2) and (3), one gets

I(gn) < I(hn) + δ1/4 < I(u) + δ1/2 < 3δ1/4 < δ1,

which implies that J(gn) < ε/2.
In view of (1), one has

(4) J(u) < J(gn) + ε/2 < ε

and, because ε is arbitrary, (4) shows that J � I for bounded functions in
L(I).

For the case 0 ≤ u ∈ L(I) with I(u) = 0, one has u = supn un, where
(un)n is the increasing sequence in Lb(I) given by un := u ∧ n. For every n
one has I(un) = 0 and the absolute continuity for bounded functions gives
J(un) = 0. Since supn J(un) = 0, Beppo-Levi’s theorem implies u ∈ L(J),
and J(u) = 0.
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Remark. J � I for bounded functions means that for every ε > 0 and
0 ≤ h ∈ Lb(I), there exists δ > 0 having the property that if u ∈ L(I) is
such that 0 ≤ u ≤ h, the inequality I(u) < δ implies J(u) < ε.

In order to continue our investigations, we introduce, for every u ≥ 0 in
Lb(I) and ε > 0:

(a) the average range of J with respect to I on u, which is the set of real
numbers

A(I, J)(u) := {J(v)/I(v); 0 ≤ v ≤ u, v ∈ L(I), I(v) > 0};
(b) the ε-approximate average range of J with respect to I on u, which

is the set of real numbers (possibly empty)

Aε(I, J)(u) := {x ∈ R; |x− a| ≤ ε for all a ∈ A(I, J)(u)}.
We make three assumptions which will be discussed and justified at the

end of the paper. N denotes the set {1, 2, 3, . . .} of all natural numbers.

Assumption 1. This assumption is sequential and inductive, consisting
of the following sequence of steps:

s(1): There exists a sequence (hn;1)n∈N or a finite family (hn;1)1≤n≤p1

of positive functions in L(I) such that I(hn;1) > 0 for all n and

(i)1

∑

n

hn;1 = 1

with pointwise covergence.

s(2): For every n ∈ N or 1 ≤ n ≤ p1, there exists a sequence (h(n,i);2)i∈N
or a finite family (h(n,i);2)1≤i≤p2 of positive functions in L(I) such that
I(hα;2) > 0 for all possible α := (n, i), and for all possible n we have
pointwise

(i)2

∑

i

h(n,i);2 = hn;1.

This implies
∑
α hα;2 = 1, where the sum

∑
α is taken pointwise over the

set of all possible α.

Assuming that the step s(n − 1) for n ≥ 2 of the assumption has been
defined (this pertains to the family (hα;n−1)α where α ∈ Nn−1 ranges over all
possible α) we shall write (α, in) ∈ Nn, for every α = (i1, . . . , in−1) ∈ Nn−1

and in ∈ N.
Now we are able to write the next step:

s(n): For every α ∈ Nn−1 in the set of all possible α given by the previous
steps, there exists a sequence (h(α,i);n)i∈N or a finite set (h(α,i);n)1≤i≤pn of
positive functions in L(I) such that I(hβ;n) > 0 for all possible β. Moreover,
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for all possible α, we have pointwise

(i)n
∑

i

h(α,i);n = hα;n−1

where the sum
∑
i is taken over the set of all possible i. This implies, in

view of
∑
α hα;n−1 = 1 in s(n − 1) and in view of (i)n, that

∑
β hβ;n = 1,

where β ranges over the set of all possible β.
Final comment upon Assumption 1: For every possible α ∈ Nm, if n > m,

one has
hα;m =

∑

β

h(α,β);n

where the sum runs over all possible β ∈ Nn−m, with obvious notations.
Note that all the hα;m are in Lb(I).

Assumption 2. For every natural number n and for every α ∈ Nn in
the set of all possible α, one has

A2−n(I, J)(hα;n) 6= ∅.
Assumption 3. There exists a number M > 0 such that for all n in N

and for all α ∈ Nn in the set of all possible α, one has

A2−n(I, J)(hα;n) ⊂ [−M,M ].

The general theory says that if f is a bounded function in L(I) and u is
in L(I), then fu is in L(I). We can now state the main result of this paper.

Theorem (An exact Radon–Nikodym theorem for Daniell integrals).
Assume that I, J are as above and Assumptions 1–3 are fulfilled. Then there
exists a positive bounded function f in L(I) such that

J(u) = I(fu)

for all u in L(I). The function f (called the Radon–Nikodym derivative of
J with respect to I) is I-almost unique, which means that if g in L(I) is
such that J(u) = I(gu) for all u in L(I) then I(|f − g|) = 0.

Proof. We shall construct a sequence (fn)n of bounded I-integrable func-
tions.

Let n be in N. In order to construct fn, we take an element rα;n in each
A2−n(I, J)(hα;n) for all possible α in Nn, according to Assumption 2. We
define fn : X → R pointwise by

fn :=
∑

α

rα;nhα;n

(where α ∈ Nn ranges over the set of all possible α).
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One has clearly

|fn| ≤
∑

α

|rα;n|hα;n ≤M
∑

α

hα;n = M,

so fn is bounded. Here we have used Assumption 3 and again Assumption 1.
If µ is the measure induced by the Daniell integral I (according to the general
theory), then the functions fn are clearly µ-measurable and, being bounded,
are also µ-integrable, i.e., they are in L(I).

Now we prove that the sequence (fn) is uniformly Cauchy, which implies
that it is uniformly convergent to a function f . Indeed, let m < n in N. We
shall prove that for all t in X one has

(5) |fm(t)− fn(t)| ≤ 21−m

and this will prove the assertion.
Take t ∈ X. We have (here β ∈ Nn−m is taken to be in the set of all

possible such indices)

|fm(t)− fn(t)| =
∣∣∣
∑

α

rα;mhα;m(t)−
∑

γ

rγ;nhγ;n(t)
∣∣∣

≤
∑

α

∣∣∣rα;mhα;m(t)−
∑

β

r(α,β);nh(α,β);n(t)
∣∣∣

≤
∑

(α,β)

|rα;mh(α,β);n(t)− r(α,β);nh(α,β);n(t)|

=
∑

(α,β)

h(α,β);n(t)|rα;m − r(α,β);n|

(see the final comment upon Assumption 1).
For every (α, β) we take a natural i such that (with obvious notation)

0 ≤ h(α,β,i);n+1 =: v ≤ h(α,β);n ≤ hα;m, I(v) > 0.

Summing upon all possible (α, β) and finding each time such a v =
v(α, β), one has

|fm(t)− fn(t)| ≤
∑

(α,β)

h(α,β);n(t)
(∣∣∣∣rα;m −

J(v)
I(v)

∣∣∣∣+
∣∣∣∣
J(v)
I(v)

− r(α,β);n

∣∣∣∣
)

≤
∑

(α,β)

h(α,β);n(t)(2−m + 2−n)

≤ 2−m+1
∑

(α,β)

h(α,β);n(t) = 2−m+1,

and (5) is proved.
Let f̃ : X → R be the (uniform) limit f̃ := limn fn.
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It is clear (because |fn| ≤ M) that |f̃ | ≤ M and so f̃ is bounded,
therefore f̃ ∈ L(I) according to the general theory.

We prove that for all u in L(I),

(6) J(u) = I(f̃u).

We show that (6) holds for every positive bounded u ≤ 1 in L(I). Indeed, one
can write limn fnu = f̃u and |fnu| ≤ M, |f̃u| ≤ M (everything pointwise)
and this implies

(7) lim I(fnu) = I(f̃u).

On the other hand, for every n in N,

|J(u)− I(fnu)| =
∣∣∣J(u)− I

((∑

α

rα;nhα;n

)
u
)∣∣∣ =

∣∣∣J(u)−
∑

α

rα;nI(uhα;n)
∣∣∣

(again by dominated convergence).
Because u = u

∑
α hα;n, one also has J(u) =

∑
α J(uhα;n) and so

(8) |J(u)− I(fnu)| =
∣∣∣
∑

α

(J(uhα;n)− rα;nI(uhα;n))
∣∣∣.

In case I(uhα;n) = 0 one has J(uhα;n) = 0, because J � I. In case
I(uhα;n) > 0 one has 0 ≤ uhα;n ≤ hα;n and then

∣∣∣∣
J(uhα;n)
I(uhα;n)

− rα;n

∣∣∣∣ ≤ 2−n,

which implies in all situations that

(9) |J(uhα;n)− rα;nI(uhα;n)| ≤ 2−nI(uhα;n) ≤ 2−nI(hα;n).

In view of (8) and (9), one obtains

|J(u)− I(fnu)| ≤ 2−n
∑

α

I(hα;n) = 2−nI(1),

which implies

(10) lim I(fnu) = J(u).

From (7) and (10) we obtain (6), which therefore holds for positive
bounded functions u in L(I).

If u is an arbitrary positive function in L(I), we have the pointwise
convergence un ↗ u, where un := u ∧ n. Since J(un) = I(f̃un) for all n,
it follows, by passing to suprema, that J(u) = I(f̃u) and (6) is true for all
positive functions in L(I). By linearity, (6) holds for all functions in L(I).
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If µ is the (complete) measure induced by the Daniell integral I, then
(6) implies (χA = the indicator function of A)

0 ≤ J(χA) =
�

A

f̃ dµ

for all A ⊂ X with χA ∈ L(I). General measure theory says that f̃(t) ≥ 0
µ-almost everywhere.

The set M := {t ∈ X; f̃(t) < 0} has the properties χM ∈ L(I) and
µ(M) = I(χM ) = 0. Defining f : X → R via

f(t) :=
{
f̃(t), t 6∈M ,
0, t ∈M ,

one has f ≥ 0 everywhere, f = f̃ µ-almost everywhere and therefore

J(u) = I(f̃u) = I(fu)

for all u in L(I).
For the unicity, consider another function g in L(I) such that J(u) =

I(gu) for all u in L(I). So, we have I(fχA) = I(gχA), which means that�
A
f dµ =

�
A
g dµ for all A ⊂ X with χA ∈ L(I). General measure theory

says that g = f µ-almost everywhere, which means

0 =
�
|f − g| dµ = I(|f − g|).

3. Other results and comments

3.1. We begin with a general result which will furnish material for some
comments. Assume therefore thatX 6= ∅ is an abstract set, B a vector lattice
of functions f : X → R and I, J : B → R are linear positive functionals.
Using the conventions 0

0 := 0 and a
0 := ∞ for a > 0 we shall modify the

previous definitions a little. Namely, for every u in +B and ε > 0, we set

A′(I, J)(u) := {J(v)/I(v); 0 ≤ v ≤ u, v ∈ B},
A′ε(I, J)(u) := {x ∈ R; |x− a| ≤ ε, a ∈ A′(I, J)(u)}.

Proposition. (i) Assume that for all u in +B, the set A′(I, J)(u) is
bounded (e.g. in case there exists a number M > 0 such that J ≤MI). Then
J � I.

(ii) For every u in +B and every ε > 0, the set A′ε(I, J)(u) is closed
(actually compact).

(iii) For every u in +B we have 0 < ε < γ ⇒ A′ε(I, J)(u) ⊂ A′γ(I, J)(u).
(iv) Assuming that u in +B is such that A′ε(I, J)(u) 6= ∅ for all ε > 0,

the intersection
⋂
ε>0A

′
ε(I, J)(u) contains exactly one point.

Proof. (i) Assume that for all u in +B the set A′(I, J)(u) is bounded.
If J � I is false, we can find ε0 > 0 and u in +B with the property that
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for all n in N, there exists 0 ≤ un ≤ u in B such that I(un) < 1/n and
J(un) ≥ ε0.

If I(un) = 0, then J(un)/I(un) =∞ and A′(I, J)(u) is not bounded.
If I(un) > 0, then J(un)/I(un) ≥ nε0 and, in this case too, A′(I, J)(u)

is not bounded. Contradiction, and (i) follows.
In the particular case when J ≤ MI for some positive M , one has

obviously A′(I, J)(u) ⊂ [0,M ].
Assertion (ii) is clear when A′ε(I, J)(u) = ∅. So, assume A′ε(I, J)(u) 6= ∅.
If a number x is such that x = limn xn, where (xn)n is a sequence in

A′ε(I, J)(u), then for an arbitrary fixed 0 ≤ v ≤ u in B one has∣∣∣∣
J(v)
I(v)

− xn
∣∣∣∣ ≤ ε

for every n. Passing to the limit gives∣∣∣∣
J(v)
I(v)

− x
∣∣∣∣ ≤ ε.

The fact that v is arbitrary shows that x ∈ A′ε(I, J)(u).
Point (iii) is trivial. We prove (iv).
For every ε > 0, the nonempty set A′ε(I, J)(u) is bounded (for every x

and y in A′ε(I, J)(u) one has |x − y| ≤ |x − a| + |y − a| ≤ 2ε, upon taking
some a in A′ε(I, J)(u)), therefore compact, and the decreasing intersection
is nonempty. Put A :=

⋂
ε>0A

′
ε(I, J)(u).

Assume the existence of x 6= y in A; then one has, for a fixed 0 ≤ v ≤ u
in B, the inequalities∣∣∣∣

J(v)
I(v)

− x
∣∣∣∣ ≤
|x− y|

4
and

∣∣∣∣
J(v)
I(v)

− y
∣∣∣∣ ≤
|x− y|

4
.

Hence
|x− y| ≤

∣∣∣∣
J(v)
I(v)

− x
∣∣∣∣+
∣∣∣∣
J(v)
I(v)

− y
∣∣∣∣ ≤
|x− y|

2
,

which is false.

Commenting on the Proposition, we can say:

(a) Point (i) motivates Assumption 3 a little. For example, in the par-
ticular case when there exists a positive number M such that J ≤MI, one
quickly sees that J ≤MI and this implies that for every positive u in L(I)
one has A′(I, J)(u) ⊂ [0,M ].

(b) Point (iv) can give us some ideas in connection with the possible
values of the function f . Namely, they should be close to the elements in
the intersection of the form ⋂

ε>0

A′ε(I, J)(hα;n)

for large n. So, f is obtained via a kind of differentiation procedure.
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(c) In connection with Assumption 2, which says that for large n the
average range A(I, J)(hα;n) must have very small diameter (see also com-
ment (b)), the following example will be, perhaps, illuminating, putting into
evidence a concrete construction of the family (hα;n).

3.2. We now give an example to show how the theorem effectively works.
We take X := [0, 1] and B := the algebra of all continuous functions

u : [0, 1] → R. The functional I : B → R is given by I(f) :=
� 1
0 u(x) dx. In

order to construct J we fix a positive function f ∈ B and then J : B → R
is given by J(u) :=

� 1
0 f(x)u(x) dx.

If M := max{f(x); x ∈ [0, 1]} then J ≤ MI, which shows that J � I
and Assumption 3 is automatically satisfied.

One knows that I is exactly the Lebesgue integral on the space L(I) of
all Lebesgue integrable functions, so

I(u) =
�
u dµ, ∀u ∈ L(I),

where µ :M→ +R is the Lebesgue measure (induced by I over the set M
of all Lebesgue measurable subsets of [0, 1]). Then J acts via

J(u) =
�
fu dµ, ∀u ∈ L(I).

We now show how Assumptions 1 and 2 can be satisfied. To this end, we
use the following

Statement. Let U ⊂ R be a compact interval , µ the Lebesgue measure
on U and f : U → R a positive continuous function. Then, for every ε > 0,
there exists δ > 0 such that for every a in U which is not the right end of
U , one has the property : for each interval [a, b] ⊂ U with b− a < δ and for
each Lebesgue integrable function u : U → R such that 0 ≤ u ≤ χ[a,b] and u
is not null µ-almost everywhere on [a, b], the following relation holds:�

[a,b] fu dµ�
[a,b] u dµ

∈ [f(a)− ε/2, f(a) + ε/2].

Proof. Since f is bounded, there exists a natural number k, not depend-
ing on a, such that

(11)
1
k

+
1
k2 +

f(a)
k

<
ε

2
.

In view of the uniform continuity of f , there exists δ > 0 not depending
on a such that

(12) M := sup{f(x); x ∈ [a, b]} ≤ f(a) + 1/k

and

(13) m := inf{f(x); x ∈ [a, b]} ≥ f(a)− 1/k

if [a, b] ⊂ U is such that b− a < δ.
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Fix the interval [a, b] as in the Statement. First, we shall prove it for
every Riemann integrable function

u ∈ H(a, b) := {u : U → R; 0 ≤ u ≤ χ[a,b], u 6= 0 µ-a.e.}.

There exist positive continuous functions g, h : [a, b]→ R such that

0 ≤ h ≤ u ≤ g and
�

[a,b]

h dµ > 0

(since
�
[a,b] u dµ > 0).

In view of the general properties of the Daniell integral, we can find an
increasing sequence (hn)n of positive continuous functions hn : [a, b] → R,
hn ≤ u, and a decreasing sequence (gn)n of positive continuous functions
gn : [a, b]→ R, gn ≥ u, such that

�

[a,b]

u dµ = sup
n

�

[a,b]

hn dµ = inf
n

�

[a,b]

gn dµ.

One can find a natural n such that

(14) 1 ≤
�
[a,b] gn dµ�
[a,b] hn dµ

≤ 1 +
1
k

and 1 ≥
�
[a,b] hn dµ�
[a,b] gn dµ

≥ 1− 1
k
.

Put h := hn and g := gn. One has
�
[a,b] fh dµ�
[a,b] g dµ

≤
�
[a,b] fu dµ�
[a,b] u dµ

≤
�
[a,b] fg dµ�
[a,b] h dµ

.

But using (12)–(14) gives

�

[a,b]

fg dµ ≤M
�

[a,b]

g dµ ≤
(
f(a) +

1
k

) �

[a,b]

g dµ;

therefore,
�
[a,b] fg dµ�
[a,b] h dµ

≤
(
f(a) +

1
k

) �
[a,b] g dµ�
[a,b] h dµ

≤
(
f(a) +

1
k

)(
1 +

1
k

)
;

and
�

[a,b]

fh dµ ≥ m
�

[a,b]

h dµ ≥
(
f(a)− 1

k

) �

[a,b]

h dµ;

therefore
�
[a,b] fh dµ�
[a,b] g dµ

≥
(
f(a)− 1

k

) �
[a,b] h dµ�
[a,b] g dµ

≥
(
f(a)− 1

k

)(
1− 1

k

)
.
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It follows that

f(a)−
(

1
k

+
f(a)
k
− 1
k2

)
≤

�
[a,b] fu dµ�
[a,b] u dµ

≤ f(a) +
(

1
k

+
f(a)
k

+
1
k2

)
,

which implies, using (11), that

f(a)− ε

2
≤

�
[a,b] fu dµ�
[a,b] u dµ

≤ f(a) +
ε

2
.

Now, we prove the validity of the result for every Lebesgue integrable
function u ∈ H(a, b). There exists a sequence (un)n of Riemann integrable
functions, un : U → R, such that ‖un − u‖1 :=

�
|un − u| dµ → 0 and one

can suppose that un → u µ-a.e. Then ‖u+
n − u‖1 → 0, where u+

n := un ∨ 0
(since u = u ∨ 0) and hence ‖zn − u‖1 → 0, where zn := u+

n ∧ χ[a,b] (since
u ∧ χ[a,b] = u). We have used the properties of the Banach lattice L1(µ).
One sees that 0 ≤ zn ≤ χ[a,b], zn are Riemann integrable and, for n greater
than some n0, one must have

�
zn dµ > 0, because

�
u dµ > 0.

The result already obtained for Riemann integrable functions yields for
all n ≥ n0, �

[a,b] fzn dµ�
[a,b] zn dµ

∈ [f(a)− ε/2, f(a) + ε/2],

and passing to the n-limit, one obtains�
[a,b] fu dµ�
[a,b] u dµ

∈ [f(a)− ε/2, f(a) + ε/2].

Using this Statement, one can see that, for given ε > 0, there exists δ > 0
such that for every 0 ≤ a < b ≤ 1 with b− a < δ, one has

Aε(I, J)(χ[a,b]) 6= ∅.
Indeed, we saw that for given ε > 0, one can find δ > 0 such that for

every a, b as above one has

A(I, J)(χ[a,b]) ⊂ [f(a)− ε/2, f(a) + ε/2].

Then it is immediately seen that

[f(a)− ε/2, f(a) + ε/2] ⊂ Aε(I, J)(χ[a,b]).

We are prepared to satisfy Assumptions 1 and 2. The constructions indi-
cated in the successive steps s(1), s(2), . . . will give each time a finite number
of results. More precisely:

s(1): There exists a natural number p1 such that for every interval [a, b]
⊂ [0, 1] with b− a ≤ 1/p1, one has

A2−1(I, J)(χ[a,b]) 6= ∅
as we have seen.
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Let us divide [0, 1] as follows:

0 =: x0 < x1 < . . . < xp1 := 1, xi − xi−1 = 1/p1.

Then we define (hi;1)1≤i≤p1 via

hi;1 :=
{
χ[xi−1,xi[ ∈ L(I) for i < p1,
χ[xi−1,xi] ∈ L(I) for i = p1.

s(2): There exists a natural number p2 such that for every interval [a, b]
⊂ [0, 1] with b− a ≤ 1/p2, one has

A2−2(I, J)(χ[a,b]) 6= ∅.
Then, for every i = 1, . . . , p1, we divide [xi−1, xi] as follows:

xi−1 =: xi,0 < xi,1 < . . . < xi,p2 := xi, xi,k − xi,k−1 =
1

p1p2
.

Fixing i = 1, . . . , p1 − 1, we can define the functions (h(i,k);2)1≤k≤p2 by

h(i,k);2 := χ[xi,k−1,xi,k[ ∈ L(I)

and for i = p1 we define (h(i,k);2)1≤k≤p2 by

h(i,k);2 :=
{
χ[xi,k−1,xi,k[ ∈ L(I) for k < p2,
χ[xi,k−1,xi,k] ∈ L(I) for k = p2.

We obtained the set of functions (hα;2)α∈A with A :={1, . . . , p1}×{1, . . . , p2}
and this accomplishes the construction for step s(2).

The procedure continues in the same manner (dividing all intervals into
small subintervals of equal length a.s.o.).

The reader can see that, in this way, Assumptions 1 and 2 are satisfied.
One should add that the construction will give as uniform limit of the

sequence (fn)n so obtained a function which must be µ-almost everywhere
equal to the initial f , which is the Radon–Nikodym derivative of J with
respect to I.

3.3. We end with some supplementary considerations.
Our theorem gives an exact Radon–Nikodym derivative. One knows

(see [1]) that for Daniell integrals one cannot generally find exact Radon–
Nikodym derivatives, only approximate Radon–Nikodym derivatives existing
always. The price payed in order to obtain this better situation was the fol-
lowing:

(a) We are obliged to work for the Daniell case, more particular than the
case of general linear positive functionals. This general extension procedure
has been studied in [2], being among the first ones concerned with Loomis
systems.

(b) Additional assumptions 1–3 were adopted.
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(c) The exact Radon–Nikodym derivative one can find generally belongs
to the space L(I), which is considerably larger than the initial space B.

The procedure presented is constructive, which distinguishes the present
work from [1].

References

[1] E. de Amo, I. Chitescu and M. Dı́az Carrillo, An approximate functional Radon–
Nikodym theorem, Rend. Circ. Mat. Palermo 48 (1999), 443–450.

[2] P. Bobillo Guerrero and M. Dı́az Carrillo, Summable and integrable functions with
respect to any Loomis system, Arch. Math. (Basel) 49 (1987), 245–256.
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