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Entropy jumps for
isotropic log-concave random vectors and spectral gap

by

Keith Ball (Coventry) and Van Hoang Nguyen (Paris)

Abstract. We prove a quantitative dimension-free bound in the Shannon–Stam en-
tropy inequality for the convolution of two log-concave distributions in dimension d in
terms of the spectral gap of the density. The method relies on the analysis of the Fisher
information production, which is the second derivative of the entropy along the (nor-
malized) heat semigroup. We also discuss consequences of our result in the study of the
isotropic constant of log-concave distributions (slicing problem).

1. Introduction. Let X be a random vector in Rd with density f :
Rd → [0,∞), a relation denoted by X ∼ f . Its entropy is defined to be

Ent(X) = −
�

Rd

f log f

provided
	
Rd f log+ f <∞. We then say that X has finite entropy.

We shall say that a random vector X on Rd, or a probability density f , is
isotropic if it is centered and has a covariance matrix equal to the identity:

E[X] =
�

Rd

xf(x) dx = 0

and

E[XiXj ] =
�

Rd

xixjf(x) dx = δi,j , i, j = 1, . . . , d.

This normalization can be realized by an affine transformation.
Among random vectors with a given covariance matrix, the correspond-

ing Gaussian has the largest entropy. The gap between the entropy of a
random vector X and that of a Gaussian with same covariance matrix is
a strong measure of how close X is to being Gaussian. For instance, if X
has mean zero and is isotropic with density f , and if G is a standard (nor-
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mal) Gaussian vector with density g, then the Pinsker–Csiszár–Kullback
inequality (see [20, 11] or [5]) implies that

1

2

( �

Rd

|f − g|
)2
≤ Ent(G)− Ent(X).

The celebrated Shannon–Stam inequality (see [22, 23]) says that if X and
Y are independent identically distributed (i.i.d. for short) random vectors,
then the normalized sum (X + Y )/

√
2 has entropy at least as large as that

of X and Y :

Ent

(
X + Y√

2

)
≥ Ent(X).

Moreover, this inequality is strict if X is not itself a Gaussian random vector.
A challenging problem is to quantify this phenomenon, i.e. for fixed covari-
ance matrix (say the identity), bound Ent

(
X+Y√

2

)
− Ent(X) from below by

a non-negative (and positive outside zero) function of Ent(G) − Ent(X).
The first result in this direction was obtained by Carlen and Soffer [10]
who proved, under technical assumptions, a non-explicit bound based on a
compactness argument. Extra assumptions cannot be avoided if one aims at
universal entropic estimates: it is easy to construct (by taking a carefully
chosen double-bumped Gaussian) a random variable X for which the convo-
lution does not greatly modify the entropy, Ent

(
X+Y√

2

)
' Ent(X), but with

Ent(X)� Ent(G).

A surprisingly neat result holds in the case where X ∈ R is a random
variable with variance 1 and with a density f that satisfies a Poincaré (or
spectral gap) inequality in the sense that for some positive c and any smooth
function s with

	
R fs = 0,

c
�

R

fs2 ≤
�

R

f(s′)2.

Indeed, we then have

(1.1) Ent

(
X + Y√

2

)
− Ent(X) ≥ c

2 + 2c
(Ent(G)− Ent(X))

for Y an independent copy of X. This result was proved by Ball, Barthe
and Naor in [3] using a variational formula for the Fisher information of a
marginal density and spectral analysis to get an information jump in the
presence of a spectral gap (see [3, Theorem 2]) and then using a relation be-
tween the Fisher information and entropy provided by the adjoint Ornstein–
Uhlenbeck semigroup. In the paper [16], Johnson and Barron obtained a re-
sult similar to (1.1) under the same hypothesis, but their method is different
(at least in details) to that of [3]. In their paper, Johnson and Barron give
an upper bound for the L2 distance of the score function of (X + Y )/

√
2
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to the space of additive functions of X and Y , using L2-orthogonal projec-
tions; they eventually use the Poincaré inequality to get the result (see [16,
Proposition 2.1 and Lemma 3.1] for details).

The aim of the present paper is to investigate similar results for random
vectors, and incidentally to give a new approach to (1.1). A random vector
X ∈ Rd with density f is said to satisfy a Poincaré or spectral gap inequality
with constant c > 0 if for any smooth function s with

	
Rd fs = 0,

(1.2) c
�

Rd

fs2 ≤
�

Rd

f |∇s|2.

The largest constant c in this inequality is indeed the spectral gap for the
operator −L on L2(f) where Ls := ∆s−∇(log f) ·∇s for suitable functions;
the Poincaré constant cp(f) refers rather to the inverse of the spectral gap,
i.e. to the smallest constant in the inequality

(1.3)
�

Rd

fs2 ≤ cp(f)
�

Rd

f |∇s|2.

A simplistic adaptation of the argument used in [3] to higher dimensions
leads to an inequality of the form (1.1) for random vectors but with an extra
dependence on d, the dimension. In the present paper we prove the result
without the extra dependence for log-concave random vectors, i.e. those
having a density f such that − log(f) is convex on Rn. It is well known that
such random vectors have finite entropy and have a positive spectral gap
(see below). This family is central in many high-dimensional problems.

Theorem 1.1. Let X be an isotropic log-concave random vector in Rd.
Assume its density f satisfies a Poincaré inequality (1.2) with constant c>0.
Then, if Y is an independent copy of X, we have

(1.4) Ent

(
X + Y√

2

)
− Ent(X) ≥ c

4(1 + c)
(Ent(G)− Ent(X)).

Since c ≤ 1 when f is isotropic, the constant c
4(1+c) may be replaced by c

8 .

The log-concavity assumption will be crucial to the proof of inequality (3.2)
below; we do not know whether it holds without this assumption.

As mentioned above, we need to develop a method different from the
one of [3]. Our alternative approach relies on the study of second derivatives
of the entropy along the heat semigroup (or rather along the Ornstein–
Uhlenbeck semigroup). Note that it also gives an alternative proof of the
one-dimensional case (1.1), up to a numerical (inessential) constant.

Let us make some general comments on log-concave random vectors.
If X and Y are i.i.d. random vectors with density f , the normalized sum
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(X + Y )/
√

2 has density

(1.5) u 7→
�

Rd

f

(
u+ v√

2

)
f

(
u− v√

2

)
dv,

which is a marginal of the joint density on R2d of the pair (X,Y ). It is a con-
sequence of the Brunn–Minkowski inequality (in its functional form due to
Prékopa [21]) that log-concave random vectors have log-concave marginals,
and hence that if X and Y are log-concave, then so is (X + Y )/

√
2. It is

also well known that a log-concave density satisfies a Poincaré inequality for
some constant c > 0. It was proven by Kannan, Lovász and Simonovitz [17]
and independently by Bobkov [6] that if X is an isotropic log-concave ran-
dom vector, then it satisfies a Poincaré inequality (1.2) with constant C/n
for some numerical constant C (thus independent of n and X). Actually,
slightly better dependence on n is known. The Kannan–Lovász–Simonovits
(KLS) open conjecture states that there exists a universal constant c > 0
such that for every n, every isotropic log-concave random vector in Rn sat-
isfies a Poincaré inequality with constant c. It was noticed some time ago by
the first named author, as part of a general program of understanding infor-
mation theory (and entropy) in the context of convexity in high dimensions,
that using (1.4) we can prove that the KLS conjecture implies the celebrated
hyperplane (or slicing) conjecture. We shall return to this in the last section.

The organization of the paper is as follows. In the next section, we recall
some standard facts about the Ornstein–Uhlenbeck semigroup and about
the first derivative of entropy (Fisher information) and the second derivative
(information production). Next we investigate how information production
behaves under convolution and state a general inequality relating informa-
tion production of a random vector to the information of a marginal. The
subsequent section contains the proof of Theorem 1.1. The final section dis-
cusses the connections between entropy jump and the isotropic constant of
a log-concave distribution.

2. Classical results on the Ornstein–Uhlenbeck semigroup and
Fisher information. For any random vector X with smooth enough den-
sity f—we require that

√
f ∈ H1(Rn), but later the density will even have

smoother behavior—its Fisher information is defined by

J(X) := J(f) :=
�

Rd

|∇f |2

f
.

Among random vectors with given covariance matrix, the Gaussian has
the smallest Fisher information, as shown by the following straightforward
computation: if X is an isotropic mean-zero log-concave random vector with
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density f , and G is a standard Gaussian vector with density g : x 7→
(1/
√

2π)de−|x|
2/2, then

J(G) =
�

Rd

|∇g|2

g
=

1
√

2π
d

�

Rd

d∑
i=1

x2i e
−|x|2/2 dx = d

and, by integration by parts,

0 ≤
�

Rd

∣∣∣∣∇ff + x

∣∣∣∣2f(x) dx = J(X)− 2
�

Rd

div(x)f + d = J(X)− J(G).

The Fisher information appears as the derivative of the entropy along
the Ornstein–Uhlenbeck semigroup, a property central to the works of Bakry
and Émery [1] and also to Barron’s work [4] on the convergence of entropy
in the central limit theorem. The Ornstein–Uhlenbeck semigroup can be
constructed in several (equivalent) ways and we choose the following. If X
is a random vector with density f andG is a standard Gaussian, independent
of X, we consider the random vector Xt = e−tX +

√
1− e−2tG, whose law

is the Ornstein–Uhlenbeck evolute at time t of the law of X. More precisely,
the density ft of Xt is the solution of the Fokker–Planck equation with
generator L:

(2.1)
f0 = f,

∂

∂t
ft(x) = L(ft)(x) := ∆xft + divx(xft), ∀t > 0, ∀x ∈ Rn.

It is indeed well known that, starting with a (continuous, say) density f , the
density ft is, for t > 0, strictly positive, C∞-smooth on Rn, and that ft and
its derivatives decay exponentially fast to zero at ∞; in particular ft has a
finite Fisher information and it is readily checked that

∂

∂t
Ent(ft) = −

�

Rd

(Lft) log(ft)

= −
�

Rd

ft∆ log ft − d
�

Rd

ft

= J(ft)− d.
Hence, we have the classical expression of the entropy gap as the integral of
the information gap,

(2.2) Ent(G)− Ent(X) =

∞�

0

(J(ft)− d) dt.

We refer to Carlen and Soffer [10] for details and precise justifications.
Let us mention for further reference some other nice stability properties

of the Ornstein–Uhlenbeck semigroup. It can only improve the spectral gap:
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if X ∼ f is isotropic and satisfies a Poincaré inequality (1.2) with constant
c > 0 (actually, c ∈ ]0, 1]), then ft satisfies a Poincaré inequality with the
same constant c > 0. This follows easily from Fubini’s theorem, Hölder’s
inequality and the fact that the Gaussian density has spectral gap of size 1
(see [3]). Next, it is again a consequence of Prékopa’s theorem that if X
(or f) is log-concave, then so is Xt (or ft). Finally, it is also classical that
the operation of taking marginals commutes with the Ornstein–Uhlenbeck
semigroup in the following sense. Let X and Y be two independent random
vectors and

Xt = e−tX +
√

1− e−2tG1 and Yt = e−tY +
√

1− e−2tG2

their independent evolutes along the Ornstein–Uhlenbeck semigroup, where
each Gi (i = 1, 2) is a standard Gaussian vector independent of all the other
vectors. Then

(2.3)
Xt + Yt√

2
= e−t

X + Y√
2

+
√

1− e−2tG

where G = (G1 +G2)/
√

2 is a standard Gaussian vector.

Throughout the rest of the section, X will be an isotropic log-concave
random vector with mean zero, and density f . The density ft of Xt = e−tX+√

1− e−2tG, the evolute of X along the Ornstein–Uhlenbeck semigroup,
satisfies (2.1) and takes the form ft = e−ϕt with ϕt := log(ft) convex on Rd.
Its Fisher information will be denoted by

J(t) := J(ft) =
�

Rd

|∇ft|2

ft
= −

�

Rd

ft∆ log ft(2.4)

= Tr
�

Rd

ft Hessϕt.

We will work with the derivative ∂tJ(t) of the Fisher information along
the Ornstein–Uhlenbeck semigroup. The following result is classical in the
context of Bakry–Emery’s Γ2 calculus, although it is not usually written in
this form which for us will prove useful. We include a proof for completeness.

Lemma 2.1. With the previous notation we have

(2.5) ∂tJ(t) = 2J(t)− 2 Tr
�

Rd

ft(Hessϕt)
2.

Proof. Denoting by ∂j the partial derivative (in space) with respect to
xj we have
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∂tJ(t) =

d∑
i=1

�

Rd

2
∂ift
ft

∂i∂tft −
�

Rd

(
∂ift
ft

)2

∂tft

=
d∑
i=1

�

Rd

−2∂iϕt∂i

[ d∑
j=1

∂j((−∂jϕt + xj)ft)
]

−
�

Rd

d∑
j=1

∂j((−∂jϕt + xj)ft)(∂iϕt)
2.

where we took into account that ft follows (2.1) and Lg =
∑

j ∂j(∂jg+xjg).
Let A and B be the first and the second terms in the above sum, respectively.
Then we have, by integration by parts and (2.4),

A = 2

d∑
i,j=1

�

Rd

(∂ijϕt)∂i((−∂jϕt + xj)ft)

= 2J(t)− 2 Tr
�

Rd

ft(Hessϕt)
2 + 2

d∑
i,j=1

�

Rd

ft(∂ijϕt)(∂iϕt)(∂jϕt − xj)

and

B = −
d∑
i=1

�

Rd

d∑
j=1

∂j(ft(−∂jϕt + xj))(∂iϕt)
2

= 2
d∑

i,j=1

�

Rd

ft(−∂jϕt + xj)(∂iϕt)(∂ijϕt)

= −2
d∑

i,j=1

�

Rd

ft(∂ijϕt)(∂iϕt)(∂jϕt − xj).

Taking the sum of A and B, one gets the result of this lemma.

Note that the formula in the previous lemma can be rewritten in the
following equivalent form, which is more standard:

∂t(J(t)− d) = −2(J(t)− d)− 2 Tr
�

Rd

ft (Hessϕt − Id)2(2.6)

≤ −2(J(t)− d).

The next lemma will allow us to control the tails of the entropy produc-
tion.

Lemma 2.2. With the previous notation we have

Ent(G)− Ent(X) ≤ 2

∞�

0

e−2t(J(t)− d) dt.
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Proof. Integration of inequality (2.6) leads to the following classical
Gaussian log-Sobolev inequality:

J(t)− d ≥ 2(Ent(G)− Ent(Xt)), ∀t > 0.

By integration by parts, we get

∞�

0

e−2t(J(t)− d) dt ≥ Ent(G)− Ent(X)−
∞�

0

e−2t(J(t)− d) dt,

or equivalently

Ent(G)− Ent(X) ≤ 2

∞�

0

e−2t(J(t)− d) dt.

3. A result for the information production of marginals. As
we saw in (2.5), the information production ∂tJ(t) along the Ornstein–
Uhlenbeck semigroup is given by quantities of the form

Tr
�
(Hess log f)2f.

For our argument, we need to analyze how such quantities can be estimated
for marginal densities. Assume that Z is a random vector with density ω :
RN → R+ (N ≥ 1) and consider the projection PEZ of Z onto a subspace
E ⊂ RN . It has a density on E ' Rdim(E) which we denote by h. A useful
observation due to Carlen [9] for Fisher information is that

J(h) ≤
� |PE∇ω|2

ω
.

The next result provides an analogue for information production. However,
we are able to establish it only in the case of log-concave densities: here
is where the restriction in our main theorem comes from. Using it, we can
then state the central inequality that will be used in the proof of the main
theorem.

Lemma 3.1. Let N ≥ 1 and ω = e−φ : RN → R+ be a smooth positive
function. Given a subspace E ⊂ RN define the marginal function on E by

∀x ∈ E, h(x) := e−ψ(x) :=
�

E⊥

ω(x+ y) dy =
�

E⊥

e−φ(x+y) dy.

Denote by PE the orthogonal projection onto E. Then for every x ∈ E we
have

h(x) Hessψ(x) ≤
�

E⊥

ω(x+ y)PE Hessφ(x+ y)PE dy

in the operator sense (for symmetric operators on E), and if Hessψ(x) ≥ 0,
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then

(3.1) Tr[(Hessψ(x))2h(x)] ≤
�

E⊥

Tr[(PE Hessφ(x+ y)PE)2]ω(x+ y) dy.

Therefore, if Hessψ ≥ 0 we have

(3.2)
�

E

Tr[(Hess log h)2]h ≤
�

RN

Tr[(PE(Hess logω)PE)2]ω.

Proof. We start with the observation that for x ∈ E,

(3.3)
∇h(x)⊗∇h(x)

h(x)
≤

�

E⊥

PE∇ω(x+ y)⊗ PE∇ω(x+ y)

ω(x+ y)
dy

in the symmetric operator sense (on E). Indeed,

∇h(x) =
�

E⊥

PE∇ω(x+ y) dy

and for any v ∈ E we have, using the Cauchy–Schwarz inequality,

(∇h(x), v)2 ≤
�

E⊥

(∇ω(x+ y), v)2

ω(x+ y)
dy

�

E⊥

ω(x+ y) dy

as claimed. Next, observe that

Hessh(x) =
�

E⊥

PE Hessω(x+ y)PE dy

and

h(x) Hessψ(x) = h(x) Hess(− log h)(x) =
∇h(x)⊗∇h(x)

h(x)
−Hessh(x).

Thus (3.3) leads to the inequality

h(x) Hessψ(x)

≤
�

E⊥

(
PE∇ω(x+ y)⊗ PE∇ω(x+ y)

ω(x+ y)
− PE Hessω(x+ y)PE

)
dy

=
�

E⊥

ω(x+ y)PE Hessφ(x+ y)PE dy

in the operator sense on E, as desired.

Since for symmetric operators A ≥ B ⇒ Tr(AH) ≥ Tr(BH) whenever
H ≥ 0, we deduce that, when Hessψ(x) ≥ 0,

Tr[(Hessψ(x))2h(x)] ≤
�

E⊥

Tr[PE Hessφ(x+ y)PE Hessψ(x)]ω(x+ y) dy.
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By the Cauchy–Schwarz inequality (in vector form, for the Hilbert–Schmidt
scalar product) we then have

Tr[(Hessψ(x))2h(x)] ≤
√	

E⊥ Tr[(PE Hessφ(x+ y)PE)2]ω(x+ y) dy.

×
√	

E⊥ Tr[(Hessψ(x))2]ω(x+ y) dy.

Noting that the second integral equals Tr[(Hessψ(x))2h(x)], we arrive at
inequality (3.1). Integration over E then gives (3.2).

For our argument, we will need the following useful observation.

Theorem 3.2. Let X be a log-concave random vector in Rd with smooth
density f = e−ϕ where ϕ is a convex function on Rd, and let Y be an
independent copy of X. Denote by h = e−ψ the density on Rd of the random
vector (X + Y )/

√
2 and put

K = Tr
[ �
Rd

(Hessϕ)2f
]
, K2 = Tr

[ �
Rd

(Hessψ)2h
]

and

M = Tr
[( �

Rd

(Hessϕ)f
)2]

.

Then

K2 ≤
K +M

2
.

Proof. As mentioned earlier, we know by Prékopa’s theorem that h is
log-concave, i.e. Hessψ ≥ 0.

We denote by ω(x, y) = f(x)f(y) the density of (X,Y ) on Rd×Rd = R2d.
For i = 1, . . . , d we set ei = (0, . . . , 1/

√
2, 0, . . . , 0, 1/

√
2, 0, . . .) where the i-th

and (d+ i)-th coordinates are equal to 1/
√

2 and the others are zero. Let E
be the vector subspace of R2d spanned by the orthogonal family {e1, . . . , ed}.
We can assume that the density h = e−ψ of the random vector (X + Y )/

√
2

is defined on E by identification of Rd and E through the orthonormal basis
{ei} of E. Then Lemma 3.1 gives

K2 ≤
�

R2d

ω(x, y) Tr
[
[(Hess(− logω)(x, y)ei, ej)]

2
i,j

]
dx dy

=
�

R2d

f(x)f(y)

d∑
i,j=1

(Hess(− logω)(x, y)ei, ej)
2 dx dy.

Direct computation gives

(Hess(− logω)(x, y)ei, ej)
2 =

1

4
(∂jiϕ(x) + ∂jiϕ(y))2
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and hence

K2 ≤
d∑

i,j=1

1

4

�

R2d

f(x)f(y)((∂jiϕ(x))2 + 2∂jiϕ(x)∂jiϕ(y) + (∂jiϕ(y))2) dx dy

=
1

2

d∑
i,j=1

�

Rd

f(∂jiϕ)2 +
1

2

d∑
i,j=1

( �

Rd

f∂jiϕ
)2

=
1

2
(K +M).

4. Proof of Theorem 1.1. We go back to the situation and the nota-
tion of Section 2. That is, X is an isotropic log-concave random vector with
mean zero, and density f , andXt is its evolute along the Ornstein–Uhlenbeck
semigroup. The (log-concave) density of Xt is denoted by ft = e−ϕt and we
set

J(t) := J(Xt) = Tr
�

Rd

ft Hessϕt,

K(t) := Tr
�

Rd

ft(Hessϕt)
2 = −1

2
e2t∂t(e

−2tJ(t)),

where we used Lemma 2.1 for the last equality.

We now consider Zt, the Ornstein–Uhlenbeck evolute of (X + Y )/
√

2
where Y is an independent copy of X. As mentioned earlier (2.3), Zt =
(Xt + Yt)/

√
2 where Yt is an Ornstein–Uhlenbeck evolute of Y independent

of Xt. Denote by ht = e−ψt the smooth (log-concave) density of Zt and set
accordingly

J2(t) := J(Zt) = Tr
�

Rd

ht Hessψt,

K2(t) := Tr
�

Rd

ht(Hessψt)
2 = −1

2
e2t∂t(e

−2tJ2(t)).

Theorem 3.2 applied to Xt and Zt = (Xt + Yt)/
√

2 then gives

K2(t) ≤
K(t) +M(t)

2
= K(t)− K(t)−M(t)

2

where

M(t) := Tr
[( �

Rd

(Hessϕt)ft

)2]
.

This can be rewritten as

(4.1) ∂t(e
−2t(J2(t)− J(t))) ≥ e−2t(K(t)−M(t)).

We next claim that

(4.2) K(t)−M(t) ≥ c

1 + c
(K(t)− J(t)).
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To prove this, recall from Section 2 that ft satisfies Poincaré’s inequality with
the same (or better) constant c as f . We apply the Poincaré inequality (1.2)
to the density ft = e−ϕt and to the functions

si(x) = ∂iϕt(x)−
d∑
j=1

xj
�

Rd

(∂ijϕt)ft

which satisfy
	
sift = 0 for i = 1, . . . , d. After summing the inequalities

�

Rd

|∇si|2ft ≥ c
�

Rd

s2i ft

we find

Tr
�

Rd

ft(Hessϕt)
2 − Tr

( �

Rd

ft Hessϕt

)2
≥ c
(

Tr
( �

Rd

ft Hessϕt

)2
− Tr

�

Rd

ft Hessϕt

)
.

This can be rewritten as K(t)−M(t) ≥ c(M(t)− J(t)), which is equivalent
to the desired inequality (4.2).

Substituting inequality (4.2) in (4.1), we find

∂t(e
−2t(J2(t)− J(t))) ≥ c

1 + c
e−2t(K(t)− J(t)).

Integrating this inequality from t to ∞, we obtain

J(t)− J2(t) ≥
c

1 + c
e2t
∞�

t

e−2s(K(s)− J(s)) ds.

Hence, using (2.2),

Ent

(
X + Y√

2

)
− Ent(X) =

∞�

0

(J(t)− J2(t)) dt

≥ c

1 + c

∞�

0

e2t
∞�

t

e−2s(K(s)− J(s)) ds dt

=
c

2(1 + c)

∞�

0

(1− e−2t)(K(t)− J(t)) dt

=
c

2(1 + c)

∞�

0

(1− e−2t)
(
−1

2
∂t(J(t)− d)

)
dt

=
c

2(1 + c)

∞�

0

e−2t(J(t)− d) dt.
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Applying Lemma 2.2 we get

Ent

(
X + Y√

2

)
− Ent(X) ≥ c

4(1 + c)
(Ent(G)− Ent(X)).

This ends the proof of Theorem 1.1.

5. Links with the isotropic constant. The isotropic constant of an
isotropic log-concave random vector X ∼ f on Rd is defined by

LX := Lf := f(0)1/d.

This quantity appears in several high-dimensional problems, and a challeng-
ing open problem in asymptotic convex geometry, raised by Bourgain and
known as the slicing or hyperplane conjecture, is whether it is universally
bounded (independently of f and d). The best known bound is Lf ≤ cd1/4

for some universal constant c > 0 ([18]). See [2, 19, 18, 12] for background,
equivalent formulations and related results.

Theorem 5.1. Let X be a random isotropic log-concave vector in Rd.
Assume that it satisfies an entropy jump with constant κ ∈ (0, 1):

Ent

(
X + Y√

2

)
− Ent(X) ≥ κ(Ent(G)− Ent(X))

for Y an independent copy of X; by Theorem 1.1, this holds with κ = c/8 if
f satisfies a spectral gap inequality (1.2) with constant c > 0. Then

(5.1) LX ≤ e2/κ.
Note that the bound also reads

LX ≤ e16 cp(X)

in terms of cp(X) := cp(f), the Poincaré constant (1.3) of X ∼ f .
As a consequence, we see that the KLS conjecture (asserting that iso-

tropic log-concave distributions satisfy a Poincaré inequality (1.2) with some
universal constant) implies the hyperplane conjecture. In this direction,
a better result is known; indeed, Eldan and Klartag [12] recently proved
that the variance conjecture implies the hyperplane conjecture as well. The
variance conjecture asserts that inequality (1.2) for the particular function
s(x) = |x|2 −

	
|y|2f(y) dy holds with a universal constant for every log-

concave isotropic distribution f in every dimension d. However, it is worth
noting that unlike the Eldan–Klartag result, our estimate above holds at
the level of an individual distribution X.

Theorem 5.1 was presented by the first named author in 2003 at a con-
ference in Kiel and then expanded in a series of lectures in 2006 at the
conference Phenomena in High Dimensions at the I.H.P., as part of a more
general program proposing a probabilistic viewpoint on the geometry of
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convex bodies in high dimensions. A similar program was also recently and
independently proposed by Bobkov and Madiman (see e.g. [7, 8]).

Let us now explain the short and simple argument allowing us to pass
from the entropy jump to a bound on the isotropic constant. It relies on
a classical rigidity property of isotropic log-concave distributions X ∼ f
in Rd, namely that up to non-essential linear terms in d, we have log f(0)
' −Ent(X). The bound

(5.2) − log f(0) ≤ Ent(X) ≤ − log f(0) + d

is for instance implicit in [14] and the easy proof is as follows. Write f = e−ϕ

with ϕ convex. For the lower bound use
	
Rd xf(x) dx = 0 together with

Jensen’s inequality to get

− log f(0) = ϕ(0) ≤
�

Rd

ϕ(x)f(x) dx = Ent(X).

The upper bound combines the convexity of f and an integration by parts
as follows:

Ent(X)− ϕ(0) =
�

Rd

f(x)[ϕ(x)− ϕ(0)] dx ≤
�

Rd

f(x)∇ϕ(x) · x dx = d.

Let us mention that in the definition of LX and in the entropic bounds
above, we can replace, up to numerical constants, f(0) by ‖f‖∞ := supRd |f |,
since it is known (see [13]) that ‖f‖∞ ≤ edf(0) for an isotropic log-concave
distribution f on Rd.

To finish the proof of (5.1), assume first that X ∼ f is symmetric,
which means that f is even. If h denotes the density of (X + Y )/

√
2, then

h(x) = 2d/2
	
Rd f(x − y)f(y) dy. It then follows from the log-concavity of f

that

h(0) = 2d/2
�

Rd

f(y)2 dy ≥ 2d/2
�

Rd

f(2y)f(0) dy = 2−d/2f(0).

Hence, using (5.2) we have

(5.3) Ent

(
X + Y√

2

)
≤ d

2
log 2− log f(0) + d ≤ − log f(0) +

3

2
d.

Let us now go back to the general case where X ∼ f is not necessarily
symmetric, and consider i.i.d. copies Y,X ′, Y ′ of X. Then (X −X ′)/

√
2 and

(Y − Y ′)/
√

2 are symmetric log-concave isotropic random vectors in Rd,
independent and identically distributed according to the density

g(x) = 2d/2
�

Rd

f(x+ y)f(y) dy.

It follows from the argument above that g(0) ≥ 2−d/2f(0). Thus, by the
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Shannon–Stam inequality

1

2
Ent(Z) +

1

2
Ent(U) ≤ Ent

(
Z + U√

2

)
for Z = (X + Y )/

√
2 and U = −(X ′ + Y ′)/

√
2 two independent random

vectors, and by the bound (5.3) obtained in the symmetric case, one gets

Ent

(
X + Y√

2

)
≤ Ent

(
X + Y −X ′ − Y ′√

4

)
= Ent

( X−X′
√
2

+ Y−Y ′
√
2√

2

)
≤ − log g(0) +

3

2
d ≤ − log f(0) + 2d.

On the other hand, the assumption on the entropy jump implies

(1− κ) Ent(X) ≤ Ent

(
X + Y√

2

)
− κEnt(G) ≤ Ent

(
X + Y√

2

)
since Ent(G) = (d/2) log 2πe ≥ 0. Therefore, using again (5.2) we get

(1− κ)[− log f(0)] ≤ − log f(0) + 2d.

This implies

κ log f(0) ≤ 2d

and hence the desired bound (5.1).

Acknowledgements. The second author would like to thank his PhD
advisor Dario Cordero-Erausquin for all his help and advice.

References
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