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Ruelle operator with nonexpansive IFS

by

Ka-Sing Lau and Yuan-Ling Ye (Hong Kong)

Abstract. The Ruelle operator and the associated Perron–Frobenius property have
been extensively studied in dynamical systems. Recently the theory has been adapted
to iterated function systems (IFS) (X, {wj}mj=1, {pj}mj=1), where the wj ’s are contractive

self-maps on a compact subset X ⊆ Rd and the pj ’s are positive Dini functions on X [FL].
In this paper we consider Ruelle operators defined by weakly contractive IFS and non-
expansive IFS. It is known that in such cases, positive bounded eigenfunctions may not
exist in general. Our theorems give various sufficient conditions for the existence of such
eigenfunctions together with the Perron–Frobenius property.

1. Introduction. In [R] Ruelle introduced a convergence theorem to
study the equilibrium state (Gibbs measure) of the infinite one-dimensional
lattice gas. In [B] Bowen set up the theorem as the convergence of the
iterations of a certain operator on the space of continuous functions on a
symbolic space. More precisely, let Σ = {1, . . . , N}N, let θ be the left shift on
Σ and let φ be a Hölder continuous function on Σ (the potential function).
The Ruelle operator is defined as

(1.1) T f(x) =
∑

y∈θ−1(x)

eφ(y)f(y), f ∈ C(Σ).

It was proved that T has a unique positive eigenfunction h ∈ C(Σ) and
a unique probability eigenmeasure µ ∈ C∗(Σ) corresponding to the spec-
tral radius %, and hµ is the Gibbs measure (see e.g. [B]). Moreover for any
f ∈ C(Σ), %−nT n(f) converges uniformly to a constant multiple of h. We
will call this the PF-property (PF stands for Perron–Frobenius). This theo-
rem together with the theory of Markov partitions was used by Bowen [B]
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to study the ergodic properties of Axiom A diffeomorphisms. Nowadays, the
theorem is a standard tool in dynamical systems, thermodynamic formalism
and multifractal formalism. There is a vast literature on the Ruelle opera-
tor and the related eigenproblem and the convergence property. Ferrero and
Schmitt [FS] used the Hilbert projective metric to give yet another proof of
Ruelle’s theorem. Walters [W] used the g-measure [K] to study the opera-
tor and showed that the theorem also holds for Dini continuous potentials,
Fan [F1] gave a short proof of the theorem. Quas [Q] gave an example that
the eigenmeasure is not unique if we just assume positivity and continuity
of pj ’s. Mauldin and Urbański [MU1] used the Ruelle operator to study
the Hausdorff dimension of the invariant set of a contractive self-conformal
system. In [FL] Fan and Lau continued to study the operator by adopting
the iterated function system (IFS) point of view: Let {wj}mj=1 be an IFS
of contractive self-maps on a compact subset X ⊆ Rd, then there exists a
unique compact subset K invariant under the IFS (i.e., K =

⋃m
j=1 wj(K)).

With each wj we associate a positive Dini function pj as a weight function
(or potential function), and we define the Ruelle operator on C(K) as

(1.2) T (f)(x) =
m∑

j=1

pj(wj(x))f(wj(x)), f ∈ C(K).

It is easy to show that such a T is semi-conjugate to the T in (1.1), and it is
conjugate if wi(K)∩wj(K) = ∅ for i 6= j. It was proved that the PF-property
holds in this new setting and the Gibbs property [B] of the eigenmeasure µ
will also hold if the system consists of contractive self-conformal maps and
satisfies the open set condition (OSC) [FL].

Recently a lot of attention is focused on parabolic IFS and nonhyperbolic
dynamical systems ([Hu], [LSV], [MU2], [U], [Y], [Yu]), in particular on
interval maps with indifferent fixed points ([Hu], [LSV], [PS], [SSU]). It is
known that the eigenfunction of the spectral radius % of T may not exist
[LY] and even if it exists, % may not be an isolated point of the spectrum
[BDE]. So far the available results are far from satisfactory and a study of
such systems remains a challenge. We will consider the situation when the
{wj}mj=1 are weakly contractive (i.e., αwj (t) := sup|x−y|≤t |wj(x)−wj(y)| < t
for all t > 0) or nonexpansive (i.e., |wj(x) − wj(y)| ≤ |x − y|). For the
weakly contractive case, the invariant set K exists as in the contractive case
[H]. For the nonexpansive case we can take the smallest invariant K (see
Proposition 2.1 for the additional assumption). We can define the Ruelle
operator on C(K) as in (1.2). Our first result is (Proposition 2.6):

Proposition 1.1. Let (X, {wj}mj=1, {pj}mj=1) be a weakly contractive
system. Suppose αwj (t) ≤ t(1− tα) for 0 < t < 1, and αlog pj (t) = O(tβ) for
some 0 < α < β ≤ 1. Then T has the PF-property.
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Such special weakly contractive systems are the simplest because the
method of proof is the same as in [FL]: we can show that the system is
semiconjugate to a symbolic system with a Dini potential function, hence
the PF-property of T is inherited from T on the symbolic space. In general if
we only assume that the pj ’s are Dini continuous, or even Hölder continuous,
we cannot lift the system to a symbolic system with a Dini continuous
potential. Hence we will not recourse to the symbolic system in our main
considerations. Our basic result is (a special case of Theorem 4.4).

Theorem 1.2. Let (X, {wj}mj=1, {pj}mj=1) be a nonexpansive Dini system
(i.e., the pj ’s are Dini continuous) and let

rj = sup
x6=y
|wj(x)− wj(y)|/|x− y|.

Suppose ‖∑N
j=1 pj ◦ wj(·)rj‖ < %. Then T has the PF-property.

Note that the condition of this theorem is similar to the average con-
tractivity condition of Barnsley et al. [BDE] who assumed that

∑m
j=1 pj(x)

= 1, hence % = 1. The condition of Theorem 1.2 is also similar to the one
given by Hennion [Hen], but he considered the case that each pj(·) is Lips-
chitz continuous. Regarding T as defined on the Lipschitz space, he showed
that the essential spectral radius %ess(T ) is strictly less than the spectral
radius %(T ) and thus T has the PF-property. However his method does not
work for the Dini case, since %(T ) is not an isolated point of the spectrum
in general. By using Theorem 1.2 we prove

Theorem 1.3. Let (X, {wj}mj=1, {pj}mj=1) be a nonexpansive Dini system
and suppose that w1, . . . , wl are contractive for some 1 ≤ l ≤ m. Then
‖∑m

j=l+1 pj ◦ wj‖ < % implies that T has the PF-property.

Theorem 1.4. Suppose (X, {wj}mj=1, {pj}mj=1) is a weakly contractive
self-conformal Dini system which satisfies the OSC. If w1, . . . , wl are con-
tractive for some 0 ≤ l ≤ m and maxl+1≤j≤m ‖pj ◦wj‖ < %, then T has the
PF-property.

The main idea of the proof of the theorems is laid down in Proposition
3.1 and Lemma 3.3 on the boundedness and equicontinuity of {%−nTnf}∞n=1.

We remark that the last theorem was considered by Öberg [O] for X =
[0, 1] and the pj ’s Hölder continuous. In general it is difficult to check the
spectral radius condition in the above theorems. Strichartz et al. [STZ] have
considered a numerical algorithm to approximate the spectral radius %. On
the other hand, we see that minx∈K

∑m
j=1 pj(wjx) is a lower bound of %;

hence if we replace % by minx∈K
∑m
j=1 pj(wjx) in the above theorems, we

get some simple checkable sufficient conditions.
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By using the example of Lasota and Yorke [LY], it is seen that the Ru-
elle operator may not have an eigenfunction corresponding to the spectral
radius (Section 4). However if we enlarge the space C(K) to admit un-
bounded continuous functions, then an unbounded eigenfunction may exist.
E.g., suppose X = [0, 1] and a weakly contractive IFS has w1(0) = 0. Let
E = (0, 1] ∩ K and let C(E) be the set of continuous functions on E (in-
cluding the unbounded ones). In this setup, we can still define the Ruelle
operator. Indeed this has been studied in [Hu], [LSV], [Y] as non-hyperbolic
dynamical systems. We will consider the unbounded case in a forthcoming
paper [LYe].

The present paper is organized as follows. In Section 2, we present some
elementary facts about the Ruelle operator and prove Proposition 1.1. We
introduce the PF-property in Section 3 and set up basic criteria for this
property. We prove Theorems 1.2 and 1.3 in Section 4 and Theorem 1.4 in
Section 5.

2. Preliminaries. We consider iterated function systems (IFS) (X,
{wj}mj=1, {pj}mj=1) where X ⊆ Rd is a compact subset, wj : X → X
are continuous maps and the pj are positive weight functions (or potential
functions) associated with wj . We say that w : X → X is nonexpansive if
|w(x)− w(y)| ≤ |x− y|, and weakly contractive if

αw(t) := sup
|x−y|≤t

|w(x)− w(y)| < t ∀t > 0.

It is clear that contractivity implies weak contractivity, which also implies
nonexpansiveness. A simple nontrivial example of a weakly contractive map
is w(x) = x/(1 + x) on [0, 1]. We will call (X, {wj}mj=1, {pj}mj=1) a weakly
contractive system if the wj are weakly contractive. If, moreover, each pj
is a Dini function (i.e.,

� 1
0 αpj (t)t

−1 dt < ∞), then we call the system a
weakly contractive Dini system. Similarly we can define the corresponding
terminology for nonexpansive IFS.

In [H] Hata has studied the invariant sets of a weakly contractive IFS
on X. By using the existence of fixed points for weakly contractive maps,
he showed the existence of a unique nonempty compact K ⊆ X invariant
under the wj ’s, i.e.,

K =
m⋃

j=1

wj(K).

For a multi-index J = (j1, . . . , jn), 1 ≤ jk ≤ m, let

wJ (x) = wj1 ◦ . . . ◦ wjn(x).

Then lim|J|→∞ |wJ(K)| = 0 [H] and K =
⋂∞
n=1

⋃
|J|=n wJ (K). For more

general IFS, the invariant set may not be unique. However we have
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Proposition 2.1. Suppose {wj}mj=1 are continuous on the compact sub-
set X and at least one of them is weakly contractive. Then there exists a
unique smallest nonempty compact set K such that

K =
m⋃

j=1

wj(K).

Moreover for any x ∈ K, the closure of {wJ (x) : |J | = n, n ∈ N} is K.

Proof. Let F = {F :
⋃m
j=1 wj(F ) ⊆ F}. By using the standard Zorn

lemma argument, there exists a minimal compact subset K such that K =⋃m
j=1 wj(K). To show that such a K is unique, we assume without loss of

generality that w1 is weakly contractive. Let Jn = (1, . . . , 1) (n times). Then
limn→∞ |wJn(X)| = 0. Let K ′ be another minimal compact invariant set,
and let x ∈ K and y ∈ K ′. Then

lim
n→∞

wJn(x) = lim
n→∞

wJn(y) ∈ K ∩K ′.

Hence K ∩K ′ 6= ∅ and wj(K ∩K ′) ⊆ K ∩K ′. The minimality implies that
K = K ′.

The last statement follows from the fact that K is the smallest invariant
subset.

Throughout the paper we will consider either weakly contractive IFS or
IFS as in Proposition 2.1, hence the set K is uniquely defined. Furthermore
we can assume that |K| = sup{|x−y| : x, y ∈ K} = 1. We define an operator
T : C(K)→ C(K) by

Tf(x) =
m∑

j=1

pj(wjx)f(wjx).

T is called the Ruelle operator of the system. The dual operator T ∗ on the
measure space M(K) is given by

T ∗µ =
m∑

j=1

pj(·)µ ◦ w−1
j .

For J = (j1, . . . , jn), 1 ≤ jk ≤ m, we let

pwJ (x) = pj1(wj1 ◦ wj2 ◦ . . . ◦ wjnx) . . . pjn−1(wjn−1 ◦ wjnx)pjn(wjnx).

Then
Tnf(x) =

∑

|J|=n
pwJ (x)f(wJx).

Let % = %(T ) be the spectral radius of T . Since T is a positive operator, we
have ‖Tn1‖ = ‖Tn‖ and

% = lim
n
‖Tn‖1/n = lim

n
‖Tn1‖1/n.
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Proposition 2.2. Let (X, {wj}mj=1, {pj}mj=1) be an IFS with at least one
wj weakly contractive. Let T be the Ruelle operator on C(K). Then

(i) minx∈K %−nTn1(x) ≤ 1 ≤ maxx∈K %−nTn1(x) for all n > 0,
(ii) if there exist λ > 0 and 0 < h ∈ C(K) such that Th = λh, then

λ = % and there exist A,B > 0 such that

A ≤ %−nTn1(x) ≤ B ∀n > 0.

Proof. We will prove the second inequality of (i); the first inequality is
similar. Suppose it is not true, then there exists k such that ‖T k1‖ < %k.
Hence

% = (%(T k))1/k ≤ ‖T k‖1/k = ‖T k1‖1/k < %,

which is a contradiction.
To prove (ii) we let a1 = minx∈K h(x), a2 = maxx∈K h(x). Then

0 <
a1

a2
≤ h(x)

a2
=
λ−n

a2
Tnh(x) ≤ λ−nTn1(x) = λ−n‖Tn‖.

Similarly we can show that λ−n‖Tn‖ ≤ a2/a1. Hence % = limn→∞ ‖Tn‖1/n
= λ.

We call the operator T : C(K)→ C(K) irreducible if for any nontrivial,
nonnegative f ∈ C(K) and for any x ∈ K, there exists n > 0 such that
Tnf(x) > 0.

Proposition 2.3. Let (X, {wj}mj=1, {pj}mj=1) be an IFS with at least one
wj weakly contractive. Then the Ruelle operator T is irreducible and

dim{h ∈ C(K) : Th = %h, h ≥ 0} ≤ 1;

if h ≥ 0 is a %-eigenfunction of T , then h > 0.

Proof. For any given f ∈ C(K) with f ≥ 0 and f 6≡ 0, define V =
{x ∈ K : f(x) > 0}. For any x ∈ K, by Proposition 2.1, there exists J0 such
that wJ0(x) ∈ V . Let n0 = |J0|. Then

Tn0f(x) =
∑

|J|=n0

pwJ (x)f(wJx) ≥ pwJ0
(x)f(wJ0x) > 0.

This proves that T is irreducible.
For the dimension of the eigensubspace, we suppose that there exist

two linearly independent strictly positive %-eigenfunctions h1, h2 ∈ C(K).
Without loss of generality we assume that 0 < h1 ≤ h2 and h1(x0) = h2(x0)
for some x0 ∈ K. Then h = h2 − h1 (≥ 0) is a %-eigenfunction of T and
h(x0) = 0. It follows that Tnh(x0) = %nh(x0) = 0, which contradicts the
irreducibility of T . Hence the dimension of the %-eigensubspace is at most 1.

The strict positivity of h follows directly from the irreducibility of T .
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With an iterated function system, one frequently associates a shift trans-
formation on a symbolic space through conjugation. By a symbolic space we
mean the infinite product space Σ = {1, . . . ,m}N. For σ = (σn) ∈ Σ, we
write σ|k = (σ1, . . . , σk) and σ|k = (σk+1, σk+2, . . .). The shift transforma-
tion on Σ is defined by θ(σ) = σ|1. We define the distance of σ, σ′ ∈ Σ as
d(σ, σ′) = e−n(σ,σ′) where n(σ, σ′) is the largest n such that σ|n = σ′|n. It
follows that the cylinder set In(σ) is the ball of radius e−n with center at σ.
Define

uj : Σ → Σ by ujσ = jσ, 1 ≤ j ≤ m.
Then θ−1(σ) = {uj(σ)}. The system (Σ, {uj}, {qj}) with an arbitrary choice
of qj is called a symbolic system. The uj ’s are clearly contractive maps
with contractive ratio e−1. With suitably defined weights qj , this symbolic
system becomes a prototype for a general system. For our case we define
q : Σ → R+ by q(σ) = qj(σ) = pj(π(σ)) if σ ∈ uj(Σ) where π is defined in
the next proposition. Let ν be the eigenmeasure of the Ruelle operator on
the system (Σ, {uj}, q). The following establishes the “semiconjugacy” of a
weakly contractive system and a symbolic system.

Proposition 2.4. Let (X, {wj}mj=1, {pj}mj=1) be a weakly contractive
system. Let y ∈ K be fixed and let π : Σ → K be defined by

π(σ) = lim
n→∞

wσ|n(y) = lim
n→∞

wσ1 . . . wσn(y).

(i) The limit exists and is independent of y ∈ K. The mapping π is
continuous and onto, and satisfies π ◦ uj = wj ◦ π, 1 ≤ j ≤ m.

(ii) Let µ be the image of ν under π. Then T ∗µ = %µ.

Proof. (i) is proved in [H]. The proof of (ii) is the same as in [FL, Propo-
sition 1.3].

The proposition establishes the following commuting diagram:

Σ Σ

K K

π

��

{uj} //
θ

oo

π

��{wj} //

The classical symbolic system is the one with a positive Hölder continuous q;
it has been studied in great detail in the literature (e.g., [B]) and the Hölder
continuity has been extended to Dini continuity by Walters [W] and Fan [F1].
In [FL] it is proved that if (X, {wj}, {pj}) is a contractive Dini system, then
it can be lifted to the symbolic system by the above semiconjugacy (π is not
necessarily one-to-one) and the corresponding q remains a Dini function.
Hence much of the eigenfunction properties of the Ruelle operator can be
reduced to the known results on the symbolic space. For the present weakly
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contractive case, it is not possible to lift the Dini system to a Dini system
on Σ in general. Nevertheless for some special cases we can still obtain such
a correspondence. We will consider such a case in the following:

Lemma 2.5. For α > 0, let φ(t) = t(1− tα), 0 < t < 1. Then

φn(t) = φ ◦ . . . ◦ φ(t) =
t

(1 + nαt)1/α
(1 + on(t))

where limn→∞ on(t) = 0 for t ∈ [0, 1] and limt→0 on(t) = 0 for each n > 0.

Proof. Note that (1−t)α = 1−αt+o(t) where o(t) < t and limt→0 o(t)/t
= 0. Then

G(x) := (φ(x−1/α))−α = x+ α+ x · o(x−1), x ≥ 1.

Let G1(x) = G(x), and inductively let

Gn(x) = x+ nα+Rn(x), x ≥ 1,

where Rn(x) =
∑n−1
k=0 G

k(x) · o((Gk(x))−1). It follows that

φn(t) = (Gn(t−α))−1/α =
t

(1 + nαt)1/α

(
1− tαRn(t−α)

1 + nαt+ tαRn(t−α)

)1/α

.

Note that Gk(x) · o((Gk(x))−1)→ 0 as k →∞ and as x→∞. This implies
the lemma.

Proposition 2.6. For an IFS (X, {wj}mj=1, {pj}mj=1), suppose αwj (t) ≤
t(1 − tα) for 0 < t < 1, and αlog pj (t) = O(tβ) for some 0 < α < β ≤ 1.
Then the associated symbolic dynamical system is a Dini system, i.e., q is
a Dini function.

Proof. For a multi-index J , we can define, analogously to pwJ ,

quJ (σ) = q(uj1 . . . ujn(σ)) . . . q(ujn−1ujn(σ))q(ujn(σ)).

Then for x = π(σ), we have quJ (σ) = pwJ (x). Note that σ = uσ|n(θnσ).
Then for σ and σ′ in Σ such that σ|n = σ′|n,

|log q(σ)− log q(σ′)|
= |log pσ1(π ◦ uσ|n(θnσ))− log pσ1(π ◦ uσ|n(θnσ′))|
= |log pσ1(wσ|n ◦ π(θnσ))− log pσ1(wσ|n ◦ π(θnσ′))|
≤ sup

x,y
|log pσ1(wσ|n(x))− log pσ1(wσ|n(y))|

≤ max
j,|J|=n

αlog pj (αwJ (1)) ≤ C((1 + nα)−1/α)β (by Lemma 2.5)
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for some C > 0. It follows that
∞∑

n=1

αlog q(e−n) ≤
∞∑

n=1

C

(1 + nα)β/α
<∞,

and log q is Dini continuous.

The eigenproblem for the Ruelle operator is well understood once the
system is semiconjugate to a symbolic Dini system. The reader is referred to
[FL, Theorem 1.1] for the details. In the remaining sections we will consider
the more general case without recourse to the symbolic system.

To conclude this section we make a digression on the Ruelle operator in
the setting of Rényi [Re], Gel’fond [G] and Parry [P]. Let g : [0, 1] → [0, 1]
be a piecewise continuously differentiable function with |g′(x)| ≥ 1. By the
ergodic theorem, there exists an invariant measure ν such that ν = ν ◦ g−1.
In order for ν to be absolutely continuous with respect to the Lebesgue
measure, it is necessary that there exists an h ∈ L1[0, 1] such that

h(x) =
∑

y∈g−1(x)

(g′(y))−1h(y).

To put it into our notation, we let {wj}mj=1 be the m branches of g−1 and
let pj(wjx) = (g′(y))−1 for y = wj(x). Assuming that all the wj are defined
on [0, 1], we can define the Ruelle operator T . Then h is a nonnegative
1-eigenfunction of T (on L1[0, 1]).

If the wj ’s are contractive (i.e., g is hyperbolic) and log |w′j(·)|, 1 ≤ j

≤ m, are Dini functions, then the above h always exists (see [FL]). However
it is not the case if the wj ’s are weakly contractive. We consider the following
example by Lasota and Yorke [LY]: let

g(x) =

{ x

1− x if x ∈ [0, 1/2],

2x− 1 if x ∈ (1/2, 1].

The two branches of g−1 are given by w1(x) = x/(1+x), w2(x) = 1/2+x/2.
Let p1(w1x) = 1/(1 + x)2 and p2(w2x) = 1/2. Then

Tf(x) =
∑

y∈g−1(x)

f(y)
g′(y)

=
1

(1 + x)2 f

(
x

1 + x

)
+

1
2
f

(
1
2

+
x

2

)
.

It was proved in [LY] that there is no L1-solution. Here we consider T :
C[0, 1]→ C[0, 1]. Then the spectral radius of T is 1 (the proof will be given
after Corollary 4.9). We can easily see that there is no positive continuous
1-eigenfunction. Indeed, if h is such a function in C[0, 1], then

h(0) = h(0) +
1
2
h

(
1
2

)
,

which is impossible.
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If we modify the above operator T on C(K) to

Tf(x) =
1

(1 + x)2 f

(
x

1 + xα

)
+

1
2
f

(
1
2

+
x

2

)

for some 0 < α < 1, then it is easy to see that αw1(t) ≤ t(1 − t(1+α)/2)
and αp1(t) = O(t). Proposition 2.6 implies that the %-eigenfunction h exists.
However the explicit value of % is difficult to find. A numerical algorithm
was considered by Strichartz et al. [STZ].

3. Perron–Frobenius property. We first give a basic criterion for the
existence of an eigenfunction corresponding to the spectral radius %.

Proposition 3.1. Let (X, {wj}mj=1, {pj}mj=1) be an IFS with at least one
wj weakly contractive. Suppose that

(i) there exist A,B > 0 such that A ≤ %−nTn1(x) ≤ B for any x ∈ K
and n > 0,

(ii) for any f ∈ C(K), {%−nTnf}∞n=1 is an equicontinuous sequence.

Then there exists a unique 0 < h ∈ C(K) and a unique probability measure
µ ∈M(K) such that

Th = %h, T ∗µ = %µ, 〈µ, h〉 = 1.

Moreover , for every f ∈ C(K), %−nTnf converges to 〈µ, f〉h in the supre-
mum norm, and for every ξ ∈M(K), %−nT ∗nξ converges weakly to 〈ξ, h〉µ.

Proof. The proof is modified from [W, Theorem 3.1] on the symbolic
space. We include the details here for completeness. Let

fn(x) =
1
n

n−1∑

i=0

%−iT i1(x).

Then {fn}∞n=1 is bounded by A and B and is an equicontinuous subset of
C(K). By the Arzelà–Ascoli theorem, we can assume that there exists an
h ∈ C(K) such that limn ‖fn − h‖ = 0. Hence

‖Th− %h‖ = lim
n
‖Tfn − %fn‖ ≤ lim

n

%

n
‖1− %−nTn1‖ ≤ lim

n

%

n
(1 +B) = 0,

i.e., Th = %h and also h ≥ A > 0. We let

qj(x) =
pj(wjx)h(wjx)

%h(x)

and define a “normalized” operator L : C(K)→ C(K) by

Lf(x) =
m∑

j=1

qj(x)f(wjx).

Note that
∑m
j=1 qj(x) = 1 and the 1 function is a 1-eigenfunction of L.
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For f ∈ C(K), we have Tnf = %nhLn(f · h−1), hence {Lnf}∞n=1 is a
bounded equicontinuous sequence in C(K). We know from the Arzelà–Ascoli
theorem that there exists f̃ ∈ C(K) and a subsequence {Lnif}∞i=1 such that
limi ‖Lnif − f̃‖ = 0.

We claim that f̃ is a constant function and limn ‖Lnf − f̃‖ = 0. For
this we let τ(g) = minx g(x). Since

∑m
j=1 qj(x) = 1, it is easy to see that

τ(f̃) ≤ τ(Lf̃) and

(3.1) τ(f) ≤ τ(Lf) ≤ . . . ≤ τ(f̃).

By taking the limit, we have τ(Lf̃) ≤ τ(f̃) and hence equality holds. For
any n > 0, we choose xn ∈ K satisfying Lnf̃(xn) = τ(Lnf̃) = τ(f̃). Then∑
|J|=n qwJ (xn) = 1 implies that f̃(wJxn) = τ(f̃) for every J with |J | = n.

Similarly there exists yn ∈ K such that f̃(wJyn) = η(f̃) := maxx f̃(x)
for every J with |J | = n. As in Proposition 2.1, we assume w1 is weakly
contractive and let Jn = (1, . . . , 1) with |Jn| = n. Then z := limn wJn(xn) =
limn wJn(yn) ∈ K. Hence

τ(f̃) = lim
n
f̃(wJnxn) = f̃(z) = lim

n
f̃(wJnyn) = η(f̃).

Thus f̃(x) ≡ τ(f̃) is a constant function. By (3.1) and the dual version for
η(f̃), we have limn ‖Lnf − f̃‖ = 0.

In particular, by taking f = h−1, we see that Ln(h−1) converges uni-
formly, and then %−nTn1 converges uniformly. Since the average of %−nTn1
converges to h as at the beginning of the proof, we have limn ‖%−nTn1−h‖
= 0, and hence limn ‖Ln(h−1)− 1‖ = 0.

Now we define a function υ : C(K)→ R by 〈υ, f〉 = τ(f̃) (= f̃(x) for any
fixed x ∈ K). Then υ is a bounded linear functional on C(K), 〈υ, 1〉 = 1,
〈υ, h−1〉 = 1. From

〈υ, Lf〉 = τ(Lf̃) = τ(f̃),

we have L∗υ = υ. Let µ : C(K) → R be defined by 〈µ, f〉 = 〈υ, fh−1〉.
Then 〈µ, 1〉 = 〈υ, h−1〉 = 1 and µ is a probability measure. It is easy to see
that T ∗µ = %µ and 〈µ, h〉 = 〈υ, 1〉 = 1. Hence for any f ∈ C(K), %−nTnf
converges to 〈µ, f〉h in the supremum norm. Also it follows that for every
ξ ∈M(K), %−nT ∗nξ converges weakly to 〈ξ, h〉µ.

The uniqueness of the eigenfunction follows from Proposition 2.3. For
the uniqueness of the eigenmeasure, we observe that if σ ∈ M(K) satisfies
T ∗σ = %σ and 〈σ, h〉 = 1, then for any f ∈ C(K),

〈σ, f〉 = lim
n
〈%−nT ∗nσ, f〉 = lim

n
〈σ, %−nTnf〉 = 〈σ, 〈µ, f〉h〉 = 〈µ, f〉.

Hence σ = µ.
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Definition 3.2. The Ruelle operator T on (X, {wj}mj=1, {pj}mj=1) is said
to have the PF-property (Perron–Frobenius) if there exists a unique 0 < h ∈
C(K) and a unique probability measure µ ∈M(K) such that

Th = %h, T ∗µ = %µ, 〈µ, h〉 = 1,

and for every f ∈ C(K), %−nTnf converges to 〈µ, f〉h in the supremum
norm.

It is known that symbolic Dini systems and contractive Dini systems have
the PF-property ([F1], [FL] and [W]). Proposition 2.6 shows that some weak
contractive systems also have this property. In the next two sections, we will
consider other systems under the framework of Proposition 3.1. The basic
method is to construct an auxiliary function Φ to check the equicontinuity
of {%−nTnf}∞n=1 in Proposition 3.1. We summarize it in the following two
lemmas.

Lemma 3.3. Let (X, {wj}mj=1, {pj}mj=1) be an IFS with at least one wj
weakly contractive. Suppose that

(i) supn ‖%−nTn‖ <∞,
(ii) there exists a dense subset D of C+(K) := {f ∈ C(K) : f > 0} such

that for each f ∈ D, there exists a continuous function Φ (depending on f)
on [0, 1] with Φ(0) = 0 such that

0 < Tnf(x) ≤ Tnf(y)eΦ(|x−y|) ∀x, y ∈ K, ∀n ≥ 0.

Then for each f ∈ C(K), {%−nTnf}∞n=1 is a bounded equicontinuous
sequence.

Proof. Let f ∈ D, g ∈ C(K). For any x, y ∈ K and n > 0,

|%−nTng(x)− %−nTng(y)|

≤ ‖%−nTnf‖
∣∣∣∣1−

Tnf(y)
Tnf(x)

∣∣∣∣+ 2‖%−nTn‖ · ‖f − g‖

≤ B(‖f‖(eΦ(|x−y|) − 1) + 2‖f − g‖)
where B = supn ‖%−nTn‖. By the assumptions on D and Φ, we can show
that for each f ∈ C+(K), {%−nTnf}∞n=1 is a bounded equicontinuous subset
of C(K).

For f ∈ C(K), we can choose a > 0 such that f + a > 0. Then
{%−nTn(f + a)}∞n=1 and {%−nTna}∞n=1 are bounded equicontinuous subsets
of C+(K), hence {%−nTnf}∞n=1 is also a bounded equicontinuous subset of
C(K).

The lemma will be used in Section 4. Since the spectral radius is not given
a priori, condition (i) may not be easy to check in many cases. We present
another criterion which will imply the condition. Recall that a nonempty
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subset F of C(K) is called a cone if af + bg ∈ F for any a, b > 0 and
f, g ∈ F .

Lemma 3.4. Suppose an IFS satisfies (ii) above. Furthermore suppose
that D contains a cone F closed in C+(K) such that the Φ in (ii) is inde-
pendent of f in F and T (F ) ⊆ F . Then T has the PF-property.

Proof. Let F0 = {f ∈ F : e−Φ(1) ≤ f ≤ 1}. Then F0 is a bounded
convex equicontinuous subset of C(K). To show that F0 is closed in C(K),
we observe that F is closed in C+(K), there exists a closed subset E of
C(K) such that F = E ∩ C+(K), hence F0 = {f ∈ E : e−Φ(1) ≤ f ≤ 1} is
closed in C(K). It is also compact by the equicontinuity of F0. We define
L : F0 → C(K) by

Lf(x) = Tf(x)/‖Tf‖.
Then

Lf(x) ≤ Lf(y)eΦ(|x−y|) ∀f ∈ F0.

This implies that

1 = max
x∈K
Lf(x) ≤ Lf(y)eΦ(1) ∀y ∈ K.

Consequently,
e−Φ(1) ≤ Lf(x) ≤ 1 ∀x ∈ K.

Hence LF0 ⊆ F0. The Schauder fixed point theorem yields an h ∈ F0 such
that Lh = h. Then Th = %h where % = ‖Th‖. Condition (i) of Lemma 3.3
is hence satisfied and the PF-property follows.

In the following we apply Lemma 3.4 to a weakly contractive system
slightly more general than that in Proposition 2.6. We say a function ϕ :
[0, 1] → R+ satisfies the modulus condition if ϕ is continuous, increasing,
concave and ϕ(0) = 0. For such a ϕ, we see that for 0 ≤ t1 < t2, if we
let λ = t1/t2,

t1
t2
ϕ(t2) = λϕ(t2) + (1− λ)ϕ(0) ≤ ϕ(λt2 + (1− λ)0) = ϕ(t1).

Hence ϕ(t)/t is decreasing.

Theorem 3.5. Let (X, {wj}mj=1, {pj}mj=1) be a weakly contractive IFS
satisfying

(i) there exist positive functions {βj(t)}mj=1 on [0, 1] such that αwj (t) ≤
t(1− βj(t)),

(ii) there exists a Dini modulus function ϕ(t) such that αlog pj (t)/βj(t) ≤
ϕ(t) for each j.

Then T has the PF-property.
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Proof. Let

Φ(t) = t+
t�

0

ϕ(x)
x

dx, t ∈ [0, 1].

Then Φ(t) is increasing and continuous on [0, 1] and Φ(0) = 0. Hence for
each 1 ≤ j ≤ m,

(3.2) Φ(t)− Φ(t(1− βj(t))) ≥
t�

t(1−βj(t))

ϕ(x)
x

dt ≥ ϕ(t)
t
· tβj(t) ≥ αlog pj (t).

We will prove that T satisfies the conditions of Lemma 3.4. Let

Dk = {f ∈ C+(K) : f(x) ≤ f(y)ekΦ(|x−y|)}.
Then D :=

⋃∞
k=1 Dk is dense in C+(K). For f ∈ Dk and x, y ∈ K,

Tf(x) =
m∑

j=1

pj(wjx)f(wjx)

≤
m∑

j=1

pj(wjy)f(wjy)eαlog pj (|x−y|)+kΦ(|x−y|(1−βj(|x−y|)))

≤
m∑

j=1

pj(wjy)f(wjy)ekΦ(|x−y|) (by (3.2))

≤ Tf(y)ekΦ(|x−y|).

It follows that TDk ⊆ Dk and D is invariant for T , and condition (ii) of
Lemma 3.3 is satisfied (the kΦ here corresponding to the Φ in Lemma 3.4).
Note that D1 is a closed cone of C+(K) and Φ is independent of f on D1.
Hence Lemma 3.4 implies the PF-property of T .

Proposition 3.6. Let (X, {wj}mj=1, {pj}mj=1) be as in Theorem 3.5 and
let µ be the %-eigenmeasure of T ∗. Suppose µ(KI ∩KJ ) = 0 for all I 6= J
with |I| = |J |. Then µ has the Gibbs property , i.e., there exists c ≥ 1 such
that for any J and x ∈ K,

c−1%−|J|pwJ (x) ≤ µ(KJ) ≤ c%−|J|pwJ (x).

Proof. We first claim that there exists c ≥ 1 such that pwJ (x) ≤ cpwJ (y)
for all J and x, y ∈ K. Indeed, let zj(t) = t(1−βj(t)), αj = αlog pj . For J =
(j1, . . . , jn), 0 ≤ k ≤ n − 1, let J |k = (jk+1, jk+2, . . . , jn) and ak = zJ|k(1).
Then
∣∣∣∣log

pwJ (x)
pwJ (y)

∣∣∣∣ ≤
n−1∑

k=0

αjk+1(|wJ|k(K)|) ≤
n−1∑

k=0

αjk+1(ak) ≤
n−1∑

k=0

αjk+1(ak+1).
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By (3.2), we have

αjk+1(ak+1) ≤ Φ(ak+1)− Φ(ak).

Hence ∣∣∣∣log
pwJ (x)
pwJ (y)

∣∣∣∣ ≤
n−1∑

k=0

ak+1�

ak

ϕ(x)
x

dx ≤
1�

0

ϕ(x)
x

dx <∞

and the claim follows.
To prove the Gibbs property of the invariant measure µ, we note that

T ∗nµ = %nµ. Hence by the assumption that µ(KI ∩KJ ) = 0 for all I 6= J
with |I| = |J |, we have

µ(KJ) = 〈µ, 1KJ 〉 = 〈%−nT ∗nµ, 1KJ 〉 = 〈µ, %−nTn1KJ 〉
=
〈
µ, %−n

∑

|I|=n
pwI (·)1KJ (wI(·))

〉
= 〈µ, %−npwJ (·)〉.

It follows from the claim that there exists c ≥ 1 such that

c−1%−|J|pwJ (x) ≤ µ(KJ) ≤ c%−|J|pwJ (x).

Note that conditions (i), (ii) of Theorem 3.5 are satisfied if wj ’s are
contractive and pj ’s are Dini continuous.

The condition µ(KI ∩ KJ ) = 0 for all I 6= J with |I| = |J | is closely
related to the open set condition. It has been discussed in detail in [FL] and
we will make some remarks on it at the end of the paper.

4. Some sufficient conditions. Throughout this section we will con-
sider nonexpansive Dini systems, and apply Proposition 3.1 and Lemma 3.3
to study the eigenproblem for the Ruelle operator. In conjunction with the
“bounded distortion property” of T nf in Lemma 3.3, we see in the next
lemma that the Dini condition on the pj ’s also implies a property of similar
nature. Recall that an equivalent condition for p(x) to be Dini continuous
is
∑
n αp(θ

n) <∞ for 0 < θ < 1.

Lemma 4.1. Let (X, {wj}mj=1, {pj}mj=1) be an IFS such that the pj ’s are
Dini functions. Let α(t) = maxj αlog pj (t), 0 < θ < 1 and a =

∑∞
n=0 α(θn).

If J = (j1, . . . , jn) satisfies |wji...jn(K)| ≤ θn−i for all 1 ≤ i ≤ n. Then

pwJ (x) ≤ eapwJ (y) ∀x, y ∈ K.
Proof. The inequality follows from the estimate

∣∣∣∣log
pwJ (x)
pwJ (y)

∣∣∣∣≤
n∑

i=1

|log pji(wji...jnx)− log pji(wji...jny)|≤
n∑

i=1

α(θn−i) ≤ a.

Theorem 4.2. Let (X, {wj}mj=1, {pj}mj=1) be a nonexpansive Dini sys-
tem. Suppose that
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(i) min1≤j≤m supx6=y |wj(x)− wj(y)|/|x− y| = r < 1,
(ii) there exist constants A,B > 0 such that A ≤ %−nTn1(x) ≤ B for

any x ∈ K and n > 0.

Then T has the PF-property.

Proof. Let D = {f ∈ C+(K) : f(x) ≤ f(y)ec|x−y| for some c > 0}. Then
D is dense in C+(K). For any f ∈ D, c−1

1 ≤ f(x) ≤ c1 for some c1 > 0, and
by assumption (ii),

Ac−1
1 ≤ %−nTnf(x) ≤ Bc1.

Combining this with the strict positivity of pj , it is straightforward to show
that

(4.1) 0 < b := inf
n≥1

min
x,j

pj(wjx)Tn−1f(wjx)
Tnf(x)

< 1.

For t > 0, let α(t) = max{t,maxj αlog pj (t)}. Then α(t) satisfies the Dini
condition. Choose k ≥ 1 large enough such that kb ≥ 1 and define

Φ(t) =
k + c

1− r

t�

0

α(x/r)
x

dx.

By a direct calculation, we have

(4.2) ct ≤ Φ(t), kα(t) + Φ(rt) ≤ Φ(t),

and hence f(x) ≤ f(y)eΦ(|x−y|). We will prove that for any x, y ∈ K and
n > 0,

Tnf(x) ≤ Tnf(y)eΦ(|x−y|).

Indeed,

Tf(y) = Tf(x)
m∑

j=1

pj(wjy)f(wjy)
Tf(x)

≥ Tf(x)
m∑

j=1

pj(wjx)f(wjx)
Tf(x)

e−α(|x−y|)−αlog f (|wjx−wjy|)

≥ Tf(x)e−α(t)−S (by the convexity of ex)

where t = |x− y| and

S =
m∑

j=1

pj(wjx)f(wjx)
Tf(x)

αlog f (|wjx− wjy|).

From (i) we can assume that |w1(x)− w1(y)|/t ≤ r; then

αlog f (|w1x− w1y|) ≤ Φ(rt),
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and by the nonexpansiveness of wj , 2 ≤ j ≤ m, we have

αlog f (|wjx− wjy|) ≤ Φ(t).

We continue the above estimate on S:

S ≤ p1(w1x)f(w1x)
Tf(x)

(Φ(rt)− Φ(t)) + Φ(t)

≤ −bkα(t) + Φ(t) (by (4.1), (4.2))

≤ −α(t) + Φ(t).

Hence Tf(x) ≤ Tf(y)eΦ(|x−y|). Inductively we prove that

Tnf(x) ≤ Tnf(y)eΦ(|x−y|).

The PF-property now follows from Lemma 3.3 and Proposition 3.1.

Corollary 4.3. Suppose (X, {wj}mj=1, {pj}mj=1) is a nonexpansive Dini
system. If one of the wj is contractive and

∑m
j=1 pj(x) = 1, then T has the

PF-property.

Proof. The equality
∑m
j=1 pj(x) = 1 implies that % = 1, and the condi-

tions in Theorem 4.2 are satisfied.

We define rj = supx6=y |wj(x) − wj(y)|/|x − y|, rJ = rj1 . . . rjn , and
RJ = supx6=y |wJ(x)−wJ (y)|/|x− y|. As a consequence of Theorem 4.2, we
have

Theorem 4.4. Suppose (X, {wj}mj=1, {pj}mj=1) is a nonexpansive Dini
system. If there exists k such that

(4.3)
∥∥∥
∑

|J|=k
pwJ (·)RJ

∥∥∥ < %k,

then T has the PF-property.

Proof. Since T k having the PF-property implies that T has the PF-
property, we may assume k = 1 in the hypothesis on RJ , so that (4.3) is
reduced to

(4.4)
∥∥∥

m∑

j=1

pj ◦ wj(·)rj
∥∥∥ < %.

By Proposition 2.2(i), noting that

% = lim
n
‖Tn1‖1/n = lim

n

∥∥∥
∑

|J|=n
pwJ (·)

∥∥∥
1/n

,

it is easy to see that at least one of the rj is less than 1, i.e., wj is contrac-
tive. Without loss of generality, we assume that w1 is such a map, hence
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condition (i) of Theorem 4.2 is satisfied. We need to show that condition (ii)
of Theorem 4.2 is also satisfied, i.e., there exist A,B > 0 such that

A ≤ %−n
∑

|J|=n
pwJ (x) ≤ B.

By (4.4) we can find 0 < η < 1 such that maxx∈K
∑m
j=1 pj(wjx)rj < η% and

by induction,

(4.5) max
x∈K

∑

|J|=n
pwJ (x)rJ ≤ (η%)n ∀n > 0.

For J = (j1, . . . , jn) and 0 ≤ k < l ≤ n, let J |lk = (jk+1, jk+2, . . . , jl).
Choose θ such that 0 < η < θ < 1 and let

Ω(n, k) = {J : |J | = n, k smallest with rJ|nk ≥ θ
n−k}, 1 ≤ k < n,

Ω(n, n) = {J : |J | = n, rJ|nk < θn−k ∀0 ≤ k < n}.
Then {J : |J | = n} =

⋃n
k=0 Ω(n, k). By (4.5), we have

(4.6) %−n
∑

J∈Ω(n,0)

pwJ (x) ≤
(
η

θ

)n
.

(We use |K|=1 here.) Let α(t)=max1≤j≤m αlog pj (t) and a :=
∑∞

k=0 α(θk).
Then a is finite because the log pi’s are Dini functions. For any n > 0, we
can make use of Proposition 2.2(i) to find xn ∈ K such that

(4.7) %−n
∑

|J|=n
pwJ (xn) ≤ 1.

For any J = (j1, . . . , jn) ∈ Ω(n, k) and for any 0 ≤ i < k, since rJ|nk ≥ θn−k
and rJ|ni = rJ|ki · rJ|nk < θn−i, we have

rJ|ki =
rJ|ki · rJ|nk
rJ|nk

< θk−i.

By Lemma 4.1, we have pw
J|k0

(y) ≤ eapw
J|k0

(z). Hence

(4.8) pwJ (x) = pw
J|k0

(wJ|nkx)pwJ|n
k

(x) ≤ eapw
J|k0

(xk)pwJ|n
k

(x).

It follows that

(4.9) %−n
∑

|J|=n
pwJ (x) = %−n

n∑

k=0

∑

J∈Ω(n,k)

pwJ (x)

≤ %−n
n∑

k=0

∑

J∈Ω(n,k)

eapw
J|k0

(xk)pwJ|n
k

(x) (by (4.8))
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≤ ea
n∑

k=0

(
%−k

∑

|J ′ |=k
pw

J
′ (xk)

)(
%−(n−k)

∑

J ′′∈Ω(n−k,0)

pw
J
′′ (x)

)

≤ ea
n∑

k=0

1 · (η/θ)n−k (by (4.6), (4.7)).

The last term is bounded by ea
∑∞
k=0(η/θ)k =: B1. This yields the upper

estimate.
For the lower estimate, we let αJ =

∑n
k=0 α(|wJ|nk (K)|). Then it is easy

to see that αJ ≤ a+ (n−k)α(1) for any J ∈ Ω(n, k). Proposition 2.2(i) and
(4.9) imply that for any n > 0, there exists yn ∈ K such that

1 ≤ Cn := %−n
∑

|J|=n
pwJ (yn) ≤ B1.

Using the same argument as for (4.9), we have

%−n
∑

|J|=n
pwJ (yn)αJ = %−n

n∑

k=0

∑

J∈Ω(n,k)

pwJ (yn)αJ

≤ %−n
n∑

k=0

(a+ (n− k)α(1))
∑

J∈Ω(n,k)

pwJ (yn) ≤ B2.

By the definition of αJ and the convexity of ex, we have

%−n
∑

|J|=n
pwJ (x) ≥ %−n

∑

|J|=n
pwJ (yn)e−αJ ≥ %−n

Cn

∑

|J|=n
pwJ (yn)e−αJ

≥ e−(%−n
∑
|J|=n pwJ (yn)αJ )/Cn ≥ e−B2 .

This completes the proof.

It is obvious that if {wj}mj=1 are contractive maps, then the condition in
the theorem is trivially satisfied. In general, it is difficult to determine the
spectral radius % of T . A simple lower bound on % is

(4.10) min
x∈K

m∑

j=1

pj(wjx) ≤ %.

By using this we have

Corollary 4.5. Let (X, {wj}mj=1, {pj}mj=1) be a nonexpansive Dini sys-
tem. If ∥∥∥

m∑

j=1

pj ◦ wj(·)rj
∥∥∥ < min

x∈K

m∑

j=1

pj(wjx),

then T has the PF-property.
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We remark that the expression
∑
|J|=k pwJ (·)RJ in Theorem 4.4 is not so

easy to handle for k > 1. In view of
∑
|J|=k pwJ (·)RJ ≤

∑
|J|=k pwJ (·)rJ , a

slightly stronger condition is ‖∑|J|=k pwJ (·)rJ‖ < %k. The next Theorem 4.7
offers a better way to check the condition. First we will prove a lemma.

Lemma 4.6. For 0 < t < 1 and n > 0, let

Jn(t) = {J = (j1, . . . , jn) : ji = 1, 2, #{ji = 1} ≤ nt}.
Then for any q > 1, there exists t0 > 0 such that #Jn(t) < qn for 0 < t ≤ t0
and n > 0.

Proof. By the binomial theorem, we have #Jn(t) =
∑
k≤nt

(
n
k

)
. Since

for 0 < y < min{1, q − 1} we have

(1 + y)n ≥
∑

k≤nt

(
n

k

)
yk ≥ ynt

∑

k≤nt

(
n

k

)
,

it follows that

#Jn(t) ≤
(

1 + y

yt

)n
.

As g(t) = (1 + y)/yt is continuous and increasing on [0, 1] and g(0) = 1 + y
< q, there exists t0 > 0 such that for 0 < t ≤ t0,

#Jn(t) ≤ (g(t))n ≤ (g(t0))n < qn.

Theorem 4.7. Let (X, {wj}mj=1, {pj}mj=1) be a nonexpansive Dini system
and suppose that w1, . . . , wl are contractive for some 1 ≤ l ≤ m. Then

∥∥∥
m∑

j=l+1

pj ◦ wj
∥∥∥ < %

implies that there exists n > 0 such that ‖∑|J|=n pwJ (·)rJ‖ < %n.

As a direct consequence of Theorem 4.4, the above Ruelle operator has
the PF-property.

Proof. Let r = max1≤j≤l rj < 1 and

a1 =
∥∥∥

l∑

j=1

pj ◦ wj
∥∥∥, a2 =

∥∥∥
m∑

j=l+1

pj ◦ wj
∥∥∥.

Since a2 < %, we can find t0 > 0 such that

q1 = sup
0≤t≤t0

(a2/%)1−t(a1/%)t < 1.

Take q2 > 1 such that q3 = q1q2 < 1. By Lemma 4.6, we can choose t0
so small that #Jn(t) < qn2 for 0 < t ≤ t0 and n > 0. We claim that for
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J ′ = (j′1, . . . , j
′
n) ∈ Jn(t),

aJ ′ := aj′1 . . . aj′n ≤ (q1%)n.

Indeed, if a1 ≤ a2, then aJ ′ ≤ an2 = (a2/%)n%n ≤ (q1%)n trivially. If a2 < a1,
then by the definition of Jn(t), we have

aJ ′ ≤ an(1−t)
2 ant1 = ((a2/%)1−t(a1/%)t)n%n ≤ (q1%)n.

It follows that∑

J ′∈Jn(t)

aJ ′ ≤ #Jn(t) max
J ′∈Jn(t)

aJ ′ ≤ qn2 (q1%)n ≤ qn3 %n.

Now for J = (j1, . . . , jn) ∈ {1, . . . ,m}n, let

j′ =
{

1 if j ∈ {1, . . . , l},
2 if j ∈ {l + 1, . . . ,m},

and φ(J) = (j′1, . . . , j
′
n). Then for any I = (i1, . . . , in), ij = 1, 2, we have

∑

J:φ(J)=I

pwJ (x) =
∑

j′1=i1

∑

φ(J)=(i2,...,in)

pj1(wj1wJx)pwJ (x)

=
∑

J:φ(J)=(i2,...,in)

pwJ (x)
∑

j′1=i1

pj1(wj1wJx)

≤ ai1
∑

J:φ(J)=(i2,...,in)

pwJ (x) ≤ . . . ≤ aI .

Therefore ∑

J:φ(J)∈Jn(t)

pwJ (x) ≤
∑

J ′∈Jn(t)

aJ ′ ≤ qn3 %n,

so that for n sufficiently large,
∑

|J|=n
pwJ (x)rJ ≤

∑

J:φ(J)∈Jn(t)

pwJ (x) +
∑

J:φ(J)∈J ′n(t)

pwJ (x)rnt

≤ qn3 %n + rnt
∥∥∥
∑

|J|=n
pwJ (·)

∥∥∥ < %n

where J ′n(t) = {J = (j1, . . . , jn) : ji = 1, 2, #{ji = 1} > nt} is the
complement of Jn(t). This completes the proof of the theorem.

Corollary 4.8. Let (X, {wj}mj=1, {pj}mj=1) be a nonexpansive Dini sys-
tem. If w1(x1) = x1 and p1(x1) = maxx∈K p1(w1x) for some x1 ∈ K, and
wj is contractive for each 2 ≤ j ≤ m, then T has the PF-property if and
only if p1(x1) < %.

Proof. The sufficiency follows from Theorems 4.7 and 4.4. For the neces-
sity we observe that there exists 0 < h ∈ C(K) such that Th(x) = %h(x).
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Then by the continuity and positivity of h, we have

%h(x1) = p1(x1)h(x1) +
m∑

j=2

pj(wjx1)h(wjx1) > p1(x1)h(x1).

Hence p1(x1) < %.

We can easily construct examples satisfying the assumptions of the above
corollary, e.g.:

Corollary 4.9. Let (X, {wj}mj=1, {pj}mj=1) be as in Corollary 4.8. If

p1(x1) < min
x∈K

m∑

j=1

pj(wjx),

then T has the PF-property.

We return to the example given at the end of Section 2. In that case

w1(x) =
x

1 + x
, w2(x) =

1
2

+
x

2
,

p1(w1x) = w′1(x) =
1

(1 + x)2 , p2(w2x) = w′2(x) =
1
2
,

and
Tf(x) =

1
(1 + x)2 f

(
x

1 + x

)
+

1
2
f

(
1
2

+
x

2

)
.

We show that % = 1. First we observe that

Tn1(0) =
∑

|J|=n
pwJ (0) ≥ 1,

hence % = limn→∞ ‖Tn1‖1/n ≥ 1. If % > 1, then by Corollary 4.8, there
exists a %-eigenfunction h. By integrating %h(x) = Th(x) over [0, 1], we see
that %C = C where C is the integral of h. This contradicts % > 1 and hence
% ≤ 1. This implies % = 1.

We have seen in Section 2 that % = 1 has no eigenfunction; this is also
clear from Corollary 4.8. If we redefine the operator T as

Tf(x) =
1

(1 + x)2 f

(
x

1 + x

)
+ λf

(
1
2

+
x

2

)
,

then for λ > 3/4, Corollary 4.9 implies that a %-eigenfunction exists.

5. Self-conformal maps. We assume the interior X◦ of X is nonempty
and X◦ = X. We say that a map w : X → X is self-conformal if w is con-
tinuously differentiable on a neighborhood of X and |w′(x)| is a self-similar
matrix (|w′(x)| denotes a matrix norm). In this section we will consider
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one-to-one, self-conformal weakly contractive maps with

0 < inf
x,j
|w′j(x)| ≤ sup

x,j
|w′j(x)| ≤ 1.

The IFS {wj}mj=1 is said to satisfy the open set condition (OSC) if there
exists a bounded open set U in X such that

wj(U) ⊂ U and wi(U) ∩ wj(U) 6= ∅, i 6= j.

It is easy to see that if {wj}mj=1 are weakly contractive and satisfy the OSC,
then K ⊆ U, K =

⋂∞
n=1

⋃
|J|=n wJ (U) and lim|J|→∞ wJ (U) = 0.

Theorem 5.1. Suppose (X, {wj}mj=1, {pj}mj=1) is a weakly contractive
self-conformal Dini system which satisfies the OSC. If w1, . . . , wl are con-
tractive for some 0 ≤ l ≤ m and

(5.1) max
l+1≤j≤m
x∈K

pj(wjx) < %,

then T has the PF-property.

Note that this improves the condition maxx∈K
∑m
j=l+1 pj(wjx) < % of

Theorem 4.7. It follows directly from (4.10) that (5.1) is satisfied if

max
l+1≤j≤m
x∈K

pj(wjx) < min
x∈K

m∑

j=1

pj(wjx).

Proof. We divide the proof into two cases: (i) l = 0 (i.e., none of the
maps are contractive) and (ii) l ≥ 1.

(i) l = 0: Let dn := max|J|=n |wJ (X)| and δ(t) = max1≤j≤m αw′j (t).
Since |w′j(x)| is continuous and positive on the compact set X, there exists
c1 > 0 such that

|w′j(x)|
|w′j(y)| ≤ 1 + c1δ(|x− y|) ∀x, y ∈ X.

Hence for J = (j1, . . . , jn),

|w′J(x)|
|w′J(y)| =

n∏

k=1

|w′jk(wjk+1 ◦ . . . ◦ wjnx)|
|w′jk(wjk+1 ◦ . . . ◦ wjny)|

≤
n∏

k=1

(1 + c1δ(|wJ|nk (K)|)) ≤
n∏

k=1

(1 + c1δ(dn−k)).

Let
c = max

l+1≤j≤m
x∈K

pj(wjx).

Choose θ, ε > 0 such that c%−1 < θ < 1 and eεθ < 1. Since limn dn = 0, δ(t)
is continuous and δ(0) = 0, there exists k0 > 0 such that δ(dk) < c1

−1ε
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whenever k ≥ k0. Hence there exists a > 0 such that for any integer n > 0,

sup
x6=y

|w′J(x)|
|w′J(y)| ≤ a(1 + ε)n ≤ aenε.

Let γJ = infx∈X |w′J (x)| and RJ = supx∈X |w′J(x)|. Then RJ ≤ aenεγJ . Let

Ω(n) = {J : |J | = n, γJ ≤ θn}, Ω′(n) = {J : |J | = n, γJ > θn}.
Let U be the open set in the OSC, and let B be a ball in U . Then for any
J ∈ Ω′(n),

|wJ(x)− wJ(y)| ≥ rJ |x− y| ≥ θn|x− y| ∀x, y ∈ B.
It follows that wJ(U) contains a ball of radius c2θn for some c2 > 0 indepen-
dent of J . This together with the disjointness of the wJ (U) (by OSC) implies
that #Ω′(n) < c3θ

−n for some c3 > 0. On the other hand RJ ≤ a(eεθ)n for
any J ∈ Ω(n). Therefore

(5.2) lim
n

(
max
x∈K

∑

|J|=n
pwJ (x)RJ

)1/n

≤ lim
n

(
max
x∈K

∑

J∈Ω(n)

pwJ (x)RJ + max
x∈K

∑

J∈Ω′(n)

pwJ (x)RJ
)1/n

≤ lim
n

(‖Tn1‖a(eεθ)n + c3c
nθ−n)1/n < %.

Theorem 4.4 applies and T has the PF-property.
(ii) l ≥ 1: The assertion is proved in [FL] if all the maps are contractive,

hence we assume that 1 ≤ l ≤ m− 1. Let c be defined as above and let

b = max
1≤j≤l
x∈K

pj(wjx), R = max
1≤j≤l
x∈K

|w′j(x)| < 1.

If b ≤ c, then

max
1≤j≤m
x∈K

pj(wjx) = max
l+1≤j≤m
x∈K

pj(wjx) < %,

and the proof of (i) applies. Hence we assume b > c. We choose θ such that

c%−1 < θ < 1 and θ−1(bc−1)log θ/ logR < %c−1.

Let Ω(n) and Ω′(n) be defined as above. For any J ∈ Ω′(n), set

kJ = #{ji : J = (j1, . . . , ji, . . . , jn) ∈ Ω′(n), 1 ≤ ji ≤ l}.
Then pwJ (x) ≤ cn−kJ bkJ and #Ω′(n) ≤ c3θ−n as in (i) and

∑

J∈Ω′(n)

pwJ (x)RJ ≤ c3θ−n max
J∈Ω′(n)

cn−kJ bkJ(5.3)

= c3(cθ−1)n max
J∈Ω′(n)

(bc−1)kJ .
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Let kn = max{kJ : J ∈ Ω′(n)}. Since θn < γJ ≤ RkJ for any J ∈ Ω′(n),
this implies that θn ≤ Rkn and

( max
J∈Ω′(n)

(bc−1)kJ )1/n ≤ (bc−1)kn/n ≤ (bc−1)log θ/ logR < θ%c−1.

Hence by (5.3),

lim
n

(
max
x∈K

∑

J∈Ω′(n)

pwJ (x)RJ
)1/n

< (cθ−1)(θ%c−1) = %.

The argument in (5.2) implies that limn(maxx∈K
∑
|J|=n pwJ (x)RJ)1/n < %

and the proof is complete.

In the above proof we need to use the weak contractivity of the wj ’s
(dn := max|J|=n |wJ (X)| → 0). We do not know if we can replace such
maps by nonexpansive maps. Concerning the OSC, Schief [S] proved that
for self-similar contractive maps, the OSC implies the strong OSC (SOSC),
i.e., the bounded open set U in the definition intersects K. Recently Peres
et al. [PRS] proved that the statement can be extended to self-conformal
contractive maps. Lau et al. [LRY] gave another simple proof. The SOSC
is technically important and it plays an important role in the study of the
Hausdorff dimension and Hausdorff measure of the invariant set (see [Fal]
and [FL]); moreover, it implies that µ(KI ∩ KJ ) = 0, I 6= J , |I| = |J |,
for any self-conformal measure [FL]. We conjecture the same also holds for
weakly contractive self-conformal maps.
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