An exact functional Radon-Nikodym theorem for Daniell integrals

by
E. de Amo (Almería), I. Chitescu (Bucureşti) and M. Díaz Carrillo (Granada)

Abstract

Given two positive Daniell integrals I and J, with J absolutely continuous with respect to I, we find sufficient conditions in order to obtain an exact Radon-Nikodym derivative f of J with respect to I. The procedure of obtaining f is constructive.

1. Introduction. In this paper we consider two positive Daniell integrals I and J on a lattice of functions B which is also a unitary algebra, J being absolutely continuous with respect to I. We give sufficient conditions to obtain, in a constructive manner, an "exact" Radon-Nikodym derivative f of J with respect to I, i.e., to have $J(u)=I(f u)$ for every u in B. Generally, the derivative thus obtained must be in a larger space than B, so the relation $J(u)=I(f u)$ actually holds for the canonical extensions of I and J.

We recognize the strong influence of [6] and [8].
2. Main result. We shall consider a nonempty set X (the total space) and a vector lattice B of functions $f: X \rightarrow \mathbb{R}$ (with pointwise operations and order). We shall also assume that B is an algebra with unit $1 \in B$. We denote by $+B$ the positive elements in B.

In what follows, $I: B \rightarrow \mathbb{R}$ will be a positive Daniell integral (i.e., I is linear, positive and $I\left(f_{n}\right) \searrow 0$ whenever the decreasing sequence $\left(f_{n}\right)$ in B is such that $f_{n} \searrow 0$ pointwise). For Daniell integrals, see [9] and [10], and for general measure theory, see [5], [7] and [10].

Let also $J: B \rightarrow \mathbb{R}$ be a positive linear functional. We shall assume that J is absolutely continuous with respect to I, i.e., for all $\varepsilon>0$ and for all u in $+B$ there exists $\delta>0$ such that, for all v in $+B$ with $v \leq u$ and $I(v)<\delta$ one has $J(v)<\varepsilon$ (see [1] and [3]), which is denoted by $J \ll I$.

[^0]Notice that J must also be a Daniell integral (due to its absolute continuity with respect to I).

According to the general theory, I generates the vector lattice $L(I)$ of all I-integrable functions and J generates the vector lattice $L(J)$ of all J integrable functions. We shall denote by $L_{\mathrm{b}}(I)$ (resp. $\left.L_{\mathrm{b}}(J)\right)$ the set of all bounded I-integrable (resp. J-integrable) functions. Recall that for $f: X \rightarrow$ \mathbb{R}, to say that f is in $L(I)$ means that for every $\varepsilon>0$ there exist $g, h: X \rightarrow \mathbb{R}$ with the following three properties:
(a) There exists an increasing sequence $\left(g_{n}\right)_{n}$ in B such that $g_{n} \nearrow g$ and

$$
I^{*}(g):=\sup _{n} I\left(g_{n}\right)<\infty .
$$

(b) There exists a decreasing sequence $\left(h_{n}\right)_{n}$ in B such that $h_{n} \searrow h$ and

$$
I_{*}(h):=\inf _{n} I\left(h_{n}\right)>-\infty .
$$

(c) One has the inequalities $h \leq f \leq g$ and $0 \leq I^{*}(g)-I_{*}(h)<\varepsilon$ (the last inequality actually means that $\left.\sup _{n}\left[I\left(g_{n}-h_{n}\right)\right]<\varepsilon\right)$.

In case $f \geq 0$ one can suppose $h \geq 0$.
Then I can be uniquely extended to a linear positive functional \bar{I} : $L(I) \rightarrow \mathbb{R}$ having the property that $I_{*}(h) \leq \bar{I}(f) \leq I^{*}(g)$ for all h and g as above.

Similar considerations apply to the extension of J.
Lemma 1. If $J \ll I$, then $L_{\mathrm{b}}(I) \subset L_{\mathrm{b}}(J)$.
Proof. Let $u \geq 0$ in $L_{\mathrm{b}}(I)$. We shall prove that $u \in L(J)$ (i.e., $u \in$ $\left.L_{\mathrm{b}}(J)\right)$ and this will imply $L_{\mathrm{b}}(I) \subset L_{\mathrm{b}}(J)$, in view of the decomposition $u:=u^{+}-u^{-}$with u^{+}, u^{-}in $L_{\mathrm{b}}(I)$ for arbitrary $u \in L_{\mathrm{b}}(I)$.

Consider a number $M>0$ such that $u \leq M$. Take $\varepsilon>0$. Since $J \ll I$, one can find $\delta>0$ such that for all $0 \leq v \leq 2 M, v \in B$, the inequality $I(v)<\delta$ implies that $J(v)<\varepsilon$.

We can consider $h \leq u \leq g$ with $g_{n} \nearrow g, h_{n} \searrow h \geq 0, I^{*}(g)-I_{*}(h)$ $<\delta / 2$, as above. One can assume $0 \leq h_{n} \leq M, 0 \leq g_{n} \leq M$, because $g_{n} \vee 0=: g_{n}^{\prime} \nearrow g=g \vee 0$ and $g_{n}^{\prime \prime}:=g_{n}^{\prime} \wedge M \nearrow g \wedge M \geq u ; h_{n} \vee 0=: h_{n}^{\prime} \searrow h$ $=h \vee 0$; and
$I^{*}(g \wedge M)-I_{*}(h)=\sup _{n}\left[I\left(g_{n}^{\prime \prime}-h_{n}^{\prime}\right)\right] \leq I^{*}(g)-I_{*}(h)=\sup _{n}\left[I\left(g_{n}-h_{n}\right)\right]<\delta / 2$.
For all n one has $\left|g_{n}-h_{n}\right| \leq g_{n}+h_{n} \leq 2 M$. On the other hand, $\left|g_{n}-h_{n}\right| \rightarrow|g-h|=g-h$ pointwise. Since all g_{n} and h_{n} are in $L(I)$, we can use the measure space generated by I and Lebesgue's Dominated Convergence Theorem to conclude that $\bar{I}(g-h)=\lim _{n} I\left(\left|g_{n}-h_{n}\right|\right)$.

Since $\bar{I}(g-h)=I^{*}(g)-I_{*}(h)<\delta / 2$, there exists a natural number n_{0} such that $I\left(\left|g_{n}-h_{n}\right|\right)<\delta$ for all $n \geq n_{0}$. It follows that for all $n \geq n_{0}$ one
has $J\left(\left|g_{n}-h_{n}\right|\right)<\varepsilon$, because $\left|g_{n}-h_{n}\right| \leq 2 M$; consequently,

$$
J\left(g_{n}-h_{n}\right) \leq J\left(\left|g_{n}-h_{n}\right|\right)<\varepsilon .
$$

Since the sequence is increasing, one gets

$$
\sup _{n} J\left(g_{n}-h_{n}\right)=J^{*}(g)-J_{*}(h) \leq \varepsilon,
$$

which means that $u \in L(I)$, because ε is arbitrary.
Lemma 2. One has $\bar{J} \ll \bar{I}$ for bounded functions; i.e., for every $\varepsilon>0$ and every $M>0$, there exists $\delta>0$ having the property that if $u \in L(I)$ is such that $0 \leq u \leq M$ and $\bar{I}(u)<\delta$, then $\bar{J}(u)<\varepsilon$. Consequently, if $0 \leq u \in L(I)$ is such that $\bar{I}(u)=0$, one has $u \in L(J)$ and $\bar{J}(u)=0$.

Proof. Let $\varepsilon, M>0$. There exists $\delta_{1}>0$ such that for all $v \in B$ with $0 \leq v \leq M$ and $I(v)<\delta_{1}$ one has $J(v)<\varepsilon / 2$. Set $\delta:=\delta_{1} / 4$.

Now, take $u \in L(I)$ with $0 \leq u \leq M$ and $\bar{I}(u)<\delta$. Consider h_{n}, g_{n} in B with $g_{n} \nearrow g, h_{n} \searrow h, h \leq u \leq g$ and $I^{*}(g)-I_{*}(h)=\sup _{n}\left[I\left(g_{n}-h_{n}\right)\right]$ $<\delta_{1} / 4$ as above. As we have seen, one can consider that $0 \leq h_{n} \leq M$, $0 \leq g_{n} \leq M$.

Choose $n_{0} \in \mathbb{N}$ such that $\bar{J}(u) \leq J^{*}(g)=\sup _{n} J\left(g_{n}\right)<J\left(g_{n_{0}}\right)+\varepsilon / 2 ;$ therefore

$$
\begin{equation*}
\bar{J}(u)<J\left(g_{n}\right)+\varepsilon / 2, \quad \forall n \geq n_{0} \tag{1}
\end{equation*}
$$

For every $n \in \mathbb{N}$, one has

$$
\begin{equation*}
I\left(g_{n}\right)=I\left(g_{n}-h_{n}\right)+I\left(h_{n}\right)<I\left(h_{n}\right)+\delta_{1} / 4 \tag{2}
\end{equation*}
$$

Since $I_{*}(h):=\inf _{n} I\left(h_{n}\right)$, one can find $n_{1} \in \mathbb{N}$ such that $I\left(h_{n_{1}}\right)<I_{*}(h)+$ $\delta_{1} / 4 \leq \bar{I}(u)+\delta_{1} / 4$, therefore

$$
\begin{equation*}
I\left(h_{n}\right)<\bar{I}(u)+\delta_{1} / 4, \quad \forall n \geq n_{1} \tag{3}
\end{equation*}
$$

Now, let $n \geq \max \left\{n_{0}, n_{1}\right\}$. In view of (2) and (3), one gets

$$
I\left(g_{n}\right)<I\left(h_{n}\right)+\delta_{1} / 4<\bar{I}(u)+\delta_{1} / 2<3 \delta_{1} / 4<\delta_{1}
$$

which implies that $J\left(g_{n}\right)<\varepsilon / 2$.
In view of (1), one has

$$
\begin{equation*}
\bar{J}(u)<J\left(g_{n}\right)+\varepsilon / 2<\varepsilon \tag{4}
\end{equation*}
$$

and, because ε is arbitrary, (4) shows that $\bar{J} \ll \bar{I}$ for bounded functions in $L(I)$.

For the case $0 \leq u \in L(I)$ with $\bar{I}(u)=0$, one has $u=\sup _{n} u_{n}$, where $\left(u_{n}\right)_{n}$ is the increasing sequence in $L_{\mathrm{b}}(I)$ given by $u_{n}:=u \wedge n$. For every n one has $\bar{I}\left(u_{n}\right)=0$ and the absolute continuity for bounded functions gives $\bar{J}\left(u_{n}\right)=0$. Since $\sup _{n} \bar{J}\left(u_{n}\right)=0$, Beppo-Levi's theorem implies $u \in L(J)$, and $\bar{J}(u)=0$.

Remark. $\bar{J} \ll \bar{I}$ for bounded functions means that for every $\varepsilon>0$ and $0 \leq h \in L_{\mathrm{b}}(I)$, there exists $\delta>0$ having the property that if $u \in L(I)$ is such that $0 \leq u \leq h$, the inequality $\bar{I}(u)<\delta$ implies $\bar{J}(u)<\varepsilon$.

In order to continue our investigations, we introduce, for every $u \geq 0$ in $L_{\mathrm{b}}(I)$ and $\varepsilon>0$:
(a) the average range of \bar{J} with respect to \bar{I} on u, which is the set of real numbers

$$
A(\bar{I}, \bar{J})(u):=\{\bar{J}(v) / \bar{I}(v) ; 0 \leq v \leq u, v \in L(I), \bar{I}(v)>0\}
$$

(b) the ε-approximate average range of \bar{J} with respect to \bar{I} on u, which is the set of real numbers (possibly empty)

$$
A_{\varepsilon}(\bar{I}, \bar{J})(u):=\{x \in \mathbb{R} ;|x-a| \leq \varepsilon \text { for all } a \in A(\bar{I}, \bar{J})(u)\}
$$

We make three assumptions which will be discussed and justified at the end of the paper. \mathbb{N} denotes the set $\{1,2,3, \ldots\}$ of all natural numbers.

Assumption 1. This assumption is sequential and inductive, consisting of the following sequence of steps:
$s(1)$: There exists a sequence $\left(h_{n ; 1}\right)_{n \in \mathbb{N}}$ or a finite family $\left(h_{n ; 1}\right)_{1 \leq n \leq p_{1}}$ of positive functions in $L(I)$ such that $\bar{I}\left(h_{n ; 1}\right)>0$ for all n and

$$
\begin{equation*}
\sum_{n} h_{n ; 1}=1 \tag{i}
\end{equation*}
$$

with pointwise covergence.
$s(2):$ For every $n \in \mathbb{N}$ or $1 \leq n \leq p_{1}$, there exists a sequence $\left(h_{(n, i) ; 2}\right)_{i \in \mathbb{N}}$ or a finite family $\left(h_{(n, i) ; 2}\right)_{1 \leq i \leq p_{2}}$ of positive functions in $L(I)$ such that $\bar{I}\left(h_{\alpha ; 2}\right)>0$ for all possible $\alpha:=(n, i)$, and for all possible n we have pointwise

$$
\begin{equation*}
\sum_{i} h_{(n, i) ; 2}=h_{n ; 1} \tag{i}
\end{equation*}
$$

This implies $\sum_{\alpha} h_{\alpha ; 2}=1$, where the sum \sum_{α} is taken pointwise over the set of all possible α.

Assuming that the step $s(n-1)$ for $n \geq 2$ of the assumption has been defined (this pertains to the family $\left(h_{\alpha ; n-1}\right)_{\alpha}$ where $\alpha \in \mathbb{N}^{n-1}$ ranges over all possible α) we shall write $\left(\alpha, i_{n}\right) \in \mathbb{N}^{n}$, for every $\alpha=\left(i_{1}, \ldots, i_{n-1}\right) \in \mathbb{N}^{n-1}$ and $i_{n} \in \mathbb{N}$.

Now we are able to write the next step:
$s(n)$: For every $\alpha \in \mathbb{N}^{n-1}$ in the set of all possible α given by the previous steps, there exists a sequence $\left(h_{(\alpha, i) ; n}\right)_{i \in \mathbb{N}}$ or a finite set $\left(h_{(\alpha, i) ; n}\right)_{1 \leq i \leq p_{n}}$ of positive functions in $L(I)$ such that $\bar{I}\left(h_{\beta ; n}\right)>0$ for all possible β. Moreover,
for all possible α, we have pointwise

$$
\begin{equation*}
\sum_{i} h_{(\alpha, i) ; n}=h_{\alpha ; n-1} \tag{i}
\end{equation*}
$$

where the sum \sum_{i} is taken over the set of all possible i. This implies, in view of $\sum_{\alpha} h_{\alpha ; n-1}=1$ in $s(n-1)$ and in view of (i) n_{n}, that $\sum_{\beta} h_{\beta ; n}=1$, where β ranges over the set of all possible β.

Final comment upon Assumption 1: For every possible $\alpha \in \mathbb{N}^{m}$, if $n>m$, one has

$$
h_{\alpha ; m}=\sum_{\beta} h_{(\alpha, \beta) ; n}
$$

where the sum runs over all possible $\beta \in \mathbb{N}^{n-m}$, with obvious notations. Note that all the $h_{\alpha ; m}$ are in $L_{\mathrm{b}}(I)$.

Assumption 2. For every natural number n and for every $\alpha \in \mathbb{N}^{n}$ in the set of all possible α, one has

$$
A_{2^{-n}}(\bar{I}, \bar{J})\left(h_{\alpha ; n}\right) \neq \emptyset
$$

Assumption 3. There exists a number $M>0$ such that for all n in \mathbb{N} and for all $\alpha \in \mathbb{N}^{n}$ in the set of all possible α, one has

$$
A_{2^{-n}}(\bar{I}, \bar{J})\left(h_{\alpha ; n}\right) \subset[-M, M]
$$

The general theory says that if f is a bounded function in $L(I)$ and u is in $L(I)$, then $f u$ is in $L(I)$. We can now state the main result of this paper.

Theorem (An exact Radon-Nikodym theorem for Daniell integrals). Assume that I, J are as above and Assumptions 1-3 are fulfilled. Then there exists a positive bounded function f in $L(I)$ such that

$$
\bar{J}(u)=\bar{I}(f u)
$$

for all u in $L(I)$. The function f (called the Radon-Nikodym derivative of \bar{J} with respect to $\bar{I})$ is I-almost unique, which means that if g in $L(I)$ is such that $\bar{J}(u)=\bar{I}(g u)$ for all u in $L(I)$ then $\bar{I}(|f-g|)=0$.

Proof. We shall construct a sequence $\left(f_{n}\right)_{n}$ of bounded I-integrable functions.

Let n be in \mathbb{N}. In order to construct f_{n}, we take an element $r_{\alpha ; n}$ in each $A_{2^{-n}}(\bar{I}, \bar{J})\left(h_{\alpha ; n}\right)$ for all possible α in \mathbb{N}^{n}, according to Assumption 2. We define $f_{n}: X \rightarrow \mathbb{R}$ pointwise by

$$
f_{n}:=\sum_{\alpha} r_{\alpha ; n} h_{\alpha ; n}
$$

(where $\alpha \in \mathbb{N}^{n}$ ranges over the set of all possible α).

One has clearly

$$
\left|f_{n}\right| \leq \sum_{\alpha}\left|r_{\alpha ; n}\right| h_{\alpha ; n} \leq M \sum_{\alpha} h_{\alpha ; n}=M
$$

so f_{n} is bounded. Here we have used Assumption 3 and again Assumption 1. If μ is the measure induced by the Daniell integral I (according to the general theory), then the functions f_{n} are clearly μ-measurable and, being bounded, are also μ-integrable, i.e., they are in $L(I)$.

Now we prove that the sequence $\left(f_{n}\right)$ is uniformly Cauchy, which implies that it is uniformly convergent to a function f. Indeed, let $m<n$ in \mathbb{N}. We shall prove that for all t in X one has

$$
\begin{equation*}
\left|f_{m}(t)-f_{n}(t)\right| \leq 2^{1-m} \tag{5}
\end{equation*}
$$

and this will prove the assertion.
Take $t \in X$. We have (here $\beta \in \mathbb{N}^{n-m}$ is taken to be in the set of all possible such indices)

$$
\begin{aligned}
\left|f_{m}(t)-f_{n}(t)\right| & =\left|\sum_{\alpha} r_{\alpha ; m} h_{\alpha ; m}(t)-\sum_{\gamma} r_{\gamma ; n} h_{\gamma ; n}(t)\right| \\
& \leq \sum_{\alpha}\left|r_{\alpha ; m} h_{\alpha ; m}(t)-\sum_{\beta} r_{(\alpha, \beta) ; n} h_{(\alpha, \beta) ; n}(t)\right| \\
& \leq \sum_{(\alpha, \beta)}\left|r_{\alpha ; m} h_{(\alpha, \beta) ; n}(t)-r_{(\alpha, \beta) ; n} h_{(\alpha, \beta) ; n}(t)\right| \\
& =\sum_{(\alpha, \beta)} h_{(\alpha, \beta) ; n}(t)\left|r_{\alpha ; m}-r_{(\alpha, \beta) ; n}\right|
\end{aligned}
$$

(see the final comment upon Assumption 1).
For every (α, β) we take a natural i such that (with obvious notation)

$$
0 \leq h_{(\alpha, \beta, i) ; n+1}=: v \leq h_{(\alpha, \beta) ; n} \leq h_{\alpha ; m}, \quad \bar{I}(v)>0
$$

Summing upon all possible (α, β) and finding each time such a $v=$ $v(\alpha, \beta)$, one has

$$
\begin{aligned}
\left|f_{m}(t)-f_{n}(t)\right| & \leq \sum_{(\alpha, \beta)} h_{(\alpha, \beta) ; n}(t)\left(\left|r_{\alpha ; m}-\frac{\bar{J}(v)}{\bar{I}(v)}\right|+\left|\frac{\bar{J}(v)}{\bar{I}(v)}-r_{(\alpha, \beta) ; n}\right|\right) \\
& \leq \sum_{(\alpha, \beta)} h_{(\alpha, \beta) ; n}(t)\left(2^{-m}+2^{-n}\right) \\
& \leq 2^{-m+1} \sum_{(\alpha, \beta)} h_{(\alpha, \beta) ; n}(t)=2^{-m+1}
\end{aligned}
$$

and (5) is proved.
Let $\widetilde{f}: X \rightarrow \mathbb{R}$ be the (uniform) limit $\widetilde{f}:=\lim _{n} f_{n}$.

It is clear (because $\left.\left|f_{n}\right| \leq M\right)$ that $|\widetilde{f}| \leq M$ and so \widetilde{f} is bounded, therefore $\widetilde{f} \in L(I)$ according to the general theory.

We prove that for all u in $L(I)$,

$$
\begin{equation*}
\bar{J}(u)=\bar{I}(\tilde{f} u) \tag{6}
\end{equation*}
$$

We show that (6) holds for every positive bounded $u \leq 1$ in $L(I)$. Indeed, one can write $\lim _{n} f_{n} u=\widetilde{f} u$ and $\left|f_{n} u\right| \leq M,|\widetilde{f} u| \leq M$ (everything pointwise) and this implies

$$
\begin{equation*}
\lim \bar{I}\left(f_{n} u\right)=\bar{I}(\tilde{f} u) \tag{7}
\end{equation*}
$$

On the other hand, for every n in \mathbb{N},

$$
\left|\bar{J}(u)-\bar{I}\left(f_{n} u\right)\right|=\left|\bar{J}(u)-\bar{I}\left(\left(\sum_{\alpha} r_{\alpha ; n} h_{\alpha ; n}\right) u\right)\right|=\left|\bar{J}(u)-\sum_{\alpha} r_{\alpha ; n} \bar{I}\left(u h_{\alpha ; n}\right)\right|
$$

(again by dominated convergence).
Because $u=u \sum_{\alpha} h_{\alpha ; n}$, one also has $\bar{J}(u)=\sum_{\alpha} \bar{J}\left(u h_{\alpha ; n}\right)$ and so

$$
\begin{equation*}
\left|\bar{J}(u)-\bar{I}\left(f_{n} u\right)\right|=\left|\sum_{\alpha}\left(\bar{J}\left(u h_{\alpha ; n}\right)-r_{\alpha ; n} \bar{I}\left(u h_{\alpha ; n}\right)\right)\right| \tag{8}
\end{equation*}
$$

In case $\bar{I}\left(u h_{\alpha ; n}\right)=0$ one has $\bar{J}\left(u h_{\alpha ; n}\right)=0$, because $\bar{J} \ll \bar{I}$. In case $\bar{I}\left(u h_{\alpha ; n}\right)>0$ one has $0 \leq u h_{\alpha ; n} \leq h_{\alpha ; n}$ and then

$$
\left|\frac{\bar{J}\left(u h_{\alpha ; n}\right)}{\bar{I}\left(u h_{\alpha ; n}\right)}-r_{\alpha ; n}\right| \leq 2^{-n}
$$

which implies in all situations that

$$
\begin{equation*}
\left|\bar{J}\left(u h_{\alpha ; n}\right)-r_{\alpha ; n} \bar{I}\left(u h_{\alpha ; n}\right)\right| \leq 2^{-n} \bar{I}\left(u h_{\alpha ; n}\right) \leq 2^{-n} \bar{I}\left(h_{\alpha ; n}\right) \tag{9}
\end{equation*}
$$

In view of (8) and (9), one obtains

$$
\left|\bar{J}(u)-\bar{I}\left(f_{n} u\right)\right| \leq 2^{-n} \sum_{\alpha} \bar{I}\left(h_{\alpha ; n}\right)=2^{-n} \bar{I}(1)
$$

which implies

$$
\begin{equation*}
\lim \bar{I}\left(f_{n} u\right)=\bar{J}(u) \tag{10}
\end{equation*}
$$

From (7) and (10) we obtain (6), which therefore holds for positive bounded functions u in $L(I)$.

If u is an arbitrary positive function in $L(I)$, we have the pointwise convergence $u_{n} \nearrow u$, where $u_{n}:=u \wedge n$. Since $\bar{J}\left(u_{n}\right)=\bar{I}\left(\widetilde{f} u_{n}\right)$ for all n, it follows, by passing to suprema, that $\bar{J}(u)=\bar{I}(\tilde{f} u)$ and (6) is true for all positive functions in $L(I)$. By linearity, (6) holds for all functions in $L(I)$.

If μ is the (complete) measure induced by the Daniell integral I, then (6) implies $\left(\chi_{A}=\right.$ the indicator function of $\left.A\right)$

$$
0 \leq \bar{J}\left(\chi_{A}\right)=\int_{A} \tilde{f} d \mu
$$

for all $A \subset X$ with $\chi_{A} \in L(I)$. General measure theory says that $\widetilde{f}(t) \geq 0$ μ-almost everywhere.

The set $M:=\{t \in X ; \widetilde{f}(t)<0\}$ has the properties $\chi_{M} \in L(I)$ and $\mu(M)=\bar{I}\left(\chi_{M}\right)=0$. Defining $f: X \rightarrow \mathbb{R}$ via

$$
f(t):= \begin{cases}\tilde{f}(t), & t \notin M \\ 0, & t \in M\end{cases}
$$

one has $f \geq 0$ everywhere, $f=\widetilde{f} \mu$-almost everywhere and therefore

$$
\bar{J}(u)=\bar{I}(\tilde{f} u)=\bar{I}(f u)
$$

for all u in $L(I)$.
For the unicity, consider another function g in $L(I)$ such that $\bar{J}(u)=$ $\bar{I}(g u)$ for all u in $L(I)$. So, we have $\bar{I}\left(f \chi_{A}\right)=\bar{I}\left(g \chi_{A}\right)$, which means that $\int_{A} f d \mu=\int_{A} g d \mu$ for all $A \subset X$ with $\chi_{A} \in L(I)$. General measure theory says that $g=f \mu$-almost everywhere, which means

$$
0=\int|f-g| d \mu=\bar{I}(|f-g|)
$$

3. Other results and comments

3.1. We begin with a general result which will furnish material for some comments. Assume therefore that $X \neq \emptyset$ is an abstract set, B a vector lattice of functions $f: X \rightarrow \mathbb{R}$ and $I, J: B \rightarrow \mathbb{R}$ are linear positive functionals. Using the conventions $\frac{0}{0}:=0$ and $\frac{a}{0}:=\infty$ for $a>0$ we shall modify the previous definitions a little. Namely, for every u in $+B$ and $\varepsilon>0$, we set

$$
\begin{aligned}
& A^{\prime}(I, J)(u):=\{J(v) / I(v) ; 0 \leq v \leq u, v \in B\} \\
& A_{\varepsilon}^{\prime}(I, J)(u):=\left\{x \in \mathbb{R} ;|x-a| \leq \varepsilon, a \in A^{\prime}(I, J)(u)\right\}
\end{aligned}
$$

Proposition. (i) Assume that for all u in $+B$, the set $A^{\prime}(I, J)(u)$ is bounded (e.g. in case there exists a number $M>0$ such that $J \leq M I$). Then $J \ll I$.
(ii) For every u in $+B$ and every $\varepsilon>0$, the set $A_{\varepsilon}^{\prime}(I, J)(u)$ is closed (actually compact).
(iii) For every u in $+B$ we have $0<\varepsilon<\gamma \Rightarrow A_{\varepsilon}^{\prime}(I, J)(u) \subset A_{\gamma}^{\prime}(I, J)(u)$.
(iv) Assuming that u in $+B$ is such that $A_{\varepsilon}^{\prime}(I, J)(u) \neq \emptyset$ for all $\varepsilon>0$, the intersection $\bigcap_{\varepsilon>0} A_{\varepsilon}^{\prime}(I, J)(u)$ contains exactly one point.

Proof. (i) Assume that for all u in $+B$ the set $A^{\prime}(I, J)(u)$ is bounded. If $J \ll I$ is false, we can find $\varepsilon_{0}>0$ and u in $+B$ with the property that
for all n in \mathbb{N}, there exists $0 \leq u_{n} \leq u$ in B such that $I\left(u_{n}\right)<1 / n$ and $J\left(u_{n}\right) \geq \varepsilon_{0}$.

If $I\left(u_{n}\right)=0$, then $J\left(u_{n}\right) / I\left(u_{n}\right)=\infty$ and $A^{\prime}(I, J)(u)$ is not bounded.
If $I\left(u_{n}\right)>0$, then $J\left(u_{n}\right) / I\left(u_{n}\right) \geq n \varepsilon_{0}$ and, in this case too, $A^{\prime}(I, J)(u)$ is not bounded. Contradiction, and (i) follows.

In the particular case when $J \leq M I$ for some positive M, one has obviously $A^{\prime}(I, J)(u) \subset[0, M]$.

Assertion (ii) is clear when $A_{\varepsilon}^{\prime}(I, J)(u)=\emptyset$. So, assume $A_{\varepsilon}^{\prime}(I, J)(u) \neq \emptyset$.
If a number x is such that $x=\lim _{n} x_{n}$, where $\left(x_{n}\right)_{n}$ is a sequence in $A_{\varepsilon}^{\prime}(I, J)(u)$, then for an arbitrary fixed $0 \leq v \leq u$ in B one has

$$
\left|\frac{J(v)}{I(v)}-x_{n}\right| \leq \varepsilon
$$

for every n. Passing to the limit gives

$$
\left|\frac{J(v)}{I(v)}-x\right| \leq \varepsilon
$$

The fact that v is arbitrary shows that $x \in A_{\varepsilon}^{\prime}(I, J)(u)$.
Point (iii) is trivial. We prove (iv).
For every $\varepsilon>0$, the nonempty set $A_{\varepsilon}^{\prime}(I, J)(u)$ is bounded (for every x and y in $A_{\varepsilon}^{\prime}(I, J)(u)$ one has $|x-y| \leq|x-a|+|y-a| \leq 2 \varepsilon$, upon taking some a in $A_{\varepsilon}^{\prime}(I, J)(u)$), therefore compact, and the decreasing intersection is nonempty. Put $A:=\bigcap_{\varepsilon>0} A_{\varepsilon}^{\prime}(I, J)(u)$.

Assume the existence of $x \neq y$ in A; then one has, for a fixed $0 \leq v \leq u$ in B, the inequalities

$$
\left|\frac{J(v)}{I(v)}-x\right| \leq \frac{|x-y|}{4} \quad \text { and } \quad\left|\frac{J(v)}{I(v)}-y\right| \leq \frac{|x-y|}{4}
$$

Hence

$$
|x-y| \leq\left|\frac{J(v)}{I(v)}-x\right|+\left|\frac{J(v)}{I(v)}-y\right| \leq \frac{|x-y|}{2}
$$

which is false.
Commenting on the Proposition, we can say:
(a) Point (i) motivates Assumption 3 a little. For example, in the particular case when there exists a positive number M such that $J \leq M I$, one quickly sees that $\bar{J} \leq M \bar{I}$ and this implies that for every positive u in $L(I)$ one has $A^{\prime}(I, J)(u) \subset[0, M]$.
(b) Point (iv) can give us some ideas in connection with the possible values of the function f. Namely, they should be close to the elements in the intersection of the form

$$
\bigcap_{\varepsilon>0} A_{\varepsilon}^{\prime}(\bar{I}, \bar{J})\left(h_{\alpha ; n}\right)
$$

for large n. So, f is obtained via a kind of differentiation procedure.
(c) In connection with Assumption 2, which says that for large n the average range $A(\bar{I}, \bar{J})\left(h_{\alpha ; n}\right)$ must have very small diameter (see also comment (b)), the following example will be, perhaps, illuminating, putting into evidence a concrete construction of the family $\left(h_{\alpha ; n}\right)$.
3.2. We now give an example to show how the theorem effectively works.

We take $X:=[0,1]$ and $B:=$ the algebra of all continuous functions $u:[0,1] \rightarrow \mathbb{R}$. The functional $I: B \rightarrow \mathbb{R}$ is given by $I(f):=\int_{0}^{1} u(x) d x$. In order to construct J we fix a positive function $f \in B$ and then $J: B \rightarrow \mathbb{R}$ is given by $J(u):=\int_{0}^{1} f(x) u(x) d x$.

If $M:=\max \{f(x) ; x \in[0,1]\}$ then $J \leq M I$, which shows that $J \ll I$ and Assumption 3 is automatically satisfied.

One knows that \bar{I} is exactly the Lebesgue integral on the space $L(I)$ of all Lebesgue integrable functions, so

$$
\bar{I}(u)=\int u d \mu, \quad \forall u \in L(I),
$$

where $\mu: \mathcal{M} \rightarrow+\mathbb{R}$ is the Lebesgue measure (induced by I over the set \mathcal{M} of all Lebesgue measurable subsets of $[0,1]$). Then \bar{J} acts via

$$
\bar{J}(u)=\int f u d \mu, \quad \forall u \in L(I) .
$$

We now show how Assumptions 1 and 2 can be satisfied. To this end, we use the following

Statement. Let $U \subset \mathbb{R}$ be a compact interval, μ the Lebesgue measure on U and $f: U \rightarrow \mathbb{R}$ a positive continuous function. Then, for every $\varepsilon>0$, there exists $\delta>0$ such that for every a in U which is not the right end of U, one has the property: for each interval $[a, b] \subset U$ with $b-a<\delta$ and for each Lebesgue integrable function $u: U \rightarrow \mathbb{R}$ such that $0 \leq u \leq \chi_{[a, b]}$ and u is not null μ-almost everywhere on $[a, b]$, the following relation holds:

$$
\frac{\int_{[a, b]} f u d \mu}{\int_{[a, b]} u d \mu} \in[f(a)-\varepsilon / 2, f(a)+\varepsilon / 2] .
$$

Proof. Since f is bounded, there exists a natural number k, not depending on a, such that

$$
\begin{equation*}
\frac{1}{k}+\frac{1}{k^{2}}+\frac{f(a)}{k}<\frac{\varepsilon}{2} . \tag{11}
\end{equation*}
$$

In view of the uniform continuity of f, there exists $\delta>0$ not depending on a such that

$$
\begin{equation*}
M:=\sup \{f(x) ; x \in[a, b]\} \leq f(a)+1 / k \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
m:=\inf \{f(x) ; x \in[a, b]\} \geq f(a)-1 / k \tag{13}
\end{equation*}
$$

if $[a, b] \subset U$ is such that $b-a<\delta$.

Fix the interval $[a, b]$ as in the Statement. First, we shall prove it for every Riemann integrable function

$$
u \in H(a, b):=\left\{u: U \rightarrow \mathbb{R} ; 0 \leq u \leq \chi_{[a, b]}, u \neq 0 \mu \text {-a.e. }\right\}
$$

There exist positive continuous functions $g, h:[a, b] \rightarrow \mathbb{R}$ such that

$$
0 \leq h \leq u \leq g \quad \text { and } \quad \int_{[a, b]} h d \mu>0
$$

(since $\int_{[a, b]} u d \mu>0$).
In view of the general properties of the Daniell integral, we can find an increasing sequence $\left(h_{n}\right)_{n}$ of positive continuous functions $h_{n}:[a, b] \rightarrow \mathbb{R}$, $h_{n} \leq u$, and a decreasing sequence $\left(g_{n}\right)_{n}$ of positive continuous functions $g_{n}:[a, b] \rightarrow \mathbb{R}, g_{n} \geq u$, such that

$$
\int_{[a, b]} u d \mu=\sup _{n} \int_{[a, b]} h_{n} d \mu=\inf _{n} \int_{[a, b]} g_{n} d \mu
$$

One can find a natural n such that

$$
\begin{equation*}
1 \leq \frac{\int_{[a, b]} g_{n} d \mu}{\int_{[a, b]} h_{n} d \mu} \leq 1+\frac{1}{k} \quad \text { and } \quad 1 \geq \frac{\int_{[a, b]} h_{n} d \mu}{\int_{[a, b]} g_{n} d \mu} \geq 1-\frac{1}{k} \tag{14}
\end{equation*}
$$

Put $h:=h_{n}$ and $g:=g_{n}$. One has

$$
\frac{\int_{[a, b]} f h d \mu}{\int_{[a, b]} g d \mu} \leq \frac{\int_{[a, b]} f u d \mu}{\int_{[a, b]} u d \mu} \leq \frac{\int_{[a, b]} f g d \mu}{\int_{[a, b]} h d \mu}
$$

But using (12)-(14) gives

$$
\int_{[a, b]} f g d \mu \leq M \int_{[a, b]} g d \mu \leq\left(f(a)+\frac{1}{k}\right) \int_{[a, b]} g d \mu
$$

therefore,

$$
\frac{\int_{[a, b]} f g d \mu}{\int_{[a, b]} h d \mu} \leq\left(f(a)+\frac{1}{k}\right) \frac{\int_{[a, b]} g d \mu}{\int_{[a, b]} h d \mu} \leq\left(f(a)+\frac{1}{k}\right)\left(1+\frac{1}{k}\right)
$$

and

$$
\int_{[a, b]} f h d \mu \geq m \int_{[a, b]} h d \mu \geq\left(f(a)-\frac{1}{k}\right) \int_{[a, b]} h d \mu
$$

therefore

$$
\frac{\int_{[a, b]} f h d \mu}{\int_{[a, b]} g d \mu} \geq\left(f(a)-\frac{1}{k}\right) \frac{\int_{[a, b]} h d \mu}{\int_{[a, b]} g d \mu} \geq\left(f(a)-\frac{1}{k}\right)\left(1-\frac{1}{k}\right)
$$

It follows that

$$
f(a)-\left(\frac{1}{k}+\frac{f(a)}{k}-\frac{1}{k^{2}}\right) \leq \frac{\int_{[a, b]} f u d \mu}{\int_{[a, b]} u d \mu} \leq f(a)+\left(\frac{1}{k}+\frac{f(a)}{k}+\frac{1}{k^{2}}\right)
$$

which implies, using (11), that

$$
f(a)-\frac{\varepsilon}{2} \leq \frac{\int_{[a, b]} f u d \mu}{\int_{[a, b]} u d \mu} \leq f(a)+\frac{\varepsilon}{2}
$$

Now, we prove the validity of the result for every Lebesgue integrable function $u \in H(a, b)$. There exists a sequence $\left(u_{n}\right)_{n}$ of Riemann integrable functions, $u_{n}: U \rightarrow \mathbb{R}$, such that $\left\|u_{n}-u\right\|_{1}:=\int\left|u_{n}-u\right| d \mu \rightarrow 0$ and one can suppose that $u_{n} \rightarrow u \mu$-a.e. Then $\left\|u_{n}^{+}-u\right\|_{1} \rightarrow 0$, where $u_{n}^{+}:=u_{n} \vee 0$ (since $u=u \vee 0$) and hence $\left\|z_{n}-u\right\|_{1} \rightarrow 0$, where $z_{n}:=u_{n}^{+} \wedge \chi_{[a, b]}$ (since $\left.u \wedge \chi_{[a, b]}=u\right)$. We have used the properties of the Banach lattice $L^{1}(\mu)$. One sees that $0 \leq z_{n} \leq \chi_{[a, b]}, z_{n}$ are Riemann integrable and, for n greater than some n_{0}, one must have $\int z_{n} d \mu>0$, because $\int u d \mu>0$.

The result already obtained for Riemann integrable functions yields for all $n \geq n_{0}$,

$$
\frac{\int_{[a, b]} f z_{n} d \mu}{\int_{[a, b]} z_{n} d \mu} \in[f(a)-\varepsilon / 2, f(a)+\varepsilon / 2]
$$

and passing to the n-limit, one obtains

$$
\frac{\int_{[a, b]} f u d \mu}{\int_{[a, b]} u d \mu} \in[f(a)-\varepsilon / 2, f(a)+\varepsilon / 2]
$$

Using this Statement, one can see that, for given $\varepsilon>0$, there exists $\delta>0$ such that for every $0 \leq a<b \leq 1$ with $b-a<\delta$, one has

$$
A_{\varepsilon}(\bar{I}, \bar{J})\left(\chi_{[a, b]}\right) \neq \emptyset
$$

Indeed, we saw that for given $\varepsilon>0$, one can find $\delta>0$ such that for every a, b as above one has

$$
A(\bar{I}, \bar{J})\left(\chi_{[a, b]}\right) \subset[f(a)-\varepsilon / 2, f(a)+\varepsilon / 2]
$$

Then it is immediately seen that

$$
[f(a)-\varepsilon / 2, f(a)+\varepsilon / 2] \subset A_{\varepsilon}(\bar{I}, \bar{J})\left(\chi_{[a, b]}\right)
$$

We are prepared to satisfy Assumptions 1 and 2. The constructions indicated in the successive steps $s(1), s(2), \ldots$ will give each time a finite number of results. More precisely:
$s(1)$: There exists a natural number p_{1} such that for every interval $[a, b]$ $\subset[0,1]$ with $b-a \leq 1 / p_{1}$, one has

$$
A_{2^{-1}}(\bar{I}, \bar{J})\left(\chi_{[a, b]}\right) \neq \emptyset
$$

as we have seen.

Let us divide $[0,1]$ as follows:

$$
0=: x_{0}<x_{1}<\ldots<x_{p_{1}}:=1, \quad x_{i}-x_{i-1}=1 / p_{1} .
$$

Then we define $\left(h_{i ; 1}\right)_{1 \leq i \leq p_{1}}$ via

$$
h_{i ; 1}:= \begin{cases}\chi_{\left[x_{i-1}, x_{i}\right]} \in L(I) & \text { for } i<p_{1} \\ \chi_{\left[x_{i-1}, x_{i}\right]} \in L(I) & \text { for } i=p_{1}\end{cases}
$$

$s(2)$: There exists a natural number p_{2} such that for every interval $[a, b]$ $\subset[0,1]$ with $b-a \leq 1 / p_{2}$, one has

$$
A_{2^{-2}}(\bar{I}, \bar{J})\left(\chi_{[a, b]}\right) \neq \emptyset
$$

Then, for every $i=1, \ldots, p_{1}$, we divide $\left[x_{i-1}, x_{i}\right]$ as follows:

$$
x_{i-1}=: x_{i, 0}<x_{i, 1}<\ldots<x_{i, p_{2}}:=x_{i}, \quad x_{i, k}-x_{i, k-1}=\frac{1}{p_{1} p_{2}}
$$

Fixing $i=1, \ldots, p_{1}-1$, we can define the functions $\left(h_{(i, k) ; 2}\right)_{1 \leq k \leq p_{2}}$ by

$$
h_{(i, k) ; 2}:=\chi_{\left[x_{i, k-1}, x_{i, k}[\right.} \in L(I)
$$

and for $i=p_{1}$ we define $\left(h_{(i, k) ; 2}\right)_{1 \leq k \leq p_{2}}$ by

$$
h_{(i, k) ; 2}:= \begin{cases}\chi_{\left[x_{i, k-1}, x_{i, k}[\right.} \in L(I) & \text { for } k<p_{2} \\ \chi_{\left[x_{i, k-1}, x_{i, k}\right]} \in L(I) & \text { for } k=p_{2}\end{cases}
$$

We obtained the set of functions $\left(h_{\alpha ; 2}\right)_{\alpha \in A}$ with $A:=\left\{1, \ldots, p_{1}\right\} \times\left\{1, \ldots, p_{2}\right\}$ and this accomplishes the construction for step $s(2)$.

The procedure continues in the same manner (dividing all intervals into small subintervals of equal length a.s.o.).

The reader can see that, in this way, Assumptions 1 and 2 are satisfied.
One should add that the construction will give as uniform limit of the sequence $\left(f_{n}\right)_{n}$ so obtained a function which must be μ-almost everywhere equal to the initial f, which is the Radon-Nikodym derivative of J with respect to I.
3.3. We end with some supplementary considerations.

Our theorem gives an exact Radon-Nikodym derivative. One knows (see [1]) that for Daniell integrals one cannot generally find exact RadonNikodym derivatives, only approximate Radon-Nikodym derivatives existing always. The price payed in order to obtain this better situation was the following:
(a) We are obliged to work for the Daniell case, more particular than the case of general linear positive functionals. This general extension procedure has been studied in [2], being among the first ones concerned with Loomis systems.
(b) Additional assumptions 1-3 were adopted.
(c) The exact Radon-Nikodym derivative one can find generally belongs to the space $L(I)$, which is considerably larger than the initial space B.

The procedure presented is constructive, which distinguishes the present work from [1].

References

[1] E. de Amo, I. Chitescu and M. Díaz Carrillo, An approximate functional RadonNikodym theorem, Rend. Circ. Mat. Palermo 48 (1999), 443-450.
[2] P. Bobillo Guerrero and M. Díaz Carrillo, Summable and integrable functions with respect to any Loomis system, Arch. Math. (Basel) 49 (1987), 245-256.
[3] N. Bourbaki, Intégration (Les structures fondamentales de l'analyse, livre VI), Hermann, Paris, 1956.
[4] R. Cristescu, Ordered Vector Spaces and Linear Operators, Ed. Academiei-Abacus Press, 1976.
[5] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
[6] J. W. Hagood, A Radon-Nikodym theorem and L_{p} completeness for finitely additive vector measures, J. Math. Anal. Appl. 113 (1968), 266-279.
[7] P. R. Halmos, Measure Theory, Van Nostrand, Princeton, 1950.
[8] H. B. Maynard, A Radon-Nikodym theorem for finitely additive bounded vector measures, Pacific J. Math. 83 (1979), 401-413.
[9] W. F. Pfeffer, Integrals and Measures, Dekker, New York, 1977.
[10] A. C. Zaanen, Integration, North-Holland, Amsterdam, 1967.

Departamento de Álgebra y Análisis Matemático Universidad de Almería 04120 Almería, Spain
E-mail: edeamo@ualm.es

Faculty of Mathematics University of Bucharest

Str. Academiei, 14
Bucureşti, Romania

Departamento de Análisis Matemático
Universidad de Granada
18071 Granada, Spain
E-mail: madiaz@ugr.es

[^0]: 2000 Mathematics Subject Classification: 28B05, 26D15.
 This paper has been jointly written when the second author visited the Universities of Granada and Almería for scientific research, during February 1998.

