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Littlewood—Paley g-functions with rough
kernels on homogeneous groups

by

YoNG DING and XINFENG WU (Beijing)

Abstract. Let G be a homogeneous group on R"™ whose multiplication and inverse
operations are polynomial maps. In 1999, T. Tao proved that the singular integral operator
with L log™L function kernel on G is both of type (p,p) and of weak type (1,1). In this
paper, the same results are proved for the Littlewood—Paley g-functions on G.

1. Introduction. Let {2 be a function defined on the Euclidean unit
sphere S"~! in R™ (n > 2) and satisfying the cancellation condition

(1.1) | 200)do=o.
Sn—1
Denote by T, the singular integral operator defined by

S 2(y/lyl)

Tof(x) =p.v. PR

flx—y)dy
R"

for f in the Schwartz class S(R™). These operators, known as Calderén—
Zygmund singular integral operators, were first studied by Calderén and
Zygmund in their famous article [CZ1]. They proved LP boundedness of T,
when the kernels are regular. Later in 1960, Héormander [Hor| showed that
the same results hold when the kernel only satisfies a weaker condition which
is referred to as Hormander’s condition today.

An important and interesting question is whether the regularity con-
ditions on the convolution kernels are necessary for the LP (1 < p < o0)
boundedness of the Calderén—Zygmund singular integral operators. In 1956,
Calderén and Zygmund [CZ2] gave a negative answer. Using the method of
rotations, Calderén and Zygmund proved that Ty, is still bounded on LP for
1 < p < oo when £ is odd in L'(S™ 1), or even in LlogTL(S™!) satisfy-
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ing (1.1). In 1988, Hofmann [Hof] proved that the rough singular integral
operator Ty, is of weak type (1,1) in R? for 2 € LI(S'), ¢ > 1. In an un-
published work, M. Christ obtained a weak type (1,1) inequality for Ty,
for 2 € Llog™ L(S™!) in dimension n < 7. In 1996, Seeger [Se] showed
that Ty is of weak type (1,1) if £2 € Llog™ L(S™"!) with the mean zero
condition (1.1) for all dimensions n > 2. In [GS], Grafakos and Stefanov
gave a nice survey, which contains a thorough discussion of the history of
the operator Ty,.

It is well known that a homogeneous group G is a Lie group equipped
with multiplication, inverse, dilation, and norm structures

(12) @y —ay, weal, (Lo)etos, o p()

for x,y € G and t > 0. Here the multiplication and inverse operations are
polynomial maps, while the dilation structure preserves the group operations
and is given in coordinates by

(1.3) to(z,...,zn) = (t"2y1,..., 1% xy)

for some constants 0 < oy < -+ < a, and satisfies p(tox) = tp(z). It can be
shown that Lebesgue measure dz is a Haar measure on G and that p(z) ~
p(z~1). We call n the Fuclidean dimension of G, and N = a1 + - - - + a, the
homogeneous dimension of G. Denote by X = {z € G : p(x) = 1} the “unit
sphere” of G.

When {2 satisfies a much stronger smoothness condition, T}, is a bounded
operator on LP(G) for 1 < p < oo (see [St2]). By analyzing the results
on rough singular integral operators Ty, mentioned above, it is natural to
conjecture that analogous results also hold on the homogeneous group G.
However, there exist many difficulties in this generalization. In fact, the
method based on Fourier transform estimates is not available on the general
homogeneous group G, and this method plays a key role in studying the
L? and weak (1,1) boundedness for the rough operator Ty, on R™. In 1999,
using a variant of Littlewood—Paley theory and an iterated T7™ method, Tao
[T] generalized the results in [CZ2] and [Se] to the homogeneous group G.
To be precise, Tao proved the weak type (1,1) and (2,2) boundedness of
T with kernels belonging to the class Llog™L on G, and hence the (p,p)
boundedness of T for 1 < p < oo follows easily by interpolation and duality.
Tao’s work in [T] is very significant because the ideas presented there pave
the way to the theory of rough operators on general homogeneous groups.

On the other hand, it is well known that the Littlewood—Paley operators
play an important role in harmonic analysis on R", PDE, characterizing
function spaces, etc. The Littlewood—Paley operators in high dimensions
were first introduced by Stein in [St1]. If 2 € L'(S™™!) satisfies (1.1), set
o(x) = Qz/|x])]z] " x(z<1y(2) and @i (z) = t7"@(x/t) for t > 0. Then
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the Littlewood—Paley g-function gq with homogeneous kernel is defined by

0 1/2

a9 = ( Jlors SRS

0
In [St1], Stein proved that if 2 € Lip, (5" 1),0 < a < 1, then g is of weak
type (1,1) and of type (p,p) for 1 < p < 2. In 1962, Benedek, Calderén and
Panzone [BCP] showed if £2 € C1(S™7!), then g is of type (p,p) for 1 <
p < oo. In 2000, Ding, Fan and Pan [DFP2] proved that if 2 € H*(S"1),
the Hardy space on S"~! (see [Con] or [RW] for the definition), then g, is
still of type (p,p) for 1 < p < oo. In 2001, Fan and Sato [FaSa] established
the weak (1,1) boundedness of gg if 2 € Llog™L(S™!). The results in
[DFP2| and [FaSa] show that the regularity condition imposed on {2 is not
necessary for the LP (1 < p < oo) and weak (1,1) boundedness of gp. See
also [DFP1] and [AACP] for more results about the rough Littlewood—Paley
g-function on R".

Inspired by Tao’s pioneering work, in this paper, we will discuss some
mapping properties of the Littlewood—Paley g-functions with rough kernels
on the homogeneous group G.

Suppose that a function {2 defined on G satisfies the following conditions:

(1.4) Qtox)=92(x) fort>0andzxeG,
(1.5) | 2(x)do(x) =0,
X

and 2 € L}(X), that is,
(1.6) | 12(2)] do(z) < o0,
X

where o is a Radon measure on X (see [FoSt, p. 14]). The Littlewood—Paley
g-function on G is defined by

() 1/2
gof(z) = <§ If*mtIQCit) ,

0

where ky(z) = t7102(x)p(2)' "N xp)<i (x) (¢ > 0, z € G) and {2 satisfies
the conditions (1.4)—(1.6).

In this paper, we will prove the weak type (1,1) and (p, p) boundedness
of the Littlewood—Paley g-function on the homogeneous group G if the size
condition (1.6) is replaced by the following Llog™ L(X) condition:

(1.7) | [2(x)log(2 + 2(x))| do(x) < oc.
b))
Our main results are as follows.
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THEOREM 1.1. If 2 € Llogt L(X) satisfies (1.4) and (1.5), then gq is
bounded on L*(G).

THEOREM 1.2. If 2 € Llog" L(X) and gg is bounded on L*(G), then
gn is of weak type (1,1) on G.

By an interpolation theorem, we get

COROLLARY 1.3. Suppose 2 € Llog" L(X) satisfies (1.4) and (1.5).
Then gg is bounded on LP(G) for 1 < p < 2 and is of weak type (1,1) on G.

The basic idea of proving our theorems is to view the Littlewood—Paley
g-function as a vector-valued singular integral (see Section 2). It should be
pointed out that some ideas used in this work are borrowed from Tao’s
paper [T]. However, the extra integral in ¢ causes some essential difficulties
so that we do not use the method in [T] directly in many estimates. Here,
we point out three major differences:

(1) The singular integral operator T' and its adjoint operator 7™ are
essentially the same. Hence, the properties of T' can be translated to T™.
However, the Littlewood—-Paley g-function g and its adjoint g7, are essen-
tially different, since g maps a scalar-valued function to a Hilbert-valued
function and its adjoint operator gf, is a mapping from a Hilbert-valued
function space to a scalar-valued function space.

(2) In the proof of Theorem 1.1, we view the Littlewood—Paley g-function
as a vector-valued singular integral. However, in estimating the nondegen-
erate portion of the integral, there are some additional difficulties caused by
the extra t integral coming from vector-valued duality (see Remark 4.4 at
the end of Section 4).

To avoid this problem, we iterate T' m + 1 times instead of m times, and
then “throw out” the extra t integral to reduce the estimate for a vector-
valued integral to a scalar-valued one.

In the weak (1,1) case, we shall iterate 7' m + 2 times for symmetry
considerations. Also more careful estimates are required for the reduction
(see Section 7).

(3) In the proof of weak type (1,1) boundedness, we are led to esti-
mate the derivatives of homogeneous norms. We show that any homogeneous
norm on the homogeneous group satisfies certain regularity conditions (see
Theorem 7.1). Then we get the desired estimates by using left-invariant
differentiation structures developed by Tao (see Lemma 7.2).

REMARK 1.4. In 1960, Hérmander [Hor| proved the LP boundedness
of a parameterized Littlewood—Paley g-function. Using our argument, one
can prove results similar to ours for the parameterized Littlewood—Paley
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g-function g, defined by
o0

1/2
g f () = (S o RlP Cf) ,

0

where wf (x) =t 2(x)p(x)" "N X{p@)<ty (@) for t,v > 0 and z € G, and 2
satisfies the conditions (1.4)—(1.6).

Throughout this paper, we will work exclusively with real-valued func-
tions. The letters C' (resp. ¢, &) will always be used to denote large (resp.
small) positive constants only depending on the homogeneous group G and
any other specified quantities. The values of these constants are not neces-
sarily the same at each occurrence. We use A < B to denote A < CB, and
we write A~ Bif A< B A

2. L? estimate I: Kernel truncation and frequency localiza-
tion. Let K(x) = 2(z)p(z)™" and hy(x) = t p(2) X ()<t} (). Set Ko :=
Kxa, with 49 = {x € G : 1 < p(z) < 2}. Then we may normalize
Kol p10g+ () = 1 since 2 € Llog® L(X). Let ‘H be the Hilbert space
L?(Ry,dt/t) with the norm and inner product denoted by | - | and (-, )3,
respectively. Thus, the Littlewood—Paley g-function g, can be written as

00 1/2
20 aale) = (1 MR@P T ) =17 G K)o
0

For each u > 0, define the scaling map Afu] by A[u]f(y) = u N f(u=toy).
Then we have the identity

S Afu] Ko(z) du.

0

1
~ log?2

(2.2) K ()

Take a nonnegative function ¢ € Cg°(R) such that supp(p) C (1/4,4),
pu)=1for1/2<u<2and} ;g 277p(279u) = 1/log 2. For j € Z, define
an operator S; by

SiF(z) =277 | o(277u)A[u]F (z) du.

0

Then by (2.2), we have a dyadic decomposition K = 3., S;Ko. It is easy
to see that
(2.3) 1Si fllzyey S I fllr@) —uniformly in j

and

(2.4) lhey(x)le S 1 uniformly in z € G.
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We now define the H-valued L? spaces. For 1 < g < oo, let

2100 = { £0.0) 1o o= { (i&j F )P f)Q/2da:}l/q <o},

G

In view of Minkowski’s inequality and the classical Young inequality, the
following version of Young’s inequality on LI(H) is obvious.

LEMMA 2.1. Suppose 1 < p, q,r < oo, 1/p+1/¢q=1+1/r, f € LI(H)
and g € LP(G). Then

If *gllzr) < Cllgllze@)l fllLaer
With the above notations, by (2.3) and (2.4) we have

(25) 11685 fllsi S 1Flpre)  wmiformly in
To prove Theorem 1.1, by (2.1), it suffices to show that
(2.6) |« msiko)| , S Il

Z L2(H)

For s > 0, define
Ay ={z e Ay:22 <24 |Ko(z)] <22}
and kj = Koxag. Let

S S XA S
K5 =k§ — \AOI S k§(x) da.
oF A

Then Ko = ) 5 K§ and each K{j has mean zero. Note that

S 2K ) S 21k e) S 1Koll Lo @) = 1-

s2>0 5>0

Thus, (2.6) will follow if we can show that for some € > 0 and all s > 0,

(2.7) Hf* (S|, S Iz NGl ey +2°27%).

L2(H)

Now we ﬁx s. For each integer k, let T} denote the operator
(k+1)25—1

Tif =fx Y (MS;Kg).

j=k2s

To get (2.7), it is sufficient to show the following operator norm estimate:

PR

By Lemma 2.1 and (2.5), we have

S 2| Kl ey + 252757

L2(G)—L2(H) ~

| Tk L2y S W2 2° 1Kl 1@y uniformly in k.
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Hence, T}, is a bounded operator from L?(G) to L?*(H). Then the adjoint
operator T of T}, defined by

(k4+1)2° 1 oo ”
Tigiw) = > | s (mS;Kg)(x) — L
j=k2s 0

is bounded from L?*(H) to L*(G) with the same operator norm as T}, where
K§(z) = K§(z™1) for each x € G. Thus for all k, k', we have

max{| T Ty || 2220~ 1200y | T T 26y 120) ) S (21K 1))

Therefore, by the Cotlar-Stein lemma (see [St2]), to obtain the estimate

(2.8), it suffices to show that there exists a large constant C' such that when
|k —K|>C,

(29) max {”Tk/TIj||LZ(H)*}L2 ||Tk’Tk”L2 (G)—L2( G)} < 2252 €2%|k— k/‘
By the definitions of T}, and T}}, we need to prove that

(k+1)25—1 (K'+1)2°—1 oo
dt

> SV gn = (b, SiKG) # (hey Sy KG) —1

j=k25  ji=k'25 0 1

L2(H)
SJ 92s9—€2° |k—k'

|||9t1HL2(H)
(k+1)25—1 (K'+1)2°—1 00 dt
Yoo D V(K  (Sy ) —
j=k2s j'=k'2s 0 L2(G)
< 229X k=N £l z2(@)-

By the triangle inequality, it suffices to show that for all integers 7, j/ with
=4l >C2,

T - L dt i
(2.10) ||| gr, * (he, S;EG) * (hey Sy K§) — <27 g, Nl 2o
0 L L2 (n)
i dt < geli=7
(2.11) S [ (hS;KG) * (heS; Ko) S 2 Hf”LQ(G)-
0 L*(G)

Now we use the Littlewood—-Paley theory to show (2.10) and (2.11). Take
a C* function ¢ supported on the unit ball with ||¢[|cx < 1 and (¢ = 1.

We may also assume that ¢ = ¢, where (;5( ) = ¢(z~!) for x € G. For each
integer k, write

Y = AN g — A[2M9.

Note that v, is supported on the annulus of radius C2¥, that is, on the set
{r € G:C2¥! < p(x) < C2¥+1} for some absolute constant C. Moreover,
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1, has mean zero and Jk = ). Since
D ek flz) = fla) =Y fru(x)
k k
for x # 0, we may write
(212)  Fr(hSK)* (hiSyEg) = 3757 Fr(hSiKg) wibyow oy (heSy K3,

koK
We need the following lemma to prove (2.10) and (2.11).

LEMMA 2.2. For any integers j, k and any L*(G) function Ky on the
unit annulus with mean zero, we have

(2.13) I1f * (RS Ko) * ¥kl 200 S 277 fll 22 ey 1 Kol e (@
and
(2.14) ILf o r # (heSjEo) 2y S 2701 £l 2 ) | Kol e 6

The proof of Lemma 2.2 will be postponed until the next section. Now
let us complete the proof of (2.10) and (2.11) by applying Lemma 2.2. In
fact, by (2.13), we have

s s+1 i
(215) I % uSiEE) * il sz £ 272V e
and (by duality)
T dt el
216) ||} gex v x Sy || <272 W g gy
0 L*(G)
Using the estimates (2.15) and (2.16), we get
T dt
(217) ||| f 5 (aSiEKG) = by * o + (RS KG) —
0 L*(G)

< eV W £l o).
Similarly, it follows from (2.14) that

dtq

(2.18) i

V foo o (hey SjKG) # = g # (hey Sy KG) ——
0

L2(H)

< 92° 12 g —elj—klg—elk'—j’| I i ||L2(H).

On the other hand, from the smoothness and mean zero conditions on
djk’ wkU we have

(2.19) l9bn * el 1 @y S 27K
By Hélder’s inequality and (2.4),
[(hy (@), by (W)l < They (@) TRy (W)l S 1
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uniformly in z,y € G. This estimate together with Young’s inequality, (2.19)
and (2.3) yields

< dt
(2.20) ||\ £ (heSiKG) i+ by # (he Sy KG) — p
0 L*(G)
T . dt
| (heSKS) % by * o (S Ko) £l z2(@)
0 LY(G)

S SRS [r * |+ 1Sy K5l L1y 1 £ | 226)
SIS Kl @ llve * vl o) 1S Kl e 1 fll 2 e
S 2_a‘k_k/‘HfHLZ(G)

By Minkowski’s inequality and (2.4), we get

dt

(2.21) V fo # (he, SiKE) * o * e # (hay Sy ESS) Tl
0

Lz

* | * Y| % [Sj K|

S ftl (h’tIS KO) n
0

L2(G)
By the Fubini theorem and Hoélder’s inequality, for every z € G,
® dtl T _ dtl
V fo o (hey S K8) () — . < VIV fo ey D (v ) 4|15 K§(y) ()| dy
0 1 G'o
<\ o (ey™ D S K5 ()| dy
G

= (fes |1 % [S;K5)) ().
Inserting this estimate into (2.21) and using Young’s inequality, (2.3) and
(2.19), we get

dtq

Sftl (e, S3EG) 5y * (hy Sy KGG) =

(2.22)

L*(H)

2‘”1 Y sk S K3
|ft1 ) * [SEG| * [ty * g | x| Sy K|

L2(G)
< HSngHLl(G)Wk * Y| L1 @) 1S5 BG L ey L fea [l 22 ()
<27k Kl £ L2

Taking the geometric mean of (2.17) and (2.20) and then summing over
k and k', we obtain



60 Y. Ding and X. F. Wu

T -~ dt
Sfﬂm%mﬁﬂm%ﬂw7

0

<22 G = 71272 £l e,
L2%(G)

which gives (2.11) for some £ > 0 if |j — j'| > C2® for a sufficiently large C'.
In the same way we can deduce (2.10) from (2.18) and (2.22). Thus, to finish
the proof of Theorem 1.1, it remains to show Lemma 2.2.

3. L? estimate II: Iterated 7'7* method. The proof of Lemma 2.2
will be given in this section. We only verify (2.13) here since (2.14) can be
proved in a similar way. First we normalize K( so that ||Ky|lcc = 1. By
dilation invariance,

| (heSjKo) * Yrllpr () = [|(heSoKo) * Yr—jl L1 (m)

so we only need to show (2.13) for j = 0. If k£ > —C, then by the mean zero
condition on Ky and the smoothness of 1, we have

(3.1) [(heSoKo) * ill 12y S 27°F.

By Young’s inequality (Lemma 2.1) and (3.1), we get (2.13) for £k > —C,
where C' is a constant large enough to be determined later. Thus in the
following we may assume that k < —C.

Fix k = —s for some s > C'. If we define an operator L, by

L¢f(l‘,t) = f * (htSOKO) * T;Z)fsv
then it is easy to see that Ly is a bounded operator from L*(G) to L*(H).
Denote by L*w the adjoint operator of L, that is, for g; € L*(H),

[e.o]

Ly (g0) (@) = | ge % v—s * (MSoKo)
0

dt
.
Thus, (2.13) will follow from the following estimates:

I Ly Loy (90| L2 (1)

T - dt
= ‘ ( | gto % s % (o SoKo) 0) # (hyy SoKo) * s

) to L2(H)
S 27%\gto ll L2 (m)
and
0 ~ dt
15 Ly (f)ll ) = § Foeths e (uSioRo) » (SoFo) v s |

S 27 fllr2 )

From the operator norm identity ||Ly L[| = H(LwLQ’Z)”HHU("H), it suffices
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to show
9] 00 _dto
(3.2) oo § o s (g SoKo) 52 ¢ (hes SoKo) -
0o 0
- dty
* s * (ht, SoKo) ral (ht, S0 Ko) * s
- dty,
*)_g * (hg, SoKo) — * (hg, ., SoKo) * P_s
tn L2(M)
S 27| froll L2
and
9] 00 ~ dt,
(3.3) [ .o} F s (hey SoKo) * (hey SoKo) * g o
0o 0
~ dts
s * (htySoKo) * (htySoKo) * P—s T
~ dt,
s * (ht, SoKo) * (ht, SoKo) * 1h—s
n L2(G)
S 27 fllr2(c)-
By Young’s inequality, it is easy to see that (3.3) follows from
00 9] _ dt;
(3'4) S s S w—s * (ht1SOKO) * (htl SOKO) * w—s ? * 10—5 * (thSOKO)
0 0
2 dty, —es
*---*w,s* (htnSOKO) *(htnSOKO)*'QZ)—si 52 .
tnlle)

Next, we want to show that (3.2) will follow from an L!(G) norm (not
LY(H) norm) estimate similar to (3.4). This is a key step since if we worked
with a vector-valued integral (L'(H) estimate), some essential difficulties
would arise (see Remark 4.4 in the next section).

By Holder’s inequality,
oo
| fi 5o e (g SoFo)
0

< [F I s # Ty So Kol 2o
L%(G)

< 1 £ 20 1 =sll L2 @)1y So Kol 1)
S fllz2 -
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Thus, on applying Young’s inequality again, (3.2) will follow from

o [o.¢] B dt
(3.5) V.o § (e, Soko) # g % g * (he, SoKo) Tll % (hyySoKo) * s
0 0
= dtn < 9—es
koeee ok ¢—s * (htnSOKO) T * (htn+1SQK0) * 'lﬂ_s = 2 .

LY(H)

Noting that hy,,,SoKo * ¢—s € L'(H), by Minkowski’s inequality we see
that (3.5) is implied by

3.6) || V.o § (he SoKo) # vo—g oy # (e, So o) tf
0 0

- dty,
* (he, SoKo) * Y_s x Y_g * (hy, SoKo) -

n

5 2*58'
LY(G)
Thus, to get (3.2) and (3.3), it remains to show (3.4) and (3.6).
Now we will use the following idea. Let ¢ be an L' function supported
in B. Then

@ f(@)] < [|§][2r sup [6w * f(2)],
weB
where d,, is the Dirac measure supported at w. Since the functions 1 s%S0 Ko
and ¥_g *1_ * SoKo are bounded in L'(B(0,C)), we have

|05 % (heSoKo) * f ()] S sup  [0w * f(z)he(§)]-
weB(0,C), € Ao

Thus to show (3.6), it suffices to prove

(3.7) | ((hey SoKp) # oy
[0,00)™
% Oy, % (huyy S0 K0) * s % O ) H hy, ( gm <27
m=1 LY(G)
uniformly for (ws,...,wp41) € (B(0,C))" and (&1,...,&,) € Aj, where
dw; is the Dirac measure supported at w; for j = 2,...,n + 1. Moreover,

% = %1 ® - ® Cit—n”. In the same way, to show (3.4), it suffices to verify

(3.8)

S (5101 * (htlsOKO) * 5w2
[0,00)™

<% Oy, % (SoKohy,) H ha,, (Em) @

< 2—65
LY(G)

uniformly for (wy,...,wy) € (B(0,C))" and (51, &) € AL
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Below we only give the proof of (3.7), since (3.8) can be proved simi-
larly. Fix @ := (wg,...,wp41) € (B(0,C))" and & := (&1,...,&,) € Aj. By
duality, it suffices to show that the quantity

(3.9) ’< ' ((he, SoEo) -+ 5 b,
[O,OO)TL

= dt
* (htnSOKO) * 1/}—5 * 6wn+1) H htm (fm) t7g>‘

m=1

is < 27 for all test functions g with ||g|| e (g) < 1. For a fixed g, performing
the t integration and taking w; € B(0,C), we can rewrite (3.9) as

(3.10) ' 1§ s (@) Bp(@)awnsn)

Tolu i W) &) \
XZ];II(P( Z)KO(yz) { P(fz) ’uip(yz‘)}d d dy

)

where z € G, @ := (u1,...,up) € [-C,C", §:= (y1,...,yn) € Aj and
i=1

To see this, we only check this equality for n = 2. In this case, it is easy
to see that (3.9) equals

311) | {S —s(2)((heySoKo) * 8,1 * (he So ko) * g % 6,,1)(2) dx}
[0,00)" ~G
X hay (§1)hey (§2) dttllfz

Expanding the first two convolutions, we get
(ht250fgo) * 5w;1 * (htlsofg’o) * g * 5w§1($)

= | hua(y2)SoKo(y2) (8,1 * (hey SoXo) * g % 6,1 (3 ') dyo
Ao

= | huy(y2)So Ko (y2) ((hey SoKo) * g % 6, 1) (wayy ') dys.
Ag

Recalling

SoKo(z) = S o(s)s NKo(s ox)ds
0
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and Ko(x) = Ko(z™1), we have

(ht,SoKo) * 0t * (ht, SoKo) * g * 3,1 (@)

- S hiy (u2 °y2)(s @(UQ)Ko(yQ)dW)
A 0

X ((hhSoKo)*g*é _1)(w2( goygl)aj)dyQ

g

0

o

§ By (uz 0 55 o (uz) Ko (yo)
0

X ((htlsoKo) * g ok 1) _1)(w2(u2 ] yg) )dUQ dyg.

Similarly, we can expand the other two convolutions to obtain

(3.12)  (he,SoKp) * (5w2_1 % (hey SoKo) * g * 5%_1(95)

= |V V(g 0y M, (un 0 g7 Mo (ua)o(un) Ko(y2) Ko(y1)
AgxAp 0 O

X g((u1 o y1)w2(u2 o yg)l‘wg) duy dus dy1 dyg.
Inserting (3.12) into (3.11), we get (3.10) by noting that

T dty dt
§ § hes om0 ey (2 0 o)y (1) (62) T T2
00

- <Osoht1 (u1 0 y1)he, (€1) Ci?) ( ) a1z © o) (€2) dt;)

0 0

_ u1p(y1)p(&1) _ u2p(y2)p(&2)
2(max{u1p(y1), p(§1))}?  2(max{uzp(y2), p(&2)}

bRt S b et

The general case can be obtained by iterating the above process.

The next step is to split the integral in (3.10) into two parts. We need
the left-invariant differentiation structures exploited by Tao in [T]. Let f(¢)
be smooth functions from R to G. The left-invariant derivative 9 f(t) is
defined by Newton’s approximation:

ft+e)=ft)(€dFf(t) +20(1), for e small.

If F(z) is a smooth function from R" to G, the left-invariant derivative
DEF(z) is defined to be the matrix with columns given by

Dy f(z) = (05, F(2), ..., 0y, F(x)).
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Using the above notions, we split the integral in (3.10) into

(3.13) 1 Ves@g(ui @g(i)mw, 1)n(2" det D (5) (i)
Apc-1,C" G
= ' Vi WP &) s
X@l;Il(p(uz)KO(yZ) { P(&) 7uip(yi)}d d dy
and
B14) ||| Ves@)g(w ' dg(i)zwna)[1 — n(2"* det DE(07)(i0))]

Ag [C-1.CI" G

)

T o N i WP &) s
Xil_[lsf’(uz)Ko(yz) { D ’uip<yi)}d dii dj

where 1 is a smooth nonnegative bump function which equals 1 near 0 € G.

To estimate (3.13), we simply replace everything by absolute values, and
observe that it can be controlled by the “degenerate portion” of the integral
(see Section 6 in [T]). More precisely, using the bounds on g, ¢ and Ky, we
see that the left hand side of (3.13) does not exceed

Vol | wes@)n(2e det DX (@) (1)) dij dii da,
Glc-1.cm Ay
which is < C27%° (see [T]). So it remains to deal with (3.14).

4. L? estimate III: Nondegenerate portion of the integral. We
first give the following result due to Tao.

LEMMA 4.1 ([T, Lemma 7.1]). Let f be a function on B(0,C') with mean
zero and || f|li < 1. Then there exist functions fi,..., fn supported on a

~

slightly larger ball B(0,C) with || fi|li S 1 and f(z) =", 0, fi(x).

Let us continue the proof of the L? estimate. Note that Ky € L*(Ag)
implies Ko € L!(G). Thus to prove (3.14) < 27°%, it suffices to show

|V voa@) glw ' dp(@)awna)[1 — n(2"° det DE(B5)(i0))]
[C-1.C]" G

< 2—65

X - ;) min uip(y)) - pl&) x dil
[Letwmin “ste" 0 e

uniformly in § € Af.
Since v is supported on B(0,16) with mean zero and [|1|/11g) S 1, by
Lemma 4.1 we have ¢_4(x) = 2?21 Oz, fj(x), where the functions f; are
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supported on B(0,2*%) and satisfy
(4.1) 1filln < 2799°.
It thus suffices to bound the quantity

(4.2) ‘ggagcjfj(x)g(w;lqsy( @)xwni1)a Hmm{ uip y) uf/(j;)i)}dﬁdx

by C27¢% for all j =1,...,n, where

n

a(@) = [1 — (2" det D (®5)())] ] | o (ws)-
i=1

If we integrate by parts in the z; variable, (4.2) can be rewritten as

'“f]( p Hmln{ b ZJ)Z '(‘)(gi)‘)}dﬁdx.

"uip(yi

where we use @ to denote wj '@;(i)zw,41 for simplicity. By (4.1), if € is
small enough, we only need to show

‘S Hm {um f/)z é(&).)}dﬁ < oCes

U@P(yz

uniformly in z € B(0, 16) for some constant C'.
The following result was proved in [T].

LeMMA 4.2 ([T, Lemma 7.2]). Let f : RXxR" - G and F : G — R be
smooth functions. Then

OsF(f(s,1) = VeF(f(s,1)) - (Df f(5,1) 7107 f (s.1)
whenever det DF f(s,t) is nonzero.

By Lemma 4.2, it suffices to show

2 - wip(yi) p&) | - - e
4.3 Vag(®)-(DLd) 1aL mln{ }du < 9Ces,
43) |[¥es(d H (€) " wanly)
where Vg = (Oy,, ..., 04,). To show (4.3) it is equivalent to show
z 7 7 51) - C
D, 9(®)((DED laL min {u,oy o di| < 2%°°
008Dk H o) ple)

for each k =1,...,n, where (-); denotes the kth component of a vector.

It is not hard to see that the above inequality follows from

oot 0y Lo 2. 50
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where 9, is understood to be the weak derivative when acting on the min-
imum function. Since

‘1+v Hml{ ’Ey ol&) H,SL

ik Uzp(%)

it suffices to show

Noticing that all functions appearing in the definition of a are smooth and
compactly supported, we can easily see that

(@ S1 and [Vga(@)| S 2%
Thus it suffices to show that, on the support of a(#),
(14 By - [(DE(@) 0L (B))e] S 205,
By Cramer’s rule, it is equivalent to show

det(0L (),..., 0L (D),..., 0L (@)

4.4 148, L < 20,

(44 |1+0,) o Dh

where (91 (®),.. .,8{;3 (®),.. .ok (#)) denotes the matrix whose j'th col-
umn vector is 853_@5 for j/ =1,...,n, 7/ # k and whose kth column vector

is 9L (&
18 Ij( )

Now we summarize some useful conclusions in the following lemma; see
[T] for the proofs.

LEMMA 4.3 (see [T]). Let f(t), g(t) be a smooth functions from R to G
and s(t) be a smooth function from R to R. Then

() 10 (0)] ~ [OEF()]  whenever |f(8)] S 1
(b) O (F(t)g(t) = 07 g(t) + Cla(D)Of f(1);
()  Cltoal(tor) =to (Clly), Cla™ = Cl;
(d) |Clz]v] ~ |v|  whenever |z| < 1;
()  X(tox)=toX(z) and p(X(x)) < p(e);
() p@(tox)) ~pltox) fort$l;
(8)  Bf(s(t)o f(t)) = s(t) 0 OF F(t) + (s'(1)/s(t))(s(t) o X[F()]),
where X (x) is the vector field defined by X (x) = 0F(t o x)|4=1.
By Lemma 4.3(b),
(45) D) = DE@y(@)awns1) = Clawn i) DE(@y().
Since p(ewns1) S p(e) + plwnsr) S 1 (ef. [RoSt, p. ),
(4.6)  |det DF(®)| = |det D (@y(@)zwn1)| ~ |det Dg (Py(a))| 2 27"



68 Y. Ding and X. F. Wu

on the support of a(@). On the other hand, since @ is smooth and compactly
supported in all variables, we can readily see that

(1 + 8uy) det (D, (D), .., 07 (D), ..., O (B))] < 1.

This inequality together with (4.6) yields (4.4). Thus we have completed the
proof of Theorem 1.1.

We make the following remark to demonstrate why we need to pass from
the vector-valued integral to a scalar-valued one.

REMARK 4.4. If we worked with the vector-valued integral, instead of
(4.3), we need to show

W\ Vage, (wi ' @y(id)z) - (DE (wi b))~ 0y (wi Dg(i)a) h,, (talynl)
0

5 2053'

n—1
(s . dt
x a(u) H min{ulp(yl), p(&:) } —di
paley p(&i) " uip(yi) J tn
Take a look at the terms depending on t,, and observe that if we perform
integration by parts in u,, the boundary term which depends on ¢, is
T I dt,,
\ g1, (Wi ' @g(0)2) |1, /() 7
0 n

which is not bounded in L*(G) although g¢;, € L*(H).

5. Weak (1,1) estimate I: Reduction to a strong type estimate.
We turn to the proof of Theorem 1.2. Let us begin with some definitions
and notations. A left-invariant quasi-distance d on G is defined by d(zx,y) =
p(x71y). A ball J := B(z;,2’) with center x; and radius 27 is a set of
the form J = {z : d(x,2;) < 27} for some x; € G and j € Z. For some
C > 1 (only depending on the constant By in the quasi-triangle inequality
p(zy™) < Bolp(z) + p(y)]), denote by Ja the annulus C.J \ C~1.J, where
rJ = {z : d(xz,z;) < r27} for r > 0. Moreover, let K(z) = 2(x)p(z)~V,
hi(z) = 7' p(x)X{p@)<ty (@) and Ko = Kxa, with Ag = {z € G : 1 <
p(x) < 2}. We wish to show that

v , dt\? )
{eee: (Tireten@r )" > al| s a Il Kol
0

We may assume that f € Cg° and a = 1, |[Ko||L1ogz. = 1 by linearity. We
perform the standard Calderén—Zygmund decomposition of f at height 1 to
obtain f = g+ >, by, where ||g|[z1 < || fllzr and ||g|lre S a = 1. The J
range over a collection of disjoint balls with > ; |J| < [|f|| 11 and for each J,

(5.1) suppby Cc CJ
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and
(5.2) 101l ey S 11, SbJ =0.
Since f is smooth, we may arrange matters so that the b; are smooth. We
decompose K = ZjeZ S; Ko, where
o0
S;Ko(z) =277 S 0(277s)s VN Ko(stox)ds, jeZ
0

(See Section 2 for the definition of ). In the following, we use 27 to denote
the radius of J, where j = j(J) is an integer. Now we write

<°§o 1 (K (o) dt)m

t
< |g* (Kh) |H+‘ZZbJ* )Sj+sKo)(z )H
s<C J
+‘ZZbJ* )Sj+sKo)(x )‘H
s>C J
=1+ 1+ I3.

For the first term, the L? boundedness of g, (Theorem 1.1) and Cheby-
shev’s inequality imply that
{z: [ > 1} < Ngllize) S l9loie) S Ifll)
The second term is supported in | J; CJ, thus

os > 1y < | Jcd| < 316 S Il
J J

To handle the remaining term, it suffices to show that

H;} <O§:>‘ZZU * (heSj+sKo)(z) ? ‘?)1/2 > 1}’ < ZJ:M'

J
Note that supp(S;j+sKo) C {x € G : 207572 < p(x) < 2775+3}. Hence,
by * (htS;+sKo) is supported on the annulus (2°.J) 4 provided that C' in the
above inequality is large enough (only depending on By and C in (5.1)).
Take a suitable smooth cutoff function 1 such that

supp® C {z : C71/2 < p(x) < 4C}

and ¢ = 1on {z: C~! < p(x) < 2C}. Let ¢ (x) = ¢(277~* o (x; x)). Then
to finish the proof of Theorem 1.2, it suffices to show that

3) HC( S w300 (S5 oF e >>“ff>l/2>1}'§2u.

J
Below we show that (5.3) is a consequence of the following proposition:
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PROPOSITION 5.1. Suppose s > C and 1 < p < 2. Let J be a non-empty
finite collection of disjoint balls such that

(5.4) PP
J
and
5.5 H . ‘ < 9N
(5.5) EJ:XCQJ LG ~

Let by be a collection of smooth functions satisfying (5.2) and let 1y = 7.
Then

(5.6) HZ by * (ht5j+sFJ))HLp(H) < 97es (Z | /| ||FJH%2(G)>1/2
7 7

for all functions Fy in L*(G).

The proof of Proposition 5.1 will be postponed until Section 6. Now let
us complete the proof of (5.3) by applying Proposition 5.1. We need the
following

LEMMA 5.2 ([T, Lemma 9.2]). Let B C B(0,C) be any Euclidean ball of
radius at least 27°°, and define the functions ¥ jp by
byp(r) = vp(277 %0 (x5 ),

where Yp is any bump function adapted to B (this means that 0 < ¢¥p <1,
wp € C° with suppyp C 2B and Yp =1 on B). Then

Y vunla) > £2VBI}| s 27
J

Applying Lemma 5.2 with a ball of size roughly 1 and a nonnegative
cutoff, we obtain

‘{Z XC2sJ > 832NS|B‘}‘ 5 2_682.
J

Then we use a sieving argument of Cérdoba (see [Cor, p. 11]). For any ball
J € J, define the height h(J) to be the number

W) =#{J €T :2J C2J'},

where #E denotes the cardinality of the set E.
Define the exceptional set Es by

E, = U J.
h(J)>s32Ns

Then |Ey| < 27%. For each a = 0,1,...,s% — 1, the collection of balls with
height between a2V* and (a 4 1)2/V* (denoted by .J,) satisfies (5.6), and by
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s% applications of (5.5) and the triangle inequality, we obtain
pp g q Y,

1/2
H;%(bj * (ht5j+5FJ))’ Lp(EeH) s 258(; o HFJ‘|%2(G))

for all functions Fy in L?(H) (see [T]).

We adapt Tao’s argument in [T]. By dilation invariance, it suffices to
verify (5.3) in the case when ) ; |J| ~ 1. In particular, we may assume that
(5.4) holds.

For each s > C' we decompose Kg as Ko = K=°+ K>, where K=%(z) =
Ko(2)X{|k|<2e/2} (@) It suffices to show

EUNINS ( || vt s ) 21 <1

s>C
1/2
(5.9) H ( ’Zw bJ*(htS]+sK<s))2it> 21}'51.
s>C

By Lemma 2.1, (2.5) and (5.2), we have

s (b * (e Sjrs K™ N pr ey S N0all 22 () l1he S+ K72 Lrgry
S K]0 )

Note that

Z 1K>* 1) S 1Kol Liog £6) S 1
s>C

Then by (5.4) and the triangle inequality,
)3 )EACEICEN o)) FINE=D DR L eg ISR
s>C  J i>C

which implies (5.8) by Chebyshev’s inequality.
As for (5.9), applying the estimate (5.7) with F; = K=* for all J, we
have, for each s,

|32 watbs = (Syesrc=))| |
J

/
i ST (Z K= o))

< 2—68/2'

Summing this over s > C' yields

1/2
< ‘ZI/JJ (b * (hySj4 s K=%)) 2 dt)

< 1
t ~Y

s>C Lp((Us>cES)C)

Thus (5.9) follows from Chebyshev’s inequality and the fact || J,o o Es| S 1
This completes the derivation of (5.3) from Proposition 5.1.
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6. Weak (1,1) estimate II: Proof of Proposition 5.1 (I). The
following sections are devoted to proving Proposition 5.1. To get (5.6), by
duality, it suffices to show

(; g

for all test functions g, € L? (H), where 57, s denotes the adjoint of Sjs
and by(z) = by(—x). By the TT* method, we need to show

dt ||

S Si4s[(bg) * (5ge)he] T
0

1/2
)" 2 s
L2(G)

S0 (b S § 5710000 ¢ ) 2]

t
J 0 1

61) |

LP(H)

S 27%Mgell o (2 -
Define the self-adjoint operators T); and T by

o0

7)) = 5+ (So< § 5150+ £ - s ) 2

and T = 271Vs > ;¥iT g, respectively, where ¢; denotes the multiplier
defined by

bif(x) = s(@)f(2).
Then the desired estimate (6.1) takes the form

(6.2) 1T fell Lory S 27l el oo 20
since ;4557 = 2N+ 6y 8%, Let dy : B(0,C) — CJ denote the map
(6.3) dy(v) = 27(27 o).

Define the smooth functions c¢; supported on the ball B(0,C) by c;(v) =
|J|7tbs(ds(v)). Then by (5.2),

lesllpooy 1 and | ey=0.
B(0,C)
Note that
SoSo F(z) = S@(u)F(u o x) du,

where @(u) = | ¢(v)p(uv)v~ N =Ddv is a bump function adapted to {u ~ 1}.
Then T; takes the form

TyFy (t2, ) = || es () @(u)es(w) Fyy (dy (w)u o (ds(v) ')
dtq

X e, (wo (dy(v) ™ z)) by (dy(v) ™t )dududwH

We need to define a slightly larger and noncancellative version of T'y. For
each J, let wj be a slight enlargement of vy which is positive on the support
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of 17. Also, applying Lemma 4.1, we may find functions ¢}, ..., ¢ supported
on B(0,C) such that

n
(6.4) cr=) Oy, il S1.

Define ¢} = ||+ Y, |c|. Then ¢} is a nonnegative function on B(0, C)
with
(6.5) lef i) S 1.

~

Finally, we choose ¢ to be any enlargement of @ which is strictly positive
on the support of @, and satisfies p*(u) = T (u=)u?~N. We then define
the self-adjoint operator T}r by

TS E, (t2,) = ||| | ()¢ (W)€ (w)Fy (dy(w)u o (dg(v) " 2))

dt
x g, (wo (dy(v) " 2)) hey (dy(v) "' 2) dv du dw Tl
1

and
T+ — 2*NS Z w:}i—Tj-w}-’
J
where T 7 denotes the multiplier defined by zp f(z) = zpj(aj) f(x). Clearly,
for all J and non-negative F', we have the pointwise bounds
(6.6) TyFy, (t2,z) < TTF, (ta,x) and TF, (to,z) < TTE, (t2, 2).
Before estimating (6.2), we first show
(6.7) 1T Fll o) S N1 Fellpagey  forall 1 <p<gq<oo.

By interpolation and duality, it suffices to verify (6.7) for ¢ = co. By Holder’s
inequality and (5.5), we have

1/2
H( 12 YETHYt F ) (b, - )\2dt2>

| wiTrerrl|,
7 t

LP(G)

3 mﬂ( [ (Tt B2, )P t)
J 0 LP(G)

l2
IS o)), 1 (OSOO T R

1/
< oNsirf (Z ITF 45 Pl

LP(G)
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By Holder’s and Minkowski’s inequalities, using Y |J| < 1 and (5.5) we get

Z ‘|Tj¢thHZ[),P(H) S HFt1 Hpoo(H) Z H SSSC—}(U)QDJF(U)C}_(U))
J J

p

N -1
x 1y (dy(w)uo (ds(v)” x)) dvdu dw’ L?(G,da)

S NF ey S I Wy S 2V P e gy
J

Now combining these two estimates yields (6.7).

To finish the proof of Theorem 1.2, we must obtain an attenuation factor
27285 for (6.2). To this end, we want to iterate T m-+1 times with m = 22773,
as in the L? case. But symmetry considerations require iterating one more
time, i.e., iterating m + 2 times is sufficient for our purpose (see Remark 6.3
below). Now we turn to the details.

Below we show that, to get (6.2), it suffices to prove

(6.8) 1772 Fy oy S 27l g

for 1 < p < 2 and some £ > 0. Indeed, by (6.8) and m — 2-fold application
of (6.7) for ¢ = p and replacing T" by T (see (6.6)), we get

(6.9) 1T ol oy S T2 Fellor) S 27N Fell oot 3

By the TT™* method and the self-adjointness of T, it is easy to see that (6.9)
implies

(6.10) [T Fille) S 277 °1F 220

for some ¢’ > 0. On the other hand, by repeated application of (6.7) and
(6.6),

(611) ”TmFtHLp(H) S HFtHLq(H) for all q > P > 1.

By interpolation between (6.10) and (6.11), we thus obtain

(6.12) IT™ Fell o) S 27° Pl 1ot (34

for some small £” > 0. Iterating this argument 2?"~% — 1 times we thus
obtain

IT*Fell oy S 2711 Fell 1ot 30

for some 6 > 0, and (6.2) follows from this easily (see the process of deriving
(6.12) from (6.9)).

Thus, we only need to show (6.8). Applying (6.7) m + 2 times for p =
q = 2, we see that 7™%2 is bounded on L?(H). By interpolation and duality,
it suffices to prove (6.8) for p = 1. By expanding 7™, we thus only need to
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show that

m

CRE T P S (= AR AR EVN P T s
. L1(H)
J1yeeydm€T =1

here, @;", Q; denotes the composition of the operators Q1, . .., Qm, defined
by @i~ Qi(f) := Qm(--- (Q2(Q1f))---). The balls {Ji,..., J,} may have

different sizes. We shall extract a subsequence of n ball, whose sizes increase
monotonically. First we need the following definition:

DEFINITION 6.1. Let J = (Ji,...,Jn) be an m-tuple of balls (m > n)
and k={kq,..., k,} be a strictly increasing n-tuple of integers in {1, ..., m}.
We say that J is ascending with respect to k if

Jky S0 for all kg <1 < ky;
we then write J 7 k. Similarly, we say that J is descending with respect to
k if
Jkg <1 for all k1 <1 < ky,
and write J \ k, where 2/ is the radius of J; (i = 1,...,m).
The following lemma is due to Tao.

LEMMA 6.2 ([T, Lemma 10.2]). If m = 22"=3 and J € J™, then there
exists a sequence k such that either J /" k or J \ k.

For all k = {ki,...,k,} C {1,...,m}, we say k < k" if ky < ki, or
kj = kjfor j =1,...,i— 1, but k; < k; (i = 2,...,n). This defines an
order on k. Thus, when m = 22773, for all J € J™ we can choose a largest
sequence k := kyax(J) with respect to this order so that either J 7 k or
J \\ k. Clearly, Lemma 6.2 implies that ky.x(J) is well-defined. Since the
number of choices of k is finite, it suffices to show that

m
6.14) 2-Nms T( T, .)TF ‘
(6.14) Z ®¢JZ 5% | TE, L6
J=(J1,.dm)ET™  i=1
kmax(J):k
S 27| By [ e (m)
for each k.

Fix k. Using the following discussion we can reduce to the case when
k1 =1 and k, = m. Since

Kmax(J1,---,Jm) =k
is independent of the choices of J; for k, < i < m, we may write

Kmax(J1, ..., Jk,) =k instead of Kkpax(J1,...,Jm) = k.
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Then the left hand side of (6.14) can be rewritten as

kn
Z T(® inTJini)TTm_kn F..

T yodiy, €T i=1
kmax(J17~-"Jkn):k

By (6.7), T is bounded on L*(H), and it is sufficient to show that

>, T (éz) Vo T ) TF,|
i=1

J1,...,Jkn€j
kmax(Jla---aJkn):k

2—N(m—kn)s

LY (H)

2—N(m—kn)s

LY (H)

S 27| [ oo ()

Using a similar argument to the above, the desired estimate can be further
reduced to

n
=N (kn—k1+1)s || k1 —1 3 T(® @ZJJiTJi%Z)Ji)Tth)
Jkl ----- JknEJ i=ky
kmax(Jkl 7’Jkn):k

L'(H)
S 27 e ()
The left hand side is majorized by

(TH Yy ’T<% T/JJiTJini)Tth‘ ‘

Jkl,...,Jknej i=k1
J /kor Ik

27N(]€n7k1+1)s

LY(H)

By (6.7), T is bounded on L!(H), so we may discard the (T)*1~! operator.
Relabelling J and k, and reducing m to k, — k1 + 1, we only need to show
that

(6.15) HQ’N’”S > ‘T<é TZJJiTJinZ—)Tth

Ji, Jm €T i=1
J /korJN\k

LY(H)

S 27 B | e
for all n < m < 2273 and all k with k& = 1 and k, = m.

REMARK 6.3. Recall that in the estimates of the L? case, we iterate L
n + 1 times (see Section 3) because of an extra integral in the variable ¢.
Here we need to iterate 7" m + 2 times in (6.8) in order to guarantee that
the left hand side of (6.15) is symmetric in the sense that the case J " k is
dual to J \, k. Thus we only need to prove (6.15) for J " k.

Below we prove (6.15) for J " k. Since T is bounded on L>*(H), it
suffices to show
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(6.16)
HQ—Nms 3 ‘T(@ wiTJini)th( Hum) S 27 Bl

Jdm€T 3k i=1

for all n < m < 22773 and all k such that ky =1, k, =m

Next, we shall remove the ¢ integral in the H norm on the left hand side
of (6.16). Then the problem reduces to estimating a scalar-valued integral.
To be more precise, we will use the following conclusion:

LEMMA 6.4.
oo
i < L ditg
(6.17) [T Fiollerey S sup | heg (| (w) ™" - )P} — T :

JeJ,weB(0,0)l LY(G)

Proof. We first show that (6.17) is a consequence of (5.5) and the in-
equality

o0

(6.18) (T ¢S Fio) (5l S sup ||| P (d(w) 1)) Fto t
weB(0,0)l 0

L)
In fact, the above estimate together with (5.5) yields

1T Follzig S 27 (30 15 o) - ITT (03 Fio) o)
J

_Ns T e
$27V Y Cixcassllie)  sup ||| e (do(w) ™ By = ;
7 weB(0,0) Il g 0

(e 9]

S hio(|dy(w) ™" [) Pyt dro
0 to

LY(G)

< sup .
JeT, weB(0,0) L1(G)

Let us turn to the proof of (6.18). For any G5 € L*°(H) with ||G||peo (1)
<1, we write |((Tjw}rFtO)(-,s),G(-,s))Ll(H)| as

11565 e (e () Frq (d (w)u e (d(0) @), hay (wo (dy(0)™"2))
X F (dy(w)uo (dy(v) " 2))(hs(ds(v) " ), Gs())3 da dudv dw).

Now we use the change of variables z = d;(v)+ o (ds(w)~'y) (so dz =
u~Ndy) and u ~ 1 to deduce

‘<(Tjijto)('v S)v G(’ 5)>L1(H)|

< \ 150§t o)t e ()it ) Fro 0). Ao s () "5)}3¢




78 Y. Ding and X. F. Wu
< Wt et @)ed (0w () [(Fr (), he (d(w) ™))l
X [ hsll Lo (1) |G| Loo (1) dy du dv dw

S osup (b (da(w) ™), 0 Frodmlle ) 121 @) 19 e @) le ™t lloi ey

weB(0,C)

T dt
< sup | by (ds(w) TR
weB(0,C)l 0 llLy(c)

where (6.5) is used in the last inequality. By duality, we finally obtain
(6.18). m

REMARK 6.5. From the pointwise inequality (6.6), we see that Lemma
6.4 still holds on replacing T+ by T.

Applying Lemma 6.4 to the function

F(to,-) = [(®¢J 1y, wJ)th}(to, )

and J = Jy, we see that to show (6.16), it suffices to verify
(6.19)

2 Z H<[(é¢JiTJi¢Ji>Ffm](tOv'W}ro(')’hto(djo(wo)1-)> ‘

Lt
Jegm:J /k i=1 HILYG)

S 27 e )
uniformly in Jy and wy € B(0,C) for all n < m < 2?"3 and all k with
kt=1and k, = m

Fix m and k. By duality, it suffices to prove that the quantity

o (1 erten e ot 5.

J 'k i=1
is < 275%2Nms for all functions Fy in the unit ball of L>(H) and G in the
unit ball of L>(G).
For each J € J™ and J /" k, we expand the inner product in (6.20) as

V- N B () G o)) (o) [ [ (€ (i) e, (0i)@(ws) e, (wi s, ()
i1

m—1

dtp,
x H thtm (um 0 (dJm (Um)_lxm—l)) T dd du dv dxg,
j=0 m
where ¥ = (v1,...,Um), W = (wi,...,wy,) range over B(0,C)™, and @ =

(ut,...,up) ranges over [C~H C|™, di = [[It, dw;, dv = T[], dvi, xo
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ranges over G, and x1, ..., x,, are defined recursively by
(6.21) x; = dg, (w;)(u; o (dy,(vi) ‘wiq)) fori=1,...,m.
Moreover, R; (j =0,...,m — 1) is defined by

p(dh(vl)_le) p(djo(wO)_l~T0)}
p(d(wo)~Ltxo)” p(dy, (v1)~Lao) J’

Ry = min{

and

fplujo(dy(vj) wjm1))  pldyy, (vj41) " ay)
R; := min — ) —
p(dyy ey (ir1) ;) p(uy o (dy; (v;) " aj-1))
forj=1,...,m—1.
We define new variables 7 = (71,...,7,) by 74 = ug, and y = vy, since
only these variables are actively used below. As in the proof of Theorem 1.1,
we shall decompose the J " k portion of (6.20) into

(6.22) >

Jegm:3/k

m

I Vo (@) Gl () Lo (i), (v1) @ i)

i=1

m—1
x e (wi)ihg,(z:)) [T Ryn(2°27 M det DE (2n))
7=0

tm
X hy, (Um0 (dy, (Vm)  m_1)) i— did du dv dxg

m

and

(6.23) >

Jegm:3,/k

S. . Sth(;pm) [EO wfo X0 H ¢J1 Ti—1 CJZ Uz)@(uv)
=1

m—

X ¢, (i), (x;) H n(2°°2=Mn det DL (2,,))]

X hg, (0 (dy, (V) Zm_1)) Cit— dw du dv dzxo
m

where M, = Y1, a;(jr, + s) (recall that 275 is the radius of Ji,) and
0 > 0 is a small constant to be chosen later, and 7 is a bump function which
equals 1 near the identity.

The degenerate portion (6.22), as in the L? case, can be majorized by
the corresponding portion of the singular integral. Thus it suffices to verify
that

(6.24) the nondegenerate portion (6.23) < 27=52Nms
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7. Weak (1,1) estimate III: Nondegenerate portion of the inte-
gral. To finish the proof of Proposition 5.1, we only need to show (6.24).
Define

T F(x) = |\\c} ()¢ (w)e} (w)F(dy(w)uo (ds(v) ') dw dudv
and

Tt =2"Ns Z¢jfj¢j,
J

where ¢} and ¢T are as in the definition of T in Section 6. In [T], the

following estimate is proved:
(7.1) T Fll o) S I1Fllpa@e)  forall1<p<gq< oo,
Therefore, to show (6.24), it is sufficient to show that

D

Jegm:J 'k

Sn-Sth(xm) X0 wJo xo H wJ Z’, 1 CJ Uz)@(ui)ch(wi)
=1

-1
x 7. (2) H n(2°52=Mn det DL (2,,)))

dt,,
X iy, (U © (dg,, (Vi) " 1)) % i il di g

m

S 27esNms (7)™, 1).

By expanding out 7T'F, we rewrite the above estimate as

m

(7.2) ’ V-V P (@) Glao) 0 (o) TT (€ (wim 1) e, (o) @ (i), (wy)
i=1
m—1

x (@) TT Ribw (wm © (g, (0m) " 21))
=0

dt o,
x (1 — (22~ M det D% (z,,))) " di did di dg

m

<2\ TT v wimn)e (o) (w)ed (w5 () dao dis dit o
i=1

Fix all the frozen variables. Removing all the factors in the above expression
which do not depend on the variables y := v; and 7, we reduce (7.2) to
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o0

73 {J6(a) (S oo i & (L, ) ) 2 e, (0)
0 m
m—1
(H RZ> (2952 Mn det DL (2,,))) dy d7

=0
< 2=, (on)a" (4 7) dy 7

where
n

aly,7) = [ [ (@i, (o) (1 — (272~ det DX () [ [ 2705 (w0)

=1 q=1
at(y,7) =[] ¢} @-)v] @) [T et (7).
=1 q=1

Since dj,, (wy,) is independent of y and 7, we may set

o0

f(@m) = S Fy,p (@m)hi,, (um © (dg,, (vm) " 1)) Citl
0 m
T _ dtpm

By Cauchy-Schwarz’s inequality, we can easily see || f||z@) <1 .
To show (7.3), by (6.4) and integration by parts, it suffices to verify that

(T4) Bt D+ Iy = | [ [, ()0, (@m)a HR ay 7|
m—1
+ ‘88631(y)f(xm)8yza Y, T H R dydT)
s=0

+ |§§ e ) (@m)aly, 7) (8, il Re) dyd7
¢=0

<27\ ef (v)at (y, 7) dy d7

for each i = 1,...,n. The desired estimate for Is follows from Lemma 13.1
in [T] and the obvious bound Hzn:_ol R, < 1. To estimate I; and I3, the
estimates for the derivatives of homogeneous norms are required.

We give an explicit estimate for the Euclidean derivative of the homoge-
neous norm which is new on general homogeneous groups.

THEOREM 7.1. The homogeneous norm p satisfies the estimate

(7.5) 10z p(2)] S pla) =,
where «; is given by (1.3).
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Proof. The homogeneity of p implies that
p(rxy, ..., r%mx,) =rp(x1,...,x,).
Taking the derivative in x;, we have
10, p(r o &) = 10z, p(x),
which shows that dx;p(z) is homogeneous of order —a; + 1. Since the ho-

mogeneous norm is C*° away from the origin (see [FoSt]), we know that
Op,p(x) S1for x € X. Then (7.5) follows by a dilation argument. =

Using the above theorem, we next show the following
LEMMA 7.2. Fory = vy and xc—1 (s = 1,...,m) defined by (6.21), the

following estimates hold:

(2) 19y [p(dy (v) " ae-Dl £ 27 p(dy (v) ' a-1)

forc=1,... mandi=1,...,n

(b) 10z, lp(ds, (v) e )| S p(dy, (v0) " we1)
forc=1,....mandqg=1,... n.
Proof. Since x._1 € (2°J;) A, we see that
p(dj. (vo) ta_q) ~ 2515,

For (a), we only need to show that
(7.6) 10y [(dg (ve) ™ ar—1)]| S 275020 H)e,
where (z), denotes the kth component of x € R™. Indeed, let

z = (dy, (Uc)_l FT-1).
Since p is regular, by the chain rule, this estimate together with (7.5) yields

0y, pld, (00) r—\z "

which gives (a). Now we prove the inequality (7.6). Since
127575 o (dy, (v) Ttarem1)| ~ (2757 o (dy, (v) Ttare-1)) S 1,
by Lemma 4.3(a), we have
19y, (275775 0 (dy (ve) ™ e—1))| ~ 18y (27577 o (dy, (v0) ~Hare-1))].
Applying Lemma 4.3(b), (g), we get
0 (27575 o (dy. (ve) M ae—1))| = 0 (27 o ue_1) o (ds._, (ve—1) " we—2))]

z) Ozm

Yi

< 278825+j§ ,

=10, (27 P ue1 .. ur) o (d, (y) ' 0))-
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Using the fact j; < jc arising from J /" k and uy ~ 1 forl =1,...,m, and
then applying Lemma 4.3(b), (c), (d), we have

10y, (27577 o (d (v) " 2-1))| S 19y (27577 0 (d, (y) ' 20))|
S 105 (27577 o (dygy (y) ™ o))
SICR™ o (a7 20))(27° 0 Oy (y ™)
SI2™0dy(y 1) S 27,

where we use dj, (y)~! = (2t o y~!)z;! in the third inequality, and in the
last inequality we use the fact that 3! depends on 3 polynomially. Hence,
by (1.3),

2= (3|9 (d g (ve) ™ we1) ()] = |8y, (27T (d s (ve) T 1)) o
< ‘ayi (Q_S_ji © (ng (Uc)_lxvl)” <27MF

which implies (7.6) .
The proof of (b) is similar. We may assume that k; < ¢ (otherwise (b)
is trivial). By the chain rule, it suffices to show

(7.7) 10, [(d (ve) M ae)]| S 20T,
Using Lemma 4.3(a), (b), (g), (e), we have
107,277 o (dy,(vg) "' wg—1))| ~ |0E (2757 o (dy (vg) ' ag1)))]

~ 105,277 0 (7 0 dy, (vg) 1))
ST (7 0 X[27°79 0 (d, (vg) " 2g-1)))]
~ |X[27°79 0 (dg, (vg) " zg-1)]]
~p(27° 10 (ds, (Uq)ilxq—l)) S

which, by (1.3), implies (7.7). m

Let us continue to estimate I; and I3 in (7.4). We consider I3 first. To
begin, we prove that

(7.8) |0y, (R)| $27°° fori=1,...,nand ¢=0,1,...,m — 1.
When ¢ = 0, if p(d, (v1) " tz0) < p(dy,(wo)~1x0), then by Lemma 7.2(a),

< ’ayi[p(dJl(vl)_le)H S 9—€s

|0y, (Ro)| S p(d g, (wo)~txg)

If p(d g, (wo) " tzo) < p(dy, (v1)~1xp), the proof is similar.
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Next we estimate 9y, (R;) fors = 1,...,m—1.If p(uco(dy_(ve) tac_1)) <
p(dj., (ves1) 'a), then by Lemma 7.2(a), we have

By, [p(ug o (dg (ve) " "we—1))]p(dy sy (V1) o)
(A (Veyr) " tag)?

‘P(Uc o (dy, (Uc)_lxcfl))ayi [P(ngH(Uchl)_l:Ec)]
Py (Ver1) 1 g)?

< 10yilp(uc o (d (v) " w1 Il + 18y [P(dies (Vo) @I o

~ p(die g (Ver1)~hag) Vo

The case when p(dj_, , (ve+1) " zs) < p(ug o (dy_(ve) 'z_1)) can be treated

similarly. Thus (7.8) is proved. From (7.8) and Rc < 1(¢ =0,...,m — 1),
we have

10y (R)| <

+

m—1
(7.9) 04,

From (7.9) and || f||ze(g) < 1, the estimate for I3 follows easily.
Finally, we estimate I;. It suffices to show that

(7.10) Haylf(a;m H R d7| S 2= \at (y, 7) d7

s=0

uniformly in y. Fix y. By Lemma 4.2, we can rewrite the left hand side as

1 V2/(2m) - (DE) 'O wmaly, 7 H R d7].

Integrating by parts, we see that this is equal to
1 £ @) V2 (D) 0 wmaly, 7) [T Rd7|

Thus to show (7.10), it suffices to prove the pointwise bound

[a+va(TT &)
<=0

where [[(1+ V) f|| := |V f| +|f|- The estimate
11+ V) (DFwm) Oy maly, 7)) S 27 a™ (y,7)
is shown in [T, p. 1583]. Thus it suffices to show

H 1+ V5) <HR>

(1 + VR ((DFzm) " 0y emaly, )| S 27" (y, 7),
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From the obvious fact |R.| < 1, we reduce the proof to
(7.11) |07, (R)| S 1

foreach ¢=0,...,.m—1landg=1,...,n.
We first estimate 0, (Ro). If p(d, (v1) " @o) < p(dg,(wo) @), then by
Lemma 7.2(b), we get

10, [p(d, (v1) o)
pd gy (wo) o)
If p(dj, (wo) tzo) < p(dy, (v1)~1z0), the estimate is similar.

Next we estimate 9r, (R;) for¢ = 1,...,m—1.1If p(uco(d, (vc) wc—1)) <
p(dJ§+1(U<+l)_1$§), then by Lemma 7.2(b), we have

|0ry (Ro)| = <1

aTq [p(u¢ o (ng (UC)_lxc—l))]p(dJ<+1 (Uc-&-l)_lxc)
Py (V1) ae)?
4 'P(Uc o (ng (Uc)_1$<71))87q [P(ngﬂ (U<+1)_133<)] ’
p(dg oy (Ver1) " ac)?
107, [p(ug © (dy (ve) " wc-1))]| + 107, [p(dyes (ve41) " )]

(7.12) [0, (Ro)| <

A

p(dy i (Vss1) 1)
<1

The case p(dj_,, (ve11) " zs) < plug o (dy (ve) *zc_1)) can be verified in a
similar way. Thus (7.11) is proved. This ends the proof of Proposition 5.1
and, therefore, Theorem 1.2.
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