STUDIA MATHEMATICA 199 (1) (2010)

Monotone extenders for bounded *c*-valued functions

by

KAORI YAMAZAKI (Takasaki)

Abstract. Let c be the Banach space consisting of all convergent sequences of reals with the sup-norm, $C_{\infty}(A, c)$ the set of all bounded continuous functions $f : A \to c$, and $C_A(X, c)$ the set of all functions $f : X \to c$ which are continuous at each point of $A \subset X$. We show that a Tikhonov subspace A of a topological space X is strong Choquet in X if there exists a monotone extender $u : C_{\infty}(A, c) \to C_A(X, c)$. This shows that the monotone extension property for bounded c-valued functions can fail in GO-spaces, which provides a negative answer to a question posed by I. Banakh, T. Banakh and K. Yamazaki.

In this paper, vector spaces mean real vector spaces. Let X and Y be topological spaces. Then C(X, Y) stands for the set of all continuous functions $f : X \to Y$. If Y is a topological vector space, the set of all bounded continuous functions $f : X \to Y$ is denoted by $C_{\infty}(X, Y)$, where $f : X \to Y$ is bounded if f(X) is a bounded subset of Y, that is, for each 0-neighborhood U of Y there exists $r \in \mathbb{R}$ such that $f(X) \subset rU$. For $A \subset X$, a map $u : C(A, Y) \to C(X, Y)$ is called an *extender* if u(f)|A = f for each $f \in C(A, Y)$. For a topological vector space Y, an extender $u : C(A, Y) \to$ C(X, Y) is said to be a conv-extender (resp. conv-extender) if u(f)(X) is a subset of the convex hull (resp. the closed convex hull) of f(A) for each $f \in C(A, Y)$. For a topological space Y with a partial order structure \leq , an extender $u : C(A, Y) \to C(X, Y)$ (or $u : C_{\infty}(A, Y) \to C(X, Y)$) is said to be monotone if $u(f) \leq u(g)$ for each $f, g \in C(A, Y)$ (or $f, g \in C_{\infty}(A, Y)$) with $f \leq g$. A vector space Y with a partial order structure \leq is called an ordered vector space if the following axioms are satisfied:

 $(O)_1 \ x \le y \text{ implies } x + z \le y + z \text{ for all } x, y, z \in Y;$

 $(O)_2 \ x \leq y$ implies $\lambda x \leq \lambda y$ for all $x, y \in Y$ and all $\lambda > 0$.

A topological vector space Y that is also an ordered vector space is called an ordered topological vector space if the positive cone $\{y \in Y : y \ge 0\}$ is

²⁰¹⁰ Mathematics Subject Classification: 46A40, 46A55, 46B40, 54C20, 54F05, 91A44.

Key words and phrases: monotone extender, Banach space c, strong Choquet game, ω -decreasing intersection property, GO-space, Michael line.

closed. Note that, for an ordered topological vector space Y, each linear $\overline{\text{conv}}$ -extender $u: C(A, Y) \to C(X, Y)$ is monotone. As usual, C(X) and $C_{\infty}(X)$ stand for $C(X, \mathbb{R})$ and $C_{\infty}(X, \mathbb{R})$, respectively.

Dugundji's extension theorem [6] states that for a metric space X, a closed subset A of X and a locally convex topological vector space Y, there exists a linear conv-extender $u : C(A, Y) \to C(X, Y)$; this is an improvement of an earlier result by K. Borsuk [4] that for a closed separable subset of a metric space X, there exists a norm-one linear extender $u : C_{\infty}(A) \to C_{\infty}(X)$. Now it is known that Dugundji's extension theorem holds in some classes of generalized metric spaces X (C. J. R. Borges [3], I. S. Stares [11]), but does not hold for all GO-spaces X. Indeed, for the Michael line $\mathbb{R}_{\mathbb{Q}}$, R. W. Heath and D. J. Lutzer [9] show that there exists no linear conv-extender $u : C(\mathbb{Q}) \to C(\mathbb{R}_{\mathbb{Q}})$; E. K. van Douwen [5] extends it by showing that there is no monotone extender $u : C(\mathbb{Q}) \to C(\mathbb{R}_{\mathbb{Q}})$ (see also I. S. Stares and J. E. Vaughan [12]). For related results on Dugundji extenders and retracts in GO-spaces, see G. Gruenhage, Y. Hattori and H. Ohta [8].

On extenders for bounded functions, R. W. Heath and D. J. Lutzer [9] establish that for a closed subset A of a GO-space X, there exists a linear conv-extender $u: C_{\infty}(A) \to C_{\infty}(X)$; van Douwen's result [5] shows that "conv-extender" in the above cannot be strengthened to "conv-extender". For normed-space-valued functions, I. Banakh, T. Banakh and K. Yamazaki [1, Theorem 4.1] prove that a normed space Y is reflexive if and only if for every closed subset A of a GO-space X, there exists a linear $\overline{\text{conv}}$ extender $u: C_{\infty}(A,Y) \to C_{\infty}(X,Y)$. From these viewpoints, a natural further question arises: let Y be a non-reflexive normed space which is an ordered topological vector space; does there exist, for every closed subset Aof every GO-space X, a monotone extender $u: C_{\infty}(A, Y) \to C_{\infty}(X, Y)$? The answer is "yes" for $Y = l_1$ ([1, Theorem 9.1]), "no" for $Y = c_0$ ([1, Corollary 6.3]), and for Y = c the following is asked in [1, Question 6.4]: Is there a monotone extender $u: C_{\infty}(\mathbb{Q}, c) \to C(\mathbb{R}_{\mathbb{Q}}, c)$? In this paper, we give a negative answer to this question (Corollary 4). In fact, we show that any subset A which is not strong Choquet in X fails to possess such monotone extenders (Corollary 3).

Let us recall some terminology. The symbol c_0 (resp. c) stands for the Banach space consisting of all sequences of reals that converge to 0 (resp. of all convergent sequences of reals) with the sup-norm and a partial order structure \leq , where for $x = (x_n)_{n \in \omega}$ and $y = (y_n)_{n \in \omega} \in c_0$ (or c), $x \leq y$ if $x_n \leq y_n$ for each $n \in \omega$. Recall from [10] and [2] that a Hausdorff space X is a generalized ordered space (= GO-space) if X has a linear order structure and has a base of the topology consisting of order-convex sets. The Michael line $\mathbb{R}_{\mathbb{Q}}$ is the set \mathbb{R} endowed with the topology $\{U \cup V : U \in \tau, V \subset \mathbb{R} \setminus \mathbb{Q}\}$, where τ is the usual topology of \mathbb{R} and \mathbb{Q} is the set of all rational numbers ([7]). The Michael line $\mathbb{R}_{\mathbb{Q}}$ is a typical example of a GO-space.

As in [1], the relative strong Choquet game $G_r(A, X)$ is played by two players, I and II, for a subset A of a topological space X. Player I starts the game selecting a point $a_0 \in A$ and a neighborhood U_0 of a_0 in X. Player II responds with a neighborhood $V_0 \subset U_0$ of a_0 in X. At the *n*th inning player I selects a point $a_n \in V_{n-1} \cap A$ and a neighborhood $U_n \subset V_{n-1}$ of a_n in X, while player II responds with a neighborhood $V_n \subset U_n$ of a_n in X. Thus players construct a sequence $\{a_n\}_{n\in\omega}$ of points of A and sequences $(U_n)_{n\in\omega}$ and $(V_n)_{n\in\omega}$ of open sets of X such that $a_n \in V_n \subset U_n \subset V_{n-1}$ for all $n \in \mathbb{N}$. Player I is declared the winner in the game $G_r(A, X)$ if $\emptyset \neq \bigcap_{n\in\omega} U_n \subset X \setminus A$. Otherwise, player II wins. If player II has a winning strategy in the game $G_r(A, X)$, then the set A is said to be strong Choquet in X. Note that \mathbb{Q} is not strong Choquet in $\mathbb{R}_{\mathbb{Q}}$ ([1, Corollary 3.7]). Another important example of a subset which is not strong Choquet in the whole space is given in [12] (see [1, Remark 3.8]).

Let Y be a topological space with a partial order structure. Then a continuous function $\gamma : [0, \infty) \to Y$ is an ω -increasing ray (resp. ω -decreasing ray) if $\gamma(n) \leq \gamma(t)$ (resp. $\gamma(n) \geq \gamma(t)$) for any integer $n \in \omega$ and any real $t \geq n$ ([1]). In order to improve [1, Theorem 6.1], we introduce key notions which are modifications of (almost) upper boundedness of $\gamma(\omega)$ for an ω -increasing ray γ appearing in [1]. For $Y_0 \subset Y$, we say Y_0 has the ω -decreasing intersection property in Y if for each increasing sequence $\{y_n\}_{n\in\omega}$ in Y_0 and each decreasing sequence $\{z_n\}_{n\in\omega}$ in Y_0 with $y_n \leq z_n$ for each $n \in \omega$, $\bigcap_{n\in\omega} \{y \in Y : y_n \leq y \leq z_n\} \neq \emptyset$. We also say Y_0 has the almost ω -decreasing intersection property in Y if for each ω -increasing ray $\gamma_1 : [0, \infty) \to Y_0$, each ω -decreasing ray $\gamma_2 : [0, \infty) \to Y_0$ with $\gamma_1(r_1) \leq \gamma_2(r_2)$ for each $r_1, r_2 \in [0, \infty)$, and each family $\{G_n^i\}_{n\in\omega}^{i=1,2}$ of G_{δ} -sets of Y with $\gamma_i(n) \in G_n^i, n \in \omega$, i = 1, 2, it follows that $\bigcap_{n\in\omega} \bigcup_{b_1\in G_n^1, b_2\in G_n^2} \{y \in Y : b_1 \leq y \leq b_2\} \neq \emptyset$.

For $A \subset X$, $C_A(X, Y)$ denotes the set of all functions $f : X \to Y$ which are continuous at each point of A.

THEOREM 1. Let A be a Tikhonov subset of a topological space X, Y a topological space with a partial order structure and $Y_0 \subset Y$. If there exists a monotone extender $u : C(A, Y_0) \to C_A(X, Y)$, then either A is strong Choquet in X or else Y_0 has the almost ω -decreasing intersection property in Y.

Proof. Let $u : C(A, Y_0) \to C_A(X, Y)$ be a monotone extender. Assume Y_0 does not have the almost ω -decreasing intersection property in Y. Namely, there exist an ω -increasing ray $\gamma_1 : [0, \infty) \to Y_0$, an ω -decreasing ray $\gamma_2 : [0, \infty) \to Y_0$ with $\gamma_1(r_1) \leq \gamma_2(r_2)$ for each $r_1, r_2 \in [0, \infty)$, and a family $\{G_n^i\}_{n\in\omega}^{i=1,2}$ of G_{δ} -sets of Y with $\gamma_i(n) \in G_n^i$, $n \in \omega$, i = 1, 2, such that (1) $\bigcap_{n\in\omega} \bigcup_{b_1\in G_n^1, b_2\in G_n^2} \{y\in Y: b_1 \le y \le b_2\} = \emptyset.$

Set $y_n = \gamma_1(n)$ and $z_n = \gamma_2(n)$ for each $n \in \omega$. For each $n \in \omega$, take decreasing sequences $(O_m(y_n))_{m \ge n}$ and $(O_m(z_n))_{m \ge n}$ of open neighborhoods of y_n and z_n , respectively, such that $\bigcap_{m \ge n} O_m(y_n) \subset G_n^1$ and $\bigcap_{m \ge n} O_m(z_n) \subset G_n^2$. Now we describe a winning strategy of player II in the game $G_r(A, X)$. For $a_0 \in A$ and a neighborhood U_0 of a_0 in X, player II takes a neighborhood V_0 of a_0 in X with $V_0 \subset U_0$ and sets a function $\lambda_0 \equiv 0$ on A. In the *n*th inning (n > 0), for $a_n \in V_{n-1} \cap A$ and a neighborhood $U_n \subset V_{n-1}$ of a_n , player II takes a continuous function $\lambda_n : A \to [0, 1]$ and a neighborhood V_n of a_n in X such that

(2)
$$V_n \subset U_n, \quad a_n \in V_n \cap A \subset \lambda_n^{-1}(1) \subset \lambda_n^{-1}((0,1]) \subset U_n,$$

(3)
$$u\left(\gamma_1 \circ \sum_{i=0}^n \lambda_i\right)(V_n) \subset O_n(y_k) \text{ and } u\left(\gamma_2 \circ \sum_{i=0}^n \lambda_i\right)(V_n) \subset O_n(z_k),$$

for each $k \leq n$. Indeed, since A is Tikhonov, take a continuous function $\lambda_n : A \to [0, 1]$ such that $a_n \in \operatorname{int}_A \lambda_n^{-1}(1) \subset \lambda_n^{-1}((0, 1]) \subset U_n$. For each i with $1 \leq i < n$, it follows from $a_n \in U_n \cap A \subset V_i \cap A \subset \lambda_i^{-1}(1)$ that $\lambda_i(a_n) = 1$. Hence, $u(\gamma_1 \circ \sum_{i=0}^k \lambda_i)(a_n) = \gamma_1(k) = y_k$ and $u(\gamma_2 \circ \sum_{i=0}^k \lambda_i)(a_n) = \gamma_2(k) = z_k$ for each $k \leq n$. Since $u(\gamma_1 \circ \sum_{i=0}^k \lambda_i)$ and $u(\gamma_2 \circ \sum_{i=0}^k \lambda_i)$ are in $C_A(X, Y)$, choose a neighborhood V_n of a_n in X such that $u(\gamma_1 \circ \sum_{i=0}^k \lambda_i)(V_n) \subset O_n(y_k)$ and $u(\gamma_2 \circ \sum_{i=0}^k \lambda_i)(V_n) \subset O_n(z_k)$ for each $k \leq n$ and $V_n \cap A \subset \lambda_n^{-1}(1)$.

Then the condition $\emptyset \neq \bigcap_{n \in \omega} U_n \subset X \setminus A$ fails. To show this, assume on the contrary that there exists $c \in \bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n \subset X \setminus A$. By (3),

(4)
$$u\Big(\gamma_{1} \circ \sum_{i=0}^{k} \lambda_{i}\Big)(c) \in \bigcap_{n \ge k} O_{n}(y_{k}) \subset G_{k}^{1},$$
$$u\Big(\gamma_{2} \circ \sum_{i=0}^{k} \lambda_{i}\Big)(c) \in \bigcap_{n \ge k} O_{n}(z_{k}) \subset G_{k}^{2},$$

for each $k \in \omega$. Define a continuous function $s : A \to [0, \infty)$ by $s(a) = \sum_{i \in \omega} \lambda_i(a)$ for each $a \in A$; this is possible by (2) and the fact that $\bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n \subset X \setminus A$. Then we show $(\gamma_1 \circ \sum_{i=0}^k \lambda_i)(a) \leq (\gamma_1 \circ s)(a)$ for each $a \in A$. Indeed, if $\sum_{i=0}^k \lambda_i(a)$ is an integer, this follows from γ_1 being ω -increasing. If $\sum_{i=0}^k \lambda_i(a)$ is not an integer, the fact that $\lambda_{n+1}^{-1}((0,1]) \subset \lambda_n^{-1}(1)$ for each $n \in \mathbb{N}$ implies that $\sum_{i=0}^k \lambda_i(a) = s(a)$. Similarly, $\gamma_1 \circ \sum_{i=0}^k \lambda_i \leq \gamma_1 \circ s \leq \gamma_2 \circ s \leq \gamma_2 \circ \sum_{i=0}^k \lambda_i$ for each $k \in \omega$. Since $\gamma_1 \circ \sum_{i=0}^k \lambda_i$, $\gamma_1 \circ s$, and $\gamma_2 \circ \sum_{i=0}^k \lambda_i$ are in $C(A, Y_0)$ and u is monotone, it follows that

 $u(\gamma_1 \circ \sum_{i=0}^k \lambda_i) \leq u(\gamma_1 \circ s) \leq u(\gamma_2 \circ \sum_{i=0}^k \lambda_i)$ for each $k \in \omega$. By (4), $u(\gamma_1 \circ s)(c) \in \bigcap_{n \in \omega} \bigcup_{b_1 \in G_n^1, b_2 \in G_n^2} \{y \in Y : b_1 \leq y \leq b_2\}$, a contradiction to (1). Hence A is strong Choquet in X. This completes the proof.

LEMMA 2. Let Y be a topological vector space and an ordered vector space, and Y_0 a convex subset of Y. If Y_0 has countable pseudo-character in Y, the following conditions are equivalent:

- (1) Y_0 has the almost ω -decreasing intersection property in Y;
- (2) Y_0 has the ω -decreasing intersection property in Y.

Proof. $(2) \Rightarrow (1)$ is obvious. To show $(1) \Rightarrow (2)$, let $\{y_n\}_{n \in \omega}$ be an increasing sequence in Y_0 and $\{z_n\}_{n \in \omega}$ a decreasing sequence in Y_0 with $y_n \leq z_n$ for each $n \in \omega$. Since Y_0 has countable pseudo-character in Y, we set $G_n^1 = \{y_n\}$ and $G_n^2 = \{z_n\}$ for each $n \in \omega$. Define $\gamma_1, \gamma_2 : [0, \infty) \to Y_0$ by $\gamma_1(r) = (n_r + 1 - r)y_{n_r} + (r - n_r)y_{n_r+1}$ and $\gamma_2(r) = (n_r + 1 - r)z_{n_r} + (r - n_r)z_{n_r+1}$, where $n_r \in \omega$ with $r \in [n_r, n_r + 1]$. Then γ_1 and γ_2 are Y_0 -valued continuous, because Y_0 is convex and $\{[n, n + 1] : n \in \omega\}$ is a locally finite closed collection in $[0, \infty)$. It is easy to see that γ_1 is an ω -increasing ray and γ_2 is an ω -decreasing ray. To show $\gamma_1(r) \leq \gamma_2(s)$ for each $r, s \in [0, \infty)$, fix $r, s \in [0, \infty)$ arbitrarily. Set $n_0 = \max\{n_r + 1, n_s + 1\}$. Then it follows from $(O)_1$ and $(O)_2$ that

$$\begin{split} \gamma_1(r) &= (n_r + 1 - r)y_{n_r} + (r - n_r)y_{n_r + 1} \le (n_r + 1 - r)y_{n_r + 1} + (r - n_r)y_{n_r + 1} \\ &= y_{n_r + 1} \le y_{n_0} \le z_{n_0} \le z_{n_s + 1} = (n_s + 1 - s)z_{n_s + 1} + (s - n_s)z_{n_s + 1} \\ &\le (n_s + 1 - s)z_{n_s} + (s - n_s)z_{n_s + 1} = \gamma_2(s). \end{split}$$

Since $\gamma_1(n) = y_n$ and $\gamma_2(n) = z_n$ for each $n \in \omega$, it follows from (1) that $\bigcap_{n \in \omega} \{y \in Y : y_n \le y \le z_n\} \neq \emptyset$.

COROLLARY 3. A Tikhonov subspace A of a topological space X is strong Choquet in X if there exists a monotone extender $u: C_{\infty}(A, c) \to C_A(X, c)$.

Proof. Let Y = c and $Y_0 = \{y \in c : 0 \le y \le 1\}$, where $0 = (0, 0, \ldots)$, $1 = (1, 1, \ldots) \in c$. Then Y_0 is convex and bounded in Y. Define $y_n, z_n \in c$, $n \in \omega$, by $y_n(m) = 1$ if m = 2j + 1, $j \le n - 1$, $j \in \omega$; $y_n(m) = 0$ otherwise; $z_n(m) = 0$ if m = 2j, $j \le n - 1$, $j \in \omega$; $z_n(m) = 1$ otherwise. Then $\{y_n\}_{n\in\omega} \subset Y_0$ is increasing, $\{z_n\}_{n\in\omega} \subset Y_0$ is decreasing with $y_n \le z_n$ for each $n \in \omega$, and $\bigcap_{n\in\omega} \{y \in c : y_n \le y \le z_n\} = \emptyset$. By Lemma 2, Y_0 does not have the almost ω -decreasing intersection property in c. Since $C(A, Y_0) \subset C_{\infty}(A, c)$, Theorem 1 completes the proof of Corollary 3.

COROLLARY 4. There is no monotone extender $u : C_{\infty}(\mathbb{Q}, c) \to C(\mathbb{R}_{\mathbb{Q}}, c)$.

Acknowledgments. This research was supported by the Ministry of Education, Culture, Sports, Science and Technology, Grant-in-Aid for Young Scientists (B), No. 19740027.

K. Yamazaki

References

- I. Banakh, T. Banakh and K. Yamazaki, *Extenders for vector-valued functions*, Studia Math. 191 (2009), 123–150.
- [2] H. Bennett and D. J. Lutzer, *Linearly ordered and generalized ordered spaces*, in: Encyclopedia of General Topology, K. P. Hart, J. Nagata and J. E. Vaughan (eds.), Elsevier, 2004, 326–330.
- [3] C. J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1–16.
- [4] K. Borsuk, Über Isomorphie der Funktionalräume, Bull. Internat. Acad. Polon. Sér. A 1933, 1–10.
- [5] E. K. van Douwen, Simultaneous extension of continuous functions, Ph.D. Thesis, Free Univ. of Amsterdam, 1975.
- [6] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353–367.
- [7] R. Engelking, *General Topology*, Heldermann, Berlin, 1989.
- [8] G. Gruenhage, Y. Hattori and H. Ohta, Dugundji extenders and retracts on generalized ordered spaces, Fund. Math. 158 (1998), 147–164.
- R. W. Heath and D. J. Lutzer, Dugundji extension theorems for linearly ordered spaces, Pacific J. Math. 55 (1974), 419–425.
- [10] D. J. Lutzer, On generalized ordered spaces, Dissertationes Math. 89 (1977).
- I. S. Stares, Concerning the Dugundji extension property, Topology Appl. 63 (1995), 165–172.
- [12] I. S. Stares and J. E. Vaughan, The Dugundji extension property can fail in ω_μmetrizable spaces, Fund. Math. 150 (1996), 11–16.

Kaori Yamazaki Faculty of Economics Takasaki City University of Economics 1300 Kaminamie, Takasaki Gunma 370-0801, Japan E-mail: kaori@tcue.ac.jp

Received December 3, 2009

(6760)